COIN-OR::LEMON - Graph Library

source: lemon-main/lemon/concepts/graph.h @ 1093:fb1c7da561ce

Last change on this file since 1093:fb1c7da561ce was 1093:fb1c7da561ce, checked in by Alpar Juttner <alpar@…>, 11 years ago

Remove long lines (from all but one file)

File size: 25.2 KB
RevLine 
[209]1/* -*- mode: C++; indent-tabs-mode: nil; -*-
[57]2 *
[209]3 * This file is a part of LEMON, a generic C++ optimization library.
[57]4 *
[1092]5 * Copyright (C) 2003-2013
[57]6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19///\ingroup graph_concepts
20///\file
[734]21///\brief The concept of undirected graphs.
[57]22
[529]23#ifndef LEMON_CONCEPTS_GRAPH_H
24#define LEMON_CONCEPTS_GRAPH_H
[57]25
26#include <lemon/concepts/graph_components.h>
[734]27#include <lemon/concepts/maps.h>
28#include <lemon/concept_check.h>
[220]29#include <lemon/core.h>
[57]30
31namespace lemon {
32  namespace concepts {
33
34    /// \ingroup graph_concepts
35    ///
[734]36    /// \brief Class describing the concept of undirected graphs.
[57]37    ///
[734]38    /// This class describes the common interface of all undirected
39    /// graphs.
[57]40    ///
[734]41    /// Like all concept classes, it only provides an interface
42    /// without any sensible implementation. So any general algorithm for
43    /// undirected graphs should compile with this class, but it will not
[57]44    /// run properly, of course.
[734]45    /// An actual graph implementation like \ref ListGraph or
[877]46    /// \ref SmartGraph may have additional functionality.
[57]47    ///
[734]48    /// The undirected graphs also fulfill the concept of \ref Digraph
49    /// "directed graphs", since each edge can also be regarded as two
50    /// oppositely directed arcs.
51    /// Undirected graphs provide an Edge type for the undirected edges and
52    /// an Arc type for the directed arcs. The Arc type is convertible to
53    /// Edge or inherited from it, i.e. the corresponding edge can be
54    /// obtained from an arc.
55    /// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt
56    /// and ArcMap classes can be used for the arcs (just like in digraphs).
57    /// Both InArcIt and OutArcIt iterates on the same edges but with
58    /// opposite direction. IncEdgeIt also iterates on the same edges
59    /// as OutArcIt and InArcIt, but it is not convertible to Arc,
60    /// only to Edge.
[57]61    ///
[734]62    /// In LEMON, each undirected edge has an inherent orientation.
63    /// Thus it can defined if an arc is forward or backward oriented in
64    /// an undirected graph with respect to this default oriantation of
65    /// the represented edge.
66    /// With the direction() and direct() functions the direction
67    /// of an arc can be obtained and set, respectively.
[57]68    ///
[734]69    /// Only nodes and edges can be added to or removed from an undirected
70    /// graph and the corresponding arcs are added or removed automatically.
71    ///
72    /// \sa Digraph
[57]73    class Graph {
[734]74    private:
[1018]75      /// Graphs are \e not copy constructible. Use GraphCopy instead.
[734]76      Graph(const Graph&) {}
77      /// \brief Assignment of a graph to another one is \e not allowed.
[1018]78      /// Use GraphCopy instead.
[734]79      void operator=(const Graph&) {}
80
[57]81    public:
[734]82      /// Default constructor.
83      Graph() {}
84
85      /// \brief Undirected graphs should be tagged with \c UndirectedTag.
[57]86      ///
[734]87      /// Undirected graphs should be tagged with \c UndirectedTag.
[877]88      ///
[734]89      /// This tag helps the \c enable_if technics to make compile time
[209]90      /// specializations for undirected graphs.
[57]91      typedef True UndirectedTag;
92
[734]93      /// The node type of the graph
94
95      /// This class identifies a node of the graph. It also serves
96      /// as a base class of the node iterators,
97      /// thus they convert to this type.
[57]98      class Node {
99      public:
100        /// Default constructor
101
[734]102        /// Default constructor.
103        /// \warning It sets the object to an undefined value.
[57]104        Node() { }
105        /// Copy constructor.
106
107        /// Copy constructor.
108        ///
109        Node(const Node&) { }
110
[734]111        /// %Invalid constructor \& conversion.
[57]112
[734]113        /// Initializes the object to be invalid.
[57]114        /// \sa Invalid for more details.
115        Node(Invalid) { }
116        /// Equality operator
117
[734]118        /// Equality operator.
119        ///
[57]120        /// Two iterators are equal if and only if they point to the
[734]121        /// same object or both are \c INVALID.
[57]122        bool operator==(Node) const { return true; }
123
124        /// Inequality operator
[209]125
[734]126        /// Inequality operator.
[57]127        bool operator!=(Node) const { return true; }
128
[209]129        /// Artificial ordering operator.
130
[734]131        /// Artificial ordering operator.
[209]132        ///
[734]133        /// \note This operator only has to define some strict ordering of
[209]134        /// the items; this order has nothing to do with the iteration
135        /// ordering of the items.
136        bool operator<(Node) const { return false; }
[57]137
138      };
[209]139
[734]140      /// Iterator class for the nodes.
[57]141
[734]142      /// This iterator goes through each node of the graph.
[786]143      /// Its usage is quite simple, for example, you can count the number
[734]144      /// of nodes in a graph \c g of type \c %Graph like this:
[57]145      ///\code
146      /// int count=0;
147      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
148      ///\endcode
149      class NodeIt : public Node {
150      public:
151        /// Default constructor
152
[734]153        /// Default constructor.
154        /// \warning It sets the iterator to an undefined value.
[57]155        NodeIt() { }
156        /// Copy constructor.
[209]157
[57]158        /// Copy constructor.
159        ///
160        NodeIt(const NodeIt& n) : Node(n) { }
[734]161        /// %Invalid constructor \& conversion.
[57]162
[734]163        /// Initializes the iterator to be invalid.
[57]164        /// \sa Invalid for more details.
165        NodeIt(Invalid) { }
166        /// Sets the iterator to the first node.
167
[734]168        /// Sets the iterator to the first node of the given digraph.
[57]169        ///
[734]170        explicit NodeIt(const Graph&) { }
171        /// Sets the iterator to the given node.
[57]172
[734]173        /// Sets the iterator to the given node of the given digraph.
174        ///
[57]175        NodeIt(const Graph&, const Node&) { }
176        /// Next node.
177
178        /// Assign the iterator to the next node.
179        ///
180        NodeIt& operator++() { return *this; }
181      };
[209]182
183
[734]184      /// The edge type of the graph
[57]185
[734]186      /// This class identifies an edge of the graph. It also serves
187      /// as a base class of the edge iterators,
188      /// thus they will convert to this type.
[57]189      class Edge {
190      public:
191        /// Default constructor
192
[734]193        /// Default constructor.
194        /// \warning It sets the object to an undefined value.
[57]195        Edge() { }
196        /// Copy constructor.
197
198        /// Copy constructor.
199        ///
200        Edge(const Edge&) { }
[734]201        /// %Invalid constructor \& conversion.
[57]202
[734]203        /// Initializes the object to be invalid.
204        /// \sa Invalid for more details.
[57]205        Edge(Invalid) { }
206        /// Equality operator
207
[734]208        /// Equality operator.
209        ///
[57]210        /// Two iterators are equal if and only if they point to the
[734]211        /// same object or both are \c INVALID.
[57]212        bool operator==(Edge) const { return true; }
213        /// Inequality operator
214
[734]215        /// Inequality operator.
[57]216        bool operator!=(Edge) const { return true; }
217
[209]218        /// Artificial ordering operator.
219
[734]220        /// Artificial ordering operator.
[209]221        ///
[734]222        /// \note This operator only has to define some strict ordering of
223        /// the edges; this order has nothing to do with the iteration
224        /// ordering of the edges.
[209]225        bool operator<(Edge) const { return false; }
[57]226      };
227
[734]228      /// Iterator class for the edges.
[57]229
[734]230      /// This iterator goes through each edge of the graph.
[786]231      /// Its usage is quite simple, for example, you can count the number
[734]232      /// of edges in a graph \c g of type \c %Graph as follows:
[57]233      ///\code
234      /// int count=0;
235      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
236      ///\endcode
237      class EdgeIt : public Edge {
238      public:
239        /// Default constructor
240
[734]241        /// Default constructor.
242        /// \warning It sets the iterator to an undefined value.
[57]243        EdgeIt() { }
244        /// Copy constructor.
245
246        /// Copy constructor.
247        ///
248        EdgeIt(const EdgeIt& e) : Edge(e) { }
[734]249        /// %Invalid constructor \& conversion.
[57]250
[734]251        /// Initializes the iterator to be invalid.
252        /// \sa Invalid for more details.
253        EdgeIt(Invalid) { }
254        /// Sets the iterator to the first edge.
255
256        /// Sets the iterator to the first edge of the given graph.
[57]257        ///
[734]258        explicit EdgeIt(const Graph&) { }
259        /// Sets the iterator to the given edge.
[209]260
[734]261        /// Sets the iterator to the given edge of the given graph.
262        ///
[209]263        EdgeIt(const Graph&, const Edge&) { }
[57]264        /// Next edge
[209]265
[57]266        /// Assign the iterator to the next edge.
[734]267        ///
[57]268        EdgeIt& operator++() { return *this; }
269      };
270
[734]271      /// Iterator class for the incident edges of a node.
272
273      /// This iterator goes trough the incident undirected edges
274      /// of a certain node of a graph.
[786]275      /// Its usage is quite simple, for example, you can compute the
[734]276      /// degree (i.e. the number of incident edges) of a node \c n
277      /// in a graph \c g of type \c %Graph as follows.
[57]278      ///
279      ///\code
280      /// int count=0;
[78]281      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
[57]282      ///\endcode
[734]283      ///
284      /// \warning Loop edges will be iterated twice.
[78]285      class IncEdgeIt : public Edge {
[57]286      public:
287        /// Default constructor
288
[734]289        /// Default constructor.
290        /// \warning It sets the iterator to an undefined value.
[78]291        IncEdgeIt() { }
[57]292        /// Copy constructor.
293
294        /// Copy constructor.
295        ///
[78]296        IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
[734]297        /// %Invalid constructor \& conversion.
[57]298
[734]299        /// Initializes the iterator to be invalid.
300        /// \sa Invalid for more details.
301        IncEdgeIt(Invalid) { }
302        /// Sets the iterator to the first incident edge.
303
304        /// Sets the iterator to the first incident edge of the given node.
[57]305        ///
[734]306        IncEdgeIt(const Graph&, const Node&) { }
307        /// Sets the iterator to the given edge.
[209]308
[734]309        /// Sets the iterator to the given edge of the given graph.
310        ///
311        IncEdgeIt(const Graph&, const Edge&) { }
312        /// Next incident edge
[57]313
[734]314        /// Assign the iterator to the next incident edge
[209]315        /// of the corresponding node.
[78]316        IncEdgeIt& operator++() { return *this; }
[57]317      };
318
[734]319      /// The arc type of the graph
[57]320
[734]321      /// This class identifies a directed arc of the graph. It also serves
322      /// as a base class of the arc iterators,
323      /// thus they will convert to this type.
[657]324      class Arc {
[57]325      public:
326        /// Default constructor
327
[734]328        /// Default constructor.
329        /// \warning It sets the object to an undefined value.
[57]330        Arc() { }
331        /// Copy constructor.
332
333        /// Copy constructor.
334        ///
[657]335        Arc(const Arc&) { }
[734]336        /// %Invalid constructor \& conversion.
[57]337
[734]338        /// Initializes the object to be invalid.
339        /// \sa Invalid for more details.
[57]340        Arc(Invalid) { }
341        /// Equality operator
342
[734]343        /// Equality operator.
344        ///
[57]345        /// Two iterators are equal if and only if they point to the
[734]346        /// same object or both are \c INVALID.
[57]347        bool operator==(Arc) const { return true; }
348        /// Inequality operator
349
[734]350        /// Inequality operator.
[57]351        bool operator!=(Arc) const { return true; }
352
[209]353        /// Artificial ordering operator.
354
[734]355        /// Artificial ordering operator.
[209]356        ///
[734]357        /// \note This operator only has to define some strict ordering of
358        /// the arcs; this order has nothing to do with the iteration
359        /// ordering of the arcs.
[209]360        bool operator<(Arc) const { return false; }
361
[734]362        /// Converison to \c Edge
[877]363
[734]364        /// Converison to \c Edge.
365        ///
[657]366        operator Edge() const { return Edge(); }
[209]367      };
[57]368
[734]369      /// Iterator class for the arcs.
370
371      /// This iterator goes through each directed arc of the graph.
[786]372      /// Its usage is quite simple, for example, you can count the number
[734]373      /// of arcs in a graph \c g of type \c %Graph as follows:
[57]374      ///\code
375      /// int count=0;
[734]376      /// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count;
[57]377      ///\endcode
378      class ArcIt : public Arc {
379      public:
380        /// Default constructor
381
[734]382        /// Default constructor.
383        /// \warning It sets the iterator to an undefined value.
[57]384        ArcIt() { }
385        /// Copy constructor.
386
387        /// Copy constructor.
388        ///
389        ArcIt(const ArcIt& e) : Arc(e) { }
[734]390        /// %Invalid constructor \& conversion.
[57]391
[734]392        /// Initializes the iterator to be invalid.
393        /// \sa Invalid for more details.
394        ArcIt(Invalid) { }
395        /// Sets the iterator to the first arc.
396
397        /// Sets the iterator to the first arc of the given graph.
[57]398        ///
[1093]399        explicit ArcIt(const Graph &g) {
400          ::lemon::ignore_unused_variable_warning(g);
401        }
[734]402        /// Sets the iterator to the given arc.
[209]403
[734]404        /// Sets the iterator to the given arc of the given graph.
405        ///
[209]406        ArcIt(const Graph&, const Arc&) { }
[734]407        /// Next arc
[209]408
[57]409        /// Assign the iterator to the next arc.
[734]410        ///
[57]411        ArcIt& operator++() { return *this; }
412      };
[209]413
[734]414      /// Iterator class for the outgoing arcs of a node.
[57]415
[734]416      /// This iterator goes trough the \e outgoing directed arcs of a
417      /// certain node of a graph.
[786]418      /// Its usage is quite simple, for example, you can count the number
[57]419      /// of outgoing arcs of a node \c n
[734]420      /// in a graph \c g of type \c %Graph as follows.
[57]421      ///\code
422      /// int count=0;
[734]423      /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
[57]424      ///\endcode
425      class OutArcIt : public Arc {
426      public:
427        /// Default constructor
428
[734]429        /// Default constructor.
430        /// \warning It sets the iterator to an undefined value.
[57]431        OutArcIt() { }
432        /// Copy constructor.
433
434        /// Copy constructor.
435        ///
436        OutArcIt(const OutArcIt& e) : Arc(e) { }
[734]437        /// %Invalid constructor \& conversion.
[57]438
[734]439        /// Initializes the iterator to be invalid.
440        /// \sa Invalid for more details.
441        OutArcIt(Invalid) { }
442        /// Sets the iterator to the first outgoing arc.
443
444        /// Sets the iterator to the first outgoing arc of the given node.
[57]445        ///
446        OutArcIt(const Graph& n, const Node& g) {
[1083]447          ::lemon::ignore_unused_variable_warning(n);
448          ::lemon::ignore_unused_variable_warning(g);
[209]449        }
[734]450        /// Sets the iterator to the given arc.
[57]451
[734]452        /// Sets the iterator to the given arc of the given graph.
453        ///
[57]454        OutArcIt(const Graph&, const Arc&) { }
[734]455        /// Next outgoing arc
[209]456
457        /// Assign the iterator to the next
[57]458        /// outgoing arc of the corresponding node.
459        OutArcIt& operator++() { return *this; }
460      };
461
[734]462      /// Iterator class for the incoming arcs of a node.
[57]463
[734]464      /// This iterator goes trough the \e incoming directed arcs of a
465      /// certain node of a graph.
[786]466      /// Its usage is quite simple, for example, you can count the number
[734]467      /// of incoming arcs of a node \c n
468      /// in a graph \c g of type \c %Graph as follows.
[57]469      ///\code
470      /// int count=0;
[734]471      /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
[57]472      ///\endcode
473      class InArcIt : public Arc {
474      public:
475        /// Default constructor
476
[734]477        /// Default constructor.
478        /// \warning It sets the iterator to an undefined value.
[57]479        InArcIt() { }
480        /// Copy constructor.
481
482        /// Copy constructor.
483        ///
484        InArcIt(const InArcIt& e) : Arc(e) { }
[734]485        /// %Invalid constructor \& conversion.
[57]486
[734]487        /// Initializes the iterator to be invalid.
488        /// \sa Invalid for more details.
489        InArcIt(Invalid) { }
490        /// Sets the iterator to the first incoming arc.
491
492        /// Sets the iterator to the first incoming arc of the given node.
[57]493        ///
[209]494        InArcIt(const Graph& g, const Node& n) {
[1083]495          ::lemon::ignore_unused_variable_warning(n);
496          ::lemon::ignore_unused_variable_warning(g);
[209]497        }
[734]498        /// Sets the iterator to the given arc.
[57]499
[734]500        /// Sets the iterator to the given arc of the given graph.
501        ///
[57]502        InArcIt(const Graph&, const Arc&) { }
503        /// Next incoming arc
504
[734]505        /// Assign the iterator to the next
506        /// incoming arc of the corresponding node.
[57]507        InArcIt& operator++() { return *this; }
508      };
509
[734]510      /// \brief Standard graph map type for the nodes.
[209]511      ///
[734]512      /// Standard graph map type for the nodes.
513      /// It conforms to the ReferenceMap concept.
[209]514      template<class T>
[580]515      class NodeMap : public ReferenceMap<Node, T, T&, const T&>
[57]516      {
517      public:
518
[734]519        /// Constructor
520        explicit NodeMap(const Graph&) { }
521        /// Constructor with given initial value
[57]522        NodeMap(const Graph&, T) { }
523
[263]524      private:
[57]525        ///Copy constructor
[580]526        NodeMap(const NodeMap& nm) :
527          ReferenceMap<Node, T, T&, const T&>(nm) { }
[57]528        ///Assignment operator
529        template <typename CMap>
[209]530        NodeMap& operator=(const CMap&) {
[57]531          checkConcept<ReadMap<Node, T>, CMap>();
[209]532          return *this;
[57]533        }
534      };
535
[734]536      /// \brief Standard graph map type for the arcs.
[57]537      ///
[734]538      /// Standard graph map type for the arcs.
539      /// It conforms to the ReferenceMap concept.
[209]540      template<class T>
[580]541      class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
[57]542      {
543      public:
544
[734]545        /// Constructor
546        explicit ArcMap(const Graph&) { }
547        /// Constructor with given initial value
[57]548        ArcMap(const Graph&, T) { }
[734]549
[263]550      private:
[57]551        ///Copy constructor
[580]552        ArcMap(const ArcMap& em) :
553          ReferenceMap<Arc, T, T&, const T&>(em) { }
[57]554        ///Assignment operator
555        template <typename CMap>
[209]556        ArcMap& operator=(const CMap&) {
[57]557          checkConcept<ReadMap<Arc, T>, CMap>();
[209]558          return *this;
[57]559        }
560      };
561
[734]562      /// \brief Standard graph map type for the edges.
563      ///
564      /// Standard graph map type for the edges.
565      /// It conforms to the ReferenceMap concept.
[209]566      template<class T>
[580]567      class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
[57]568      {
569      public:
570
[734]571        /// Constructor
572        explicit EdgeMap(const Graph&) { }
573        /// Constructor with given initial value
[57]574        EdgeMap(const Graph&, T) { }
[734]575
[263]576      private:
[57]577        ///Copy constructor
[580]578        EdgeMap(const EdgeMap& em) :
579          ReferenceMap<Edge, T, T&, const T&>(em) {}
[57]580        ///Assignment operator
581        template <typename CMap>
[209]582        EdgeMap& operator=(const CMap&) {
[57]583          checkConcept<ReadMap<Edge, T>, CMap>();
[209]584          return *this;
[57]585        }
586      };
587
[734]588      /// \brief The first node of the edge.
[57]589      ///
[734]590      /// Returns the first node of the given edge.
[57]591      ///
[786]592      /// Edges don't have source and target nodes, however, methods
[734]593      /// u() and v() are used to query the two end-nodes of an edge.
594      /// The orientation of an edge that arises this way is called
595      /// the inherent direction, it is used to define the default
596      /// direction for the corresponding arcs.
[559]597      /// \sa v()
598      /// \sa direction()
[57]599      Node u(Edge) const { return INVALID; }
600
[734]601      /// \brief The second node of the edge.
[559]602      ///
[734]603      /// Returns the second node of the given edge.
[559]604      ///
[786]605      /// Edges don't have source and target nodes, however, methods
[734]606      /// u() and v() are used to query the two end-nodes of an edge.
607      /// The orientation of an edge that arises this way is called
608      /// the inherent direction, it is used to define the default
609      /// direction for the corresponding arcs.
[559]610      /// \sa u()
611      /// \sa direction()
[57]612      Node v(Edge) const { return INVALID; }
613
[734]614      /// \brief The source node of the arc.
615      ///
616      /// Returns the source node of the given arc.
[57]617      Node source(Arc) const { return INVALID; }
618
[734]619      /// \brief The target node of the arc.
620      ///
621      /// Returns the target node of the given arc.
[57]622      Node target(Arc) const { return INVALID; }
623
[734]624      /// \brief The ID of the node.
625      ///
626      /// Returns the ID of the given node.
[209]627      int id(Node) const { return -1; }
[61]628
[734]629      /// \brief The ID of the edge.
630      ///
631      /// Returns the ID of the given edge.
[209]632      int id(Edge) const { return -1; }
[61]633
[734]634      /// \brief The ID of the arc.
635      ///
636      /// Returns the ID of the given arc.
[209]637      int id(Arc) const { return -1; }
[61]638
[734]639      /// \brief The node with the given ID.
[61]640      ///
[734]641      /// Returns the node with the given ID.
642      /// \pre The argument should be a valid node ID in the graph.
[209]643      Node nodeFromId(int) const { return INVALID; }
[61]644
[734]645      /// \brief The edge with the given ID.
[61]646      ///
[734]647      /// Returns the edge with the given ID.
648      /// \pre The argument should be a valid edge ID in the graph.
[209]649      Edge edgeFromId(int) const { return INVALID; }
[61]650
[734]651      /// \brief The arc with the given ID.
[61]652      ///
[734]653      /// Returns the arc with the given ID.
654      /// \pre The argument should be a valid arc ID in the graph.
[209]655      Arc arcFromId(int) const { return INVALID; }
[61]656
[734]657      /// \brief An upper bound on the node IDs.
658      ///
659      /// Returns an upper bound on the node IDs.
[209]660      int maxNodeId() const { return -1; }
[61]661
[734]662      /// \brief An upper bound on the edge IDs.
663      ///
664      /// Returns an upper bound on the edge IDs.
[209]665      int maxEdgeId() const { return -1; }
[61]666
[734]667      /// \brief An upper bound on the arc IDs.
668      ///
669      /// Returns an upper bound on the arc IDs.
[209]670      int maxArcId() const { return -1; }
[61]671
[734]672      /// \brief The direction of the arc.
673      ///
674      /// Returns \c true if the direction of the given arc is the same as
675      /// the inherent orientation of the represented edge.
676      bool direction(Arc) const { return true; }
677
678      /// \brief Direct the edge.
679      ///
680      /// Direct the given edge. The returned arc
681      /// represents the given edge and its direction comes
682      /// from the bool parameter. If it is \c true, then the direction
683      /// of the arc is the same as the inherent orientation of the edge.
684      Arc direct(Edge, bool) const {
685        return INVALID;
686      }
687
688      /// \brief Direct the edge.
689      ///
690      /// Direct the given edge. The returned arc represents the given
691      /// edge and its source node is the given node.
692      Arc direct(Edge, Node) const {
693        return INVALID;
694      }
695
696      /// \brief The oppositely directed arc.
697      ///
698      /// Returns the oppositely directed arc representing the same edge.
699      Arc oppositeArc(Arc) const { return INVALID; }
700
701      /// \brief The opposite node on the edge.
702      ///
703      /// Returns the opposite node on the given edge.
704      Node oppositeNode(Node, Edge) const { return INVALID; }
705
[57]706      void first(Node&) const {}
707      void next(Node&) const {}
708
709      void first(Edge&) const {}
710      void next(Edge&) const {}
711
712      void first(Arc&) const {}
713      void next(Arc&) const {}
714
715      void firstOut(Arc&, Node) const {}
716      void nextOut(Arc&) const {}
717
718      void firstIn(Arc&, Node) const {}
719      void nextIn(Arc&) const {}
720
721      void firstInc(Edge &, bool &, const Node &) const {}
722      void nextInc(Edge &, bool &) const {}
723
[61]724      // The second parameter is dummy.
725      Node fromId(int, Node) const { return INVALID; }
726      // The second parameter is dummy.
727      Edge fromId(int, Edge) const { return INVALID; }
728      // The second parameter is dummy.
729      Arc fromId(int, Arc) const { return INVALID; }
730
731      // Dummy parameter.
[209]732      int maxId(Node) const { return -1; }
[61]733      // Dummy parameter.
[209]734      int maxId(Edge) const { return -1; }
[61]735      // Dummy parameter.
[209]736      int maxId(Arc) const { return -1; }
[61]737
[734]738      /// \brief The base node of the iterator.
[57]739      ///
[734]740      /// Returns the base node of the given incident edge iterator.
741      Node baseNode(IncEdgeIt) const { return INVALID; }
742
743      /// \brief The running node of the iterator.
[57]744      ///
[734]745      /// Returns the running node of the given incident edge iterator.
746      Node runningNode(IncEdgeIt) const { return INVALID; }
[57]747
[734]748      /// \brief The base node of the iterator.
[57]749      ///
[734]750      /// Returns the base node of the given outgoing arc iterator
751      /// (i.e. the source node of the corresponding arc).
752      Node baseNode(OutArcIt) const { return INVALID; }
753
754      /// \brief The running node of the iterator.
[57]755      ///
[734]756      /// Returns the running node of the given outgoing arc iterator
757      /// (i.e. the target node of the corresponding arc).
758      Node runningNode(OutArcIt) const { return INVALID; }
[57]759
[734]760      /// \brief The base node of the iterator.
[57]761      ///
[1049]762      /// Returns the base node of the given incoming arc iterator
[734]763      /// (i.e. the target node of the corresponding arc).
764      Node baseNode(InArcIt) const { return INVALID; }
[209]765
[734]766      /// \brief The running node of the iterator.
[57]767      ///
[1049]768      /// Returns the running node of the given incoming arc iterator
[734]769      /// (i.e. the source node of the corresponding arc).
770      Node runningNode(InArcIt) const { return INVALID; }
[57]771
[125]772      template <typename _Graph>
[57]773      struct Constraints {
[209]774        void constraints() {
[580]775          checkConcept<BaseGraphComponent, _Graph>();
[209]776          checkConcept<IterableGraphComponent<>, _Graph>();
777          checkConcept<IDableGraphComponent<>, _Graph>();
778          checkConcept<MappableGraphComponent<>, _Graph>();
779        }
[57]780      };
781
782    };
783
784  }
785
786}
787
788#endif
Note: See TracBrowser for help on using the repository browser.