/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2008 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef GRID_GRAPH_H #define GRID_GRAPH_H #include #include #include #include #include #include ///\ingroup graphs ///\file ///\brief GridGraph class. namespace lemon { class GridGraphBase { public: typedef GridGraphBase Graph; class Node; class Arc; public: GridGraphBase() {} protected: void construct(int w, int h) { _height = h; _width = w; _nodeNum = h * w; _arcNum = 2 * _nodeNum - w - h; _arcLimit = _nodeNum - w; } Arc _down(Node n) const { if (n.id < _nodeNum - _width) { return Arc(n.id); } else { return INVALID; } } Arc _up(Node n) const { if (n.id >= _width) { return Arc(n.id - _width); } else { return INVALID; } } Arc _right(Node n) const { if (n.id % _width < _width - 1) { return _arcLimit + n.id % _width + (n.id / _width) * (_width - 1); } else { return INVALID; } } Arc _left(Node n) const { if (n.id % _width > 0) { return _arcLimit + n.id % _width + (n.id / _width) * (_width - 1) - 1; } else { return INVALID; } } public: Node operator()(int i, int j) const { LEMON_ASSERT(0 <= i && i < width() && 0 <= j && j < height(), "lemon::GridGraph::IndexError"); return Node(i + j * _width); } int row(Node n) const { return n.id / _width; } int col(Node n) const { return n.id % _width; } int width() const { return _width; } int height() const { return _height; } typedef True NodeNumTag; typedef True ArcNumTag; int nodeNum() const { return _nodeNum; } int arcNum() const { return _arcNum; } int maxNodeId() const { return nodeNum() - 1; } int maxArcId() const { return arcNum() - 1; } Node source(Arc e) const { if (e.id < _arcLimit) { return e.id; } else { return (e.id - _arcLimit) % (_width - 1) + (e.id - _arcLimit) / (_width - 1) * _width; } } Node target(Arc e) const { if (e.id < _arcLimit) { return e.id + _width; } else { return (e.id - _arcLimit) % (_width - 1) + (e.id - _arcLimit) / (_width - 1) * _width + 1; } } static int id(Node v) { return v.id; } static int id(Arc e) { return e.id; } static Node nodeFromId(int id) { return Node(id);} static Arc arcFromId(int id) { return Arc(id);} typedef True FindArcTag; Arc findArc(Node u, Node v, Arc prev = INVALID) const { if (prev != INVALID) return INVALID; if (v.id - u.id == _width) return Arc(u.id); if (v.id - u.id == 1 && u.id % _width < _width - 1) { return Arc(u.id / _width * (_width - 1) + u.id % _width + _arcLimit); } return INVALID; } class Node { friend class GridGraphBase; protected: int id; Node(int _id) : id(_id) {} public: Node() {} Node (Invalid) { id = -1; } bool operator==(const Node node) const { return id == node.id; } bool operator!=(const Node node) const { return id != node.id; } bool operator<(const Node node) const { return id < node.id; } }; class Arc { friend class GridGraphBase; protected: int id; Arc(int _id) : id(_id) {} public: Arc() {} Arc (Invalid) { id = -1; } bool operator==(const Arc arc) const { return id == arc.id; } bool operator!=(const Arc arc) const { return id != arc.id; } bool operator<(const Arc arc) const { return id < arc.id; } }; void first(Node& node) const { node.id = nodeNum() - 1; } static void next(Node& node) { --node.id; } void first(Arc& arc) const { arc.id = arcNum() - 1; } static void next(Arc& arc) { --arc.id; } void firstOut(Arc& arc, const Node& node) const { if (node.id < _nodeNum - _width) { arc.id = node.id; } else if (node.id % _width < _width - 1) { arc.id = _arcLimit + node.id % _width + (node.id / _width) * (_width - 1); } else { arc.id = -1; } } void nextOut(Arc& arc) const { if (arc.id >= _arcLimit) { arc.id = -1; } else if (arc.id % _width < _width - 1) { arc.id = _arcLimit + arc.id % _width + (arc.id / _width) * (_width - 1); } else { arc.id = -1; } } void firstIn(Arc& arc, const Node& node) const { if (node.id >= _width) { arc.id = node.id - _width; } else if (node.id % _width > 0) { arc.id = _arcLimit + node.id % _width + (node.id / _width) * (_width - 1) - 1; } else { arc.id = -1; } } void nextIn(Arc& arc) const { if (arc.id >= _arcLimit) { arc.id = -1; } else if (arc.id % _width > 0) { arc.id = _arcLimit + arc.id % _width + (arc.id / _width + 1) * (_width - 1) - 1; } else { arc.id = -1; } } private: int _width, _height; int _nodeNum, _arcNum; int _arcLimit; }; typedef GraphExtender > ExtendedGridGraphBase; /// \ingroup graphs /// /// \brief Grid graph class /// /// This class implements a special graph type. The nodes of the /// graph can be indiced by two integer \c (i,j) value where \c i /// is in the \c [0,width) range and j is in the [0, height) range. /// Two nodes are connected in the graph if the indices differ only /// on one position and only one is the difference. /// /// \image html grid_graph.png /// \image latex grid_graph.eps "Grid graph" width=\textwidth /// /// The graph can be indiced in the following way: ///\code /// GridGraph gr(w, h); /// GridGraph::NodeMap val(gr); /// for (int i = 0; i < gr.width(); ++i) { /// for (int j = 0; j < gr.height(); ++j) { /// val[gr(i, j)] = i + j; /// } /// } ///\endcode /// /// This graph type is fully conform to the \ref concepts::Graph /// "Undirected Graph" concept, and it also has an important extra /// feature that its maps are real \ref concepts::ReferenceMap /// "reference map"s. class GridGraph : public ExtendedGridGraphBase { public: typedef ExtendedGridGraphBase Parent; /// \brief Map to get the indices of the nodes as dim2::Point. /// /// Map to get the indices of the nodes as dim2::Point. class IndexMap { public: /// The key type of the map typedef GridGraph::Node Key; /// The value type of the map typedef dim2::Point Value; /// Constructor IndexMap(const GridGraph& graph) : _graph(graph) {} /// The subscript operator Value operator[](const Key& key) const { return dim2::Point(_graph.row(key), _graph.col(key)); } private: const GridGraph& _graph; }; /// \brief Map to get the row of the nodes. /// /// Map to get the row of the nodes. class RowMap { public: /// The key type of the map typedef GridGraph::Node Key; /// The value type of the map typedef int Value; /// Constructor RowMap(const GridGraph& graph) : _graph(graph) {} /// The subscript operator Value operator[](const Key& key) const { return _graph.row(key); } private: const GridGraph& _graph; }; /// \brief Map to get the column of the nodes. /// /// Map to get the column of the nodes. class ColMap { public: /// The key type of the map typedef GridGraph::Node Key; /// The value type of the map typedef int Value; /// Constructor ColMap(const GridGraph& graph) : _graph(graph) {} /// The subscript operator Value operator[](const Key& key) const { return _graph.col(key); } private: const GridGraph& _graph; }; /// \brief Constructor /// /// Constructor. /// \param width The width of the grid. /// \param height The height of the grid. GridGraph(int width, int height) { construct(width, height); } /// \brief Resize the graph /// /// Resize the grid. void resize(int width, int height) { Parent::notifier(Arc()).clear(); Parent::notifier(Edge()).clear(); Parent::notifier(Node()).clear(); construct(width, height); Parent::notifier(Node()).build(); Parent::notifier(Edge()).build(); Parent::notifier(Arc()).build(); } /// \brief The node on the given position. /// /// Gives back the node on the given position. Node operator()(int i, int j) const { return Parent::operator()(i, j); } /// \brief Gives back the row index of the node. /// /// Gives back the row index of the node. int row(Node n) const { return Parent::row(n); } /// \brief Gives back the column index of the node. /// /// Gives back the column index of the node. int col(Node n) const { return Parent::col(n); } /// \brief Gives back the width of the grid. /// /// Gives back the width of the grid. int width() const { return Parent::width(); } /// \brief Gives back the height of the grid. /// /// Gives back the height of the grid. int height() const { return Parent::height(); } /// \brief Gives back the arc goes down from the node. /// /// Gives back the arc goes down from the node. If there is not /// outgoing arc then it gives back \c INVALID. Arc down(Node n) const { Edge e = _down(n); return e != INVALID ? direct(e, true) : INVALID; } /// \brief Gives back the arc goes up from the node. /// /// Gives back the arc goes up from the node. If there is not /// outgoing arc then it gives back \c INVALID. Arc up(Node n) const { Edge e = _up(n); return e != INVALID ? direct(e, false) : INVALID; } /// \brief Gives back the arc goes right from the node. /// /// Gives back the arc goes right from the node. If there is not /// outgoing arc then it gives back \c INVALID. Arc right(Node n) const { Edge e = _right(n); return e != INVALID ? direct(e, true) : INVALID; } /// \brief Gives back the arc goes left from the node. /// /// Gives back the arc goes left from the node. If there is not /// outgoing arc then it gives back \c INVALID. Arc left(Node n) const { Edge e = _left(n); return e != INVALID ? direct(e, false) : INVALID; } }; // class GridGraph /// \brief Index map of the grid graph /// /// Just returns an IndexMap for the grid graph. inline GridGraph::IndexMap indexMap(const GridGraph& graph) { return GridGraph::IndexMap(graph); } /// \brief Row map of the grid graph /// /// Just returns a RowMap for the grid graph. inline GridGraph::RowMap rowMap(const GridGraph& graph) { return GridGraph::RowMap(graph); } /// \brief Column map of the grid graph /// /// Just returns a ColMap for the grid graph. inline GridGraph::ColMap colMap(const GridGraph& graph) { return GridGraph::ColMap(graph); } } #endif // GRID_GRAPH_H