| 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
|---|
| 2 | * |
|---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
|---|
| 4 | * |
|---|
| 5 | * Copyright (C) 2003-2009 |
|---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|---|
| 8 | * |
|---|
| 9 | * Permission to use, modify and distribute this software is granted |
|---|
| 10 | * provided that this copyright notice appears in all copies. For |
|---|
| 11 | * precise terms see the accompanying LICENSE file. |
|---|
| 12 | * |
|---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
|---|
| 14 | * express or implied, and with no claim as to its suitability for any |
|---|
| 15 | * purpose. |
|---|
| 16 | * |
|---|
| 17 | */ |
|---|
| 18 | |
|---|
| 19 | #ifndef LEMON_MAPS_H |
|---|
| 20 | #define LEMON_MAPS_H |
|---|
| 21 | |
|---|
| 22 | #include <iterator> |
|---|
| 23 | #include <functional> |
|---|
| 24 | #include <vector> |
|---|
| 25 | #include <map> |
|---|
| 26 | |
|---|
| 27 | #include <lemon/core.h> |
|---|
| 28 | |
|---|
| 29 | ///\file |
|---|
| 30 | ///\ingroup maps |
|---|
| 31 | ///\brief Miscellaneous property maps |
|---|
| 32 | |
|---|
| 33 | namespace lemon { |
|---|
| 34 | |
|---|
| 35 | /// \addtogroup maps |
|---|
| 36 | /// @{ |
|---|
| 37 | |
|---|
| 38 | /// Base class of maps. |
|---|
| 39 | |
|---|
| 40 | /// Base class of maps. It provides the necessary type definitions |
|---|
| 41 | /// required by the map %concepts. |
|---|
| 42 | template<typename K, typename V> |
|---|
| 43 | class MapBase { |
|---|
| 44 | public: |
|---|
| 45 | /// \brief The key type of the map. |
|---|
| 46 | typedef K Key; |
|---|
| 47 | /// \brief The value type of the map. |
|---|
| 48 | /// (The type of objects associated with the keys). |
|---|
| 49 | typedef V Value; |
|---|
| 50 | }; |
|---|
| 51 | |
|---|
| 52 | |
|---|
| 53 | /// Null map. (a.k.a. DoNothingMap) |
|---|
| 54 | |
|---|
| 55 | /// This map can be used if you have to provide a map only for |
|---|
| 56 | /// its type definitions, or if you have to provide a writable map, |
|---|
| 57 | /// but data written to it is not required (i.e. it will be sent to |
|---|
| 58 | /// <tt>/dev/null</tt>). |
|---|
| 59 | /// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|---|
| 60 | /// |
|---|
| 61 | /// \sa ConstMap |
|---|
| 62 | template<typename K, typename V> |
|---|
| 63 | class NullMap : public MapBase<K, V> { |
|---|
| 64 | public: |
|---|
| 65 | ///\e |
|---|
| 66 | typedef K Key; |
|---|
| 67 | ///\e |
|---|
| 68 | typedef V Value; |
|---|
| 69 | |
|---|
| 70 | /// Gives back a default constructed element. |
|---|
| 71 | Value operator[](const Key&) const { return Value(); } |
|---|
| 72 | /// Absorbs the value. |
|---|
| 73 | void set(const Key&, const Value&) {} |
|---|
| 74 | }; |
|---|
| 75 | |
|---|
| 76 | /// Returns a \c NullMap class |
|---|
| 77 | |
|---|
| 78 | /// This function just returns a \c NullMap class. |
|---|
| 79 | /// \relates NullMap |
|---|
| 80 | template <typename K, typename V> |
|---|
| 81 | NullMap<K, V> nullMap() { |
|---|
| 82 | return NullMap<K, V>(); |
|---|
| 83 | } |
|---|
| 84 | |
|---|
| 85 | |
|---|
| 86 | /// Constant map. |
|---|
| 87 | |
|---|
| 88 | /// This \ref concepts::ReadMap "readable map" assigns a specified |
|---|
| 89 | /// value to each key. |
|---|
| 90 | /// |
|---|
| 91 | /// In other aspects it is equivalent to \c NullMap. |
|---|
| 92 | /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|---|
| 93 | /// concept, but it absorbs the data written to it. |
|---|
| 94 | /// |
|---|
| 95 | /// The simplest way of using this map is through the constMap() |
|---|
| 96 | /// function. |
|---|
| 97 | /// |
|---|
| 98 | /// \sa NullMap |
|---|
| 99 | /// \sa IdentityMap |
|---|
| 100 | template<typename K, typename V> |
|---|
| 101 | class ConstMap : public MapBase<K, V> { |
|---|
| 102 | private: |
|---|
| 103 | V _value; |
|---|
| 104 | public: |
|---|
| 105 | ///\e |
|---|
| 106 | typedef K Key; |
|---|
| 107 | ///\e |
|---|
| 108 | typedef V Value; |
|---|
| 109 | |
|---|
| 110 | /// Default constructor |
|---|
| 111 | |
|---|
| 112 | /// Default constructor. |
|---|
| 113 | /// The value of the map will be default constructed. |
|---|
| 114 | ConstMap() {} |
|---|
| 115 | |
|---|
| 116 | /// Constructor with specified initial value |
|---|
| 117 | |
|---|
| 118 | /// Constructor with specified initial value. |
|---|
| 119 | /// \param v The initial value of the map. |
|---|
| 120 | ConstMap(const Value &v) : _value(v) {} |
|---|
| 121 | |
|---|
| 122 | /// Gives back the specified value. |
|---|
| 123 | Value operator[](const Key&) const { return _value; } |
|---|
| 124 | |
|---|
| 125 | /// Absorbs the value. |
|---|
| 126 | void set(const Key&, const Value&) {} |
|---|
| 127 | |
|---|
| 128 | /// Sets the value that is assigned to each key. |
|---|
| 129 | void setAll(const Value &v) { |
|---|
| 130 | _value = v; |
|---|
| 131 | } |
|---|
| 132 | |
|---|
| 133 | template<typename V1> |
|---|
| 134 | ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {} |
|---|
| 135 | }; |
|---|
| 136 | |
|---|
| 137 | /// Returns a \c ConstMap class |
|---|
| 138 | |
|---|
| 139 | /// This function just returns a \c ConstMap class. |
|---|
| 140 | /// \relates ConstMap |
|---|
| 141 | template<typename K, typename V> |
|---|
| 142 | inline ConstMap<K, V> constMap(const V &v) { |
|---|
| 143 | return ConstMap<K, V>(v); |
|---|
| 144 | } |
|---|
| 145 | |
|---|
| 146 | template<typename K, typename V> |
|---|
| 147 | inline ConstMap<K, V> constMap() { |
|---|
| 148 | return ConstMap<K, V>(); |
|---|
| 149 | } |
|---|
| 150 | |
|---|
| 151 | |
|---|
| 152 | template<typename T, T v> |
|---|
| 153 | struct Const {}; |
|---|
| 154 | |
|---|
| 155 | /// Constant map with inlined constant value. |
|---|
| 156 | |
|---|
| 157 | /// This \ref concepts::ReadMap "readable map" assigns a specified |
|---|
| 158 | /// value to each key. |
|---|
| 159 | /// |
|---|
| 160 | /// In other aspects it is equivalent to \c NullMap. |
|---|
| 161 | /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|---|
| 162 | /// concept, but it absorbs the data written to it. |
|---|
| 163 | /// |
|---|
| 164 | /// The simplest way of using this map is through the constMap() |
|---|
| 165 | /// function. |
|---|
| 166 | /// |
|---|
| 167 | /// \sa NullMap |
|---|
| 168 | /// \sa IdentityMap |
|---|
| 169 | template<typename K, typename V, V v> |
|---|
| 170 | class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
|---|
| 171 | public: |
|---|
| 172 | ///\e |
|---|
| 173 | typedef K Key; |
|---|
| 174 | ///\e |
|---|
| 175 | typedef V Value; |
|---|
| 176 | |
|---|
| 177 | /// Constructor. |
|---|
| 178 | ConstMap() {} |
|---|
| 179 | |
|---|
| 180 | /// Gives back the specified value. |
|---|
| 181 | Value operator[](const Key&) const { return v; } |
|---|
| 182 | |
|---|
| 183 | /// Absorbs the value. |
|---|
| 184 | void set(const Key&, const Value&) {} |
|---|
| 185 | }; |
|---|
| 186 | |
|---|
| 187 | /// Returns a \c ConstMap class with inlined constant value |
|---|
| 188 | |
|---|
| 189 | /// This function just returns a \c ConstMap class with inlined |
|---|
| 190 | /// constant value. |
|---|
| 191 | /// \relates ConstMap |
|---|
| 192 | template<typename K, typename V, V v> |
|---|
| 193 | inline ConstMap<K, Const<V, v> > constMap() { |
|---|
| 194 | return ConstMap<K, Const<V, v> >(); |
|---|
| 195 | } |
|---|
| 196 | |
|---|
| 197 | |
|---|
| 198 | /// Identity map. |
|---|
| 199 | |
|---|
| 200 | /// This \ref concepts::ReadMap "read-only map" gives back the given |
|---|
| 201 | /// key as value without any modification. |
|---|
| 202 | /// |
|---|
| 203 | /// \sa ConstMap |
|---|
| 204 | template <typename T> |
|---|
| 205 | class IdentityMap : public MapBase<T, T> { |
|---|
| 206 | public: |
|---|
| 207 | ///\e |
|---|
| 208 | typedef T Key; |
|---|
| 209 | ///\e |
|---|
| 210 | typedef T Value; |
|---|
| 211 | |
|---|
| 212 | /// Gives back the given value without any modification. |
|---|
| 213 | Value operator[](const Key &k) const { |
|---|
| 214 | return k; |
|---|
| 215 | } |
|---|
| 216 | }; |
|---|
| 217 | |
|---|
| 218 | /// Returns an \c IdentityMap class |
|---|
| 219 | |
|---|
| 220 | /// This function just returns an \c IdentityMap class. |
|---|
| 221 | /// \relates IdentityMap |
|---|
| 222 | template<typename T> |
|---|
| 223 | inline IdentityMap<T> identityMap() { |
|---|
| 224 | return IdentityMap<T>(); |
|---|
| 225 | } |
|---|
| 226 | |
|---|
| 227 | |
|---|
| 228 | /// \brief Map for storing values for integer keys from the range |
|---|
| 229 | /// <tt>[0..size-1]</tt>. |
|---|
| 230 | /// |
|---|
| 231 | /// This map is essentially a wrapper for \c std::vector. It assigns |
|---|
| 232 | /// values to integer keys from the range <tt>[0..size-1]</tt>. |
|---|
| 233 | /// It can be used with some data structures, for example |
|---|
| 234 | /// \c UnionFind, \c BinHeap, when the used items are small |
|---|
| 235 | /// integers. This map conforms to the \ref concepts::ReferenceMap |
|---|
| 236 | /// "ReferenceMap" concept. |
|---|
| 237 | /// |
|---|
| 238 | /// The simplest way of using this map is through the rangeMap() |
|---|
| 239 | /// function. |
|---|
| 240 | template <typename V> |
|---|
| 241 | class RangeMap : public MapBase<int, V> { |
|---|
| 242 | template <typename V1> |
|---|
| 243 | friend class RangeMap; |
|---|
| 244 | private: |
|---|
| 245 | |
|---|
| 246 | typedef std::vector<V> Vector; |
|---|
| 247 | Vector _vector; |
|---|
| 248 | |
|---|
| 249 | public: |
|---|
| 250 | |
|---|
| 251 | /// Key type |
|---|
| 252 | typedef int Key; |
|---|
| 253 | /// Value type |
|---|
| 254 | typedef V Value; |
|---|
| 255 | /// Reference type |
|---|
| 256 | typedef typename Vector::reference Reference; |
|---|
| 257 | /// Const reference type |
|---|
| 258 | typedef typename Vector::const_reference ConstReference; |
|---|
| 259 | |
|---|
| 260 | typedef True ReferenceMapTag; |
|---|
| 261 | |
|---|
| 262 | public: |
|---|
| 263 | |
|---|
| 264 | /// Constructor with specified default value. |
|---|
| 265 | RangeMap(int size = 0, const Value &value = Value()) |
|---|
| 266 | : _vector(size, value) {} |
|---|
| 267 | |
|---|
| 268 | /// Constructs the map from an appropriate \c std::vector. |
|---|
| 269 | template <typename V1> |
|---|
| 270 | RangeMap(const std::vector<V1>& vector) |
|---|
| 271 | : _vector(vector.begin(), vector.end()) {} |
|---|
| 272 | |
|---|
| 273 | /// Constructs the map from another \c RangeMap. |
|---|
| 274 | template <typename V1> |
|---|
| 275 | RangeMap(const RangeMap<V1> &c) |
|---|
| 276 | : _vector(c._vector.begin(), c._vector.end()) {} |
|---|
| 277 | |
|---|
| 278 | /// Returns the size of the map. |
|---|
| 279 | int size() { |
|---|
| 280 | return _vector.size(); |
|---|
| 281 | } |
|---|
| 282 | |
|---|
| 283 | /// Resizes the map. |
|---|
| 284 | |
|---|
| 285 | /// Resizes the underlying \c std::vector container, so changes the |
|---|
| 286 | /// keyset of the map. |
|---|
| 287 | /// \param size The new size of the map. The new keyset will be the |
|---|
| 288 | /// range <tt>[0..size-1]</tt>. |
|---|
| 289 | /// \param value The default value to assign to the new keys. |
|---|
| 290 | void resize(int size, const Value &value = Value()) { |
|---|
| 291 | _vector.resize(size, value); |
|---|
| 292 | } |
|---|
| 293 | |
|---|
| 294 | private: |
|---|
| 295 | |
|---|
| 296 | RangeMap& operator=(const RangeMap&); |
|---|
| 297 | |
|---|
| 298 | public: |
|---|
| 299 | |
|---|
| 300 | ///\e |
|---|
| 301 | Reference operator[](const Key &k) { |
|---|
| 302 | return _vector[k]; |
|---|
| 303 | } |
|---|
| 304 | |
|---|
| 305 | ///\e |
|---|
| 306 | ConstReference operator[](const Key &k) const { |
|---|
| 307 | return _vector[k]; |
|---|
| 308 | } |
|---|
| 309 | |
|---|
| 310 | ///\e |
|---|
| 311 | void set(const Key &k, const Value &v) { |
|---|
| 312 | _vector[k] = v; |
|---|
| 313 | } |
|---|
| 314 | }; |
|---|
| 315 | |
|---|
| 316 | /// Returns a \c RangeMap class |
|---|
| 317 | |
|---|
| 318 | /// This function just returns a \c RangeMap class. |
|---|
| 319 | /// \relates RangeMap |
|---|
| 320 | template<typename V> |
|---|
| 321 | inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
|---|
| 322 | return RangeMap<V>(size, value); |
|---|
| 323 | } |
|---|
| 324 | |
|---|
| 325 | /// \brief Returns a \c RangeMap class created from an appropriate |
|---|
| 326 | /// \c std::vector |
|---|
| 327 | |
|---|
| 328 | /// This function just returns a \c RangeMap class created from an |
|---|
| 329 | /// appropriate \c std::vector. |
|---|
| 330 | /// \relates RangeMap |
|---|
| 331 | template<typename V> |
|---|
| 332 | inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
|---|
| 333 | return RangeMap<V>(vector); |
|---|
| 334 | } |
|---|
| 335 | |
|---|
| 336 | |
|---|
| 337 | /// Map type based on \c std::map |
|---|
| 338 | |
|---|
| 339 | /// This map is essentially a wrapper for \c std::map with addition |
|---|
| 340 | /// that you can specify a default value for the keys that are not |
|---|
| 341 | /// stored actually. This value can be different from the default |
|---|
| 342 | /// contructed value (i.e. \c %Value()). |
|---|
| 343 | /// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap" |
|---|
| 344 | /// concept. |
|---|
| 345 | /// |
|---|
| 346 | /// This map is useful if a default value should be assigned to most of |
|---|
| 347 | /// the keys and different values should be assigned only to a few |
|---|
| 348 | /// keys (i.e. the map is "sparse"). |
|---|
| 349 | /// The name of this type also refers to this important usage. |
|---|
| 350 | /// |
|---|
| 351 | /// Apart form that this map can be used in many other cases since it |
|---|
| 352 | /// is based on \c std::map, which is a general associative container. |
|---|
| 353 | /// However keep in mind that it is usually not as efficient as other |
|---|
| 354 | /// maps. |
|---|
| 355 | /// |
|---|
| 356 | /// The simplest way of using this map is through the sparseMap() |
|---|
| 357 | /// function. |
|---|
| 358 | template <typename K, typename V, typename Comp = std::less<K> > |
|---|
| 359 | class SparseMap : public MapBase<K, V> { |
|---|
| 360 | template <typename K1, typename V1, typename C1> |
|---|
| 361 | friend class SparseMap; |
|---|
| 362 | public: |
|---|
| 363 | |
|---|
| 364 | /// Key type |
|---|
| 365 | typedef K Key; |
|---|
| 366 | /// Value type |
|---|
| 367 | typedef V Value; |
|---|
| 368 | /// Reference type |
|---|
| 369 | typedef Value& Reference; |
|---|
| 370 | /// Const reference type |
|---|
| 371 | typedef const Value& ConstReference; |
|---|
| 372 | |
|---|
| 373 | typedef True ReferenceMapTag; |
|---|
| 374 | |
|---|
| 375 | private: |
|---|
| 376 | |
|---|
| 377 | typedef std::map<K, V, Comp> Map; |
|---|
| 378 | Map _map; |
|---|
| 379 | Value _value; |
|---|
| 380 | |
|---|
| 381 | public: |
|---|
| 382 | |
|---|
| 383 | /// \brief Constructor with specified default value. |
|---|
| 384 | SparseMap(const Value &value = Value()) : _value(value) {} |
|---|
| 385 | /// \brief Constructs the map from an appropriate \c std::map, and |
|---|
| 386 | /// explicitly specifies a default value. |
|---|
| 387 | template <typename V1, typename Comp1> |
|---|
| 388 | SparseMap(const std::map<Key, V1, Comp1> &map, |
|---|
| 389 | const Value &value = Value()) |
|---|
| 390 | : _map(map.begin(), map.end()), _value(value) {} |
|---|
| 391 | |
|---|
| 392 | /// \brief Constructs the map from another \c SparseMap. |
|---|
| 393 | template<typename V1, typename Comp1> |
|---|
| 394 | SparseMap(const SparseMap<Key, V1, Comp1> &c) |
|---|
| 395 | : _map(c._map.begin(), c._map.end()), _value(c._value) {} |
|---|
| 396 | |
|---|
| 397 | private: |
|---|
| 398 | |
|---|
| 399 | SparseMap& operator=(const SparseMap&); |
|---|
| 400 | |
|---|
| 401 | public: |
|---|
| 402 | |
|---|
| 403 | ///\e |
|---|
| 404 | Reference operator[](const Key &k) { |
|---|
| 405 | typename Map::iterator it = _map.lower_bound(k); |
|---|
| 406 | if (it != _map.end() && !_map.key_comp()(k, it->first)) |
|---|
| 407 | return it->second; |
|---|
| 408 | else |
|---|
| 409 | return _map.insert(it, std::make_pair(k, _value))->second; |
|---|
| 410 | } |
|---|
| 411 | |
|---|
| 412 | ///\e |
|---|
| 413 | ConstReference operator[](const Key &k) const { |
|---|
| 414 | typename Map::const_iterator it = _map.find(k); |
|---|
| 415 | if (it != _map.end()) |
|---|
| 416 | return it->second; |
|---|
| 417 | else |
|---|
| 418 | return _value; |
|---|
| 419 | } |
|---|
| 420 | |
|---|
| 421 | ///\e |
|---|
| 422 | void set(const Key &k, const Value &v) { |
|---|
| 423 | typename Map::iterator it = _map.lower_bound(k); |
|---|
| 424 | if (it != _map.end() && !_map.key_comp()(k, it->first)) |
|---|
| 425 | it->second = v; |
|---|
| 426 | else |
|---|
| 427 | _map.insert(it, std::make_pair(k, v)); |
|---|
| 428 | } |
|---|
| 429 | |
|---|
| 430 | ///\e |
|---|
| 431 | void setAll(const Value &v) { |
|---|
| 432 | _value = v; |
|---|
| 433 | _map.clear(); |
|---|
| 434 | } |
|---|
| 435 | }; |
|---|
| 436 | |
|---|
| 437 | /// Returns a \c SparseMap class |
|---|
| 438 | |
|---|
| 439 | /// This function just returns a \c SparseMap class with specified |
|---|
| 440 | /// default value. |
|---|
| 441 | /// \relates SparseMap |
|---|
| 442 | template<typename K, typename V, typename Compare> |
|---|
| 443 | inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) { |
|---|
| 444 | return SparseMap<K, V, Compare>(value); |
|---|
| 445 | } |
|---|
| 446 | |
|---|
| 447 | template<typename K, typename V> |
|---|
| 448 | inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) { |
|---|
| 449 | return SparseMap<K, V, std::less<K> >(value); |
|---|
| 450 | } |
|---|
| 451 | |
|---|
| 452 | /// \brief Returns a \c SparseMap class created from an appropriate |
|---|
| 453 | /// \c std::map |
|---|
| 454 | |
|---|
| 455 | /// This function just returns a \c SparseMap class created from an |
|---|
| 456 | /// appropriate \c std::map. |
|---|
| 457 | /// \relates SparseMap |
|---|
| 458 | template<typename K, typename V, typename Compare> |
|---|
| 459 | inline SparseMap<K, V, Compare> |
|---|
| 460 | sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
|---|
| 461 | { |
|---|
| 462 | return SparseMap<K, V, Compare>(map, value); |
|---|
| 463 | } |
|---|
| 464 | |
|---|
| 465 | /// @} |
|---|
| 466 | |
|---|
| 467 | /// \addtogroup map_adaptors |
|---|
| 468 | /// @{ |
|---|
| 469 | |
|---|
| 470 | /// Composition of two maps |
|---|
| 471 | |
|---|
| 472 | /// This \ref concepts::ReadMap "read-only map" returns the |
|---|
| 473 | /// composition of two given maps. That is to say, if \c m1 is of |
|---|
| 474 | /// type \c M1 and \c m2 is of \c M2, then for |
|---|
| 475 | /// \code |
|---|
| 476 | /// ComposeMap<M1, M2> cm(m1,m2); |
|---|
| 477 | /// \endcode |
|---|
| 478 | /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
|---|
| 479 | /// |
|---|
| 480 | /// The \c Key type of the map is inherited from \c M2 and the |
|---|
| 481 | /// \c Value type is from \c M1. |
|---|
| 482 | /// \c M2::Value must be convertible to \c M1::Key. |
|---|
| 483 | /// |
|---|
| 484 | /// The simplest way of using this map is through the composeMap() |
|---|
| 485 | /// function. |
|---|
| 486 | /// |
|---|
| 487 | /// \sa CombineMap |
|---|
| 488 | template <typename M1, typename M2> |
|---|
| 489 | class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
|---|
| 490 | const M1 &_m1; |
|---|
| 491 | const M2 &_m2; |
|---|
| 492 | public: |
|---|
| 493 | ///\e |
|---|
| 494 | typedef typename M2::Key Key; |
|---|
| 495 | ///\e |
|---|
| 496 | typedef typename M1::Value Value; |
|---|
| 497 | |
|---|
| 498 | /// Constructor |
|---|
| 499 | ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 500 | |
|---|
| 501 | ///\e |
|---|
| 502 | typename MapTraits<M1>::ConstReturnValue |
|---|
| 503 | operator[](const Key &k) const { return _m1[_m2[k]]; } |
|---|
| 504 | }; |
|---|
| 505 | |
|---|
| 506 | /// Returns a \c ComposeMap class |
|---|
| 507 | |
|---|
| 508 | /// This function just returns a \c ComposeMap class. |
|---|
| 509 | /// |
|---|
| 510 | /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
|---|
| 511 | /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
|---|
| 512 | /// will be equal to <tt>m1[m2[x]]</tt>. |
|---|
| 513 | /// |
|---|
| 514 | /// \relates ComposeMap |
|---|
| 515 | template <typename M1, typename M2> |
|---|
| 516 | inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) { |
|---|
| 517 | return ComposeMap<M1, M2>(m1, m2); |
|---|
| 518 | } |
|---|
| 519 | |
|---|
| 520 | |
|---|
| 521 | /// Combination of two maps using an STL (binary) functor. |
|---|
| 522 | |
|---|
| 523 | /// This \ref concepts::ReadMap "read-only map" takes two maps and a |
|---|
| 524 | /// binary functor and returns the combination of the two given maps |
|---|
| 525 | /// using the functor. |
|---|
| 526 | /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
|---|
| 527 | /// and \c f is of \c F, then for |
|---|
| 528 | /// \code |
|---|
| 529 | /// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
|---|
| 530 | /// \endcode |
|---|
| 531 | /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
|---|
| 532 | /// |
|---|
| 533 | /// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
|---|
| 534 | /// must be convertible to \c M2::Key) and the \c Value type is \c V. |
|---|
| 535 | /// \c M2::Value and \c M1::Value must be convertible to the |
|---|
| 536 | /// corresponding input parameter of \c F and the return type of \c F |
|---|
| 537 | /// must be convertible to \c V. |
|---|
| 538 | /// |
|---|
| 539 | /// The simplest way of using this map is through the combineMap() |
|---|
| 540 | /// function. |
|---|
| 541 | /// |
|---|
| 542 | /// \sa ComposeMap |
|---|
| 543 | template<typename M1, typename M2, typename F, |
|---|
| 544 | typename V = typename F::result_type> |
|---|
| 545 | class CombineMap : public MapBase<typename M1::Key, V> { |
|---|
| 546 | const M1 &_m1; |
|---|
| 547 | const M2 &_m2; |
|---|
| 548 | F _f; |
|---|
| 549 | public: |
|---|
| 550 | ///\e |
|---|
| 551 | typedef typename M1::Key Key; |
|---|
| 552 | ///\e |
|---|
| 553 | typedef V Value; |
|---|
| 554 | |
|---|
| 555 | /// Constructor |
|---|
| 556 | CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
|---|
| 557 | : _m1(m1), _m2(m2), _f(f) {} |
|---|
| 558 | ///\e |
|---|
| 559 | Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); } |
|---|
| 560 | }; |
|---|
| 561 | |
|---|
| 562 | /// Returns a \c CombineMap class |
|---|
| 563 | |
|---|
| 564 | /// This function just returns a \c CombineMap class. |
|---|
| 565 | /// |
|---|
| 566 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 567 | /// values, then |
|---|
| 568 | /// \code |
|---|
| 569 | /// combineMap(m1,m2,std::plus<double>()) |
|---|
| 570 | /// \endcode |
|---|
| 571 | /// is equivalent to |
|---|
| 572 | /// \code |
|---|
| 573 | /// addMap(m1,m2) |
|---|
| 574 | /// \endcode |
|---|
| 575 | /// |
|---|
| 576 | /// This function is specialized for adaptable binary function |
|---|
| 577 | /// classes and C++ functions. |
|---|
| 578 | /// |
|---|
| 579 | /// \relates CombineMap |
|---|
| 580 | template<typename M1, typename M2, typename F, typename V> |
|---|
| 581 | inline CombineMap<M1, M2, F, V> |
|---|
| 582 | combineMap(const M1 &m1, const M2 &m2, const F &f) { |
|---|
| 583 | return CombineMap<M1, M2, F, V>(m1,m2,f); |
|---|
| 584 | } |
|---|
| 585 | |
|---|
| 586 | template<typename M1, typename M2, typename F> |
|---|
| 587 | inline CombineMap<M1, M2, F, typename F::result_type> |
|---|
| 588 | combineMap(const M1 &m1, const M2 &m2, const F &f) { |
|---|
| 589 | return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
|---|
| 590 | } |
|---|
| 591 | |
|---|
| 592 | template<typename M1, typename M2, typename K1, typename K2, typename V> |
|---|
| 593 | inline CombineMap<M1, M2, V (*)(K1, K2), V> |
|---|
| 594 | combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
|---|
| 595 | return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
|---|
| 596 | } |
|---|
| 597 | |
|---|
| 598 | |
|---|
| 599 | /// Converts an STL style (unary) functor to a map |
|---|
| 600 | |
|---|
| 601 | /// This \ref concepts::ReadMap "read-only map" returns the value |
|---|
| 602 | /// of a given functor. Actually, it just wraps the functor and |
|---|
| 603 | /// provides the \c Key and \c Value typedefs. |
|---|
| 604 | /// |
|---|
| 605 | /// Template parameters \c K and \c V will become its \c Key and |
|---|
| 606 | /// \c Value. In most cases they have to be given explicitly because |
|---|
| 607 | /// a functor typically does not provide \c argument_type and |
|---|
| 608 | /// \c result_type typedefs. |
|---|
| 609 | /// Parameter \c F is the type of the used functor. |
|---|
| 610 | /// |
|---|
| 611 | /// The simplest way of using this map is through the functorToMap() |
|---|
| 612 | /// function. |
|---|
| 613 | /// |
|---|
| 614 | /// \sa MapToFunctor |
|---|
| 615 | template<typename F, |
|---|
| 616 | typename K = typename F::argument_type, |
|---|
| 617 | typename V = typename F::result_type> |
|---|
| 618 | class FunctorToMap : public MapBase<K, V> { |
|---|
| 619 | F _f; |
|---|
| 620 | public: |
|---|
| 621 | ///\e |
|---|
| 622 | typedef K Key; |
|---|
| 623 | ///\e |
|---|
| 624 | typedef V Value; |
|---|
| 625 | |
|---|
| 626 | /// Constructor |
|---|
| 627 | FunctorToMap(const F &f = F()) : _f(f) {} |
|---|
| 628 | ///\e |
|---|
| 629 | Value operator[](const Key &k) const { return _f(k); } |
|---|
| 630 | }; |
|---|
| 631 | |
|---|
| 632 | /// Returns a \c FunctorToMap class |
|---|
| 633 | |
|---|
| 634 | /// This function just returns a \c FunctorToMap class. |
|---|
| 635 | /// |
|---|
| 636 | /// This function is specialized for adaptable binary function |
|---|
| 637 | /// classes and C++ functions. |
|---|
| 638 | /// |
|---|
| 639 | /// \relates FunctorToMap |
|---|
| 640 | template<typename K, typename V, typename F> |
|---|
| 641 | inline FunctorToMap<F, K, V> functorToMap(const F &f) { |
|---|
| 642 | return FunctorToMap<F, K, V>(f); |
|---|
| 643 | } |
|---|
| 644 | |
|---|
| 645 | template <typename F> |
|---|
| 646 | inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
|---|
| 647 | functorToMap(const F &f) |
|---|
| 648 | { |
|---|
| 649 | return FunctorToMap<F, typename F::argument_type, |
|---|
| 650 | typename F::result_type>(f); |
|---|
| 651 | } |
|---|
| 652 | |
|---|
| 653 | template <typename K, typename V> |
|---|
| 654 | inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) { |
|---|
| 655 | return FunctorToMap<V (*)(K), K, V>(f); |
|---|
| 656 | } |
|---|
| 657 | |
|---|
| 658 | |
|---|
| 659 | /// Converts a map to an STL style (unary) functor |
|---|
| 660 | |
|---|
| 661 | /// This class converts a map to an STL style (unary) functor. |
|---|
| 662 | /// That is it provides an <tt>operator()</tt> to read its values. |
|---|
| 663 | /// |
|---|
| 664 | /// For the sake of convenience it also works as a usual |
|---|
| 665 | /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
|---|
| 666 | /// and the \c Key and \c Value typedefs also exist. |
|---|
| 667 | /// |
|---|
| 668 | /// The simplest way of using this map is through the mapToFunctor() |
|---|
| 669 | /// function. |
|---|
| 670 | /// |
|---|
| 671 | ///\sa FunctorToMap |
|---|
| 672 | template <typename M> |
|---|
| 673 | class MapToFunctor : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 674 | const M &_m; |
|---|
| 675 | public: |
|---|
| 676 | ///\e |
|---|
| 677 | typedef typename M::Key Key; |
|---|
| 678 | ///\e |
|---|
| 679 | typedef typename M::Value Value; |
|---|
| 680 | |
|---|
| 681 | typedef typename M::Key argument_type; |
|---|
| 682 | typedef typename M::Value result_type; |
|---|
| 683 | |
|---|
| 684 | /// Constructor |
|---|
| 685 | MapToFunctor(const M &m) : _m(m) {} |
|---|
| 686 | ///\e |
|---|
| 687 | Value operator()(const Key &k) const { return _m[k]; } |
|---|
| 688 | ///\e |
|---|
| 689 | Value operator[](const Key &k) const { return _m[k]; } |
|---|
| 690 | }; |
|---|
| 691 | |
|---|
| 692 | /// Returns a \c MapToFunctor class |
|---|
| 693 | |
|---|
| 694 | /// This function just returns a \c MapToFunctor class. |
|---|
| 695 | /// \relates MapToFunctor |
|---|
| 696 | template<typename M> |
|---|
| 697 | inline MapToFunctor<M> mapToFunctor(const M &m) { |
|---|
| 698 | return MapToFunctor<M>(m); |
|---|
| 699 | } |
|---|
| 700 | |
|---|
| 701 | |
|---|
| 702 | /// \brief Map adaptor to convert the \c Value type of a map to |
|---|
| 703 | /// another type using the default conversion. |
|---|
| 704 | |
|---|
| 705 | /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
|---|
| 706 | /// "readable map" to another type using the default conversion. |
|---|
| 707 | /// The \c Key type of it is inherited from \c M and the \c Value |
|---|
| 708 | /// type is \c V. |
|---|
| 709 | /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|---|
| 710 | /// |
|---|
| 711 | /// The simplest way of using this map is through the convertMap() |
|---|
| 712 | /// function. |
|---|
| 713 | template <typename M, typename V> |
|---|
| 714 | class ConvertMap : public MapBase<typename M::Key, V> { |
|---|
| 715 | const M &_m; |
|---|
| 716 | public: |
|---|
| 717 | ///\e |
|---|
| 718 | typedef typename M::Key Key; |
|---|
| 719 | ///\e |
|---|
| 720 | typedef V Value; |
|---|
| 721 | |
|---|
| 722 | /// Constructor |
|---|
| 723 | |
|---|
| 724 | /// Constructor. |
|---|
| 725 | /// \param m The underlying map. |
|---|
| 726 | ConvertMap(const M &m) : _m(m) {} |
|---|
| 727 | |
|---|
| 728 | ///\e |
|---|
| 729 | Value operator[](const Key &k) const { return _m[k]; } |
|---|
| 730 | }; |
|---|
| 731 | |
|---|
| 732 | /// Returns a \c ConvertMap class |
|---|
| 733 | |
|---|
| 734 | /// This function just returns a \c ConvertMap class. |
|---|
| 735 | /// \relates ConvertMap |
|---|
| 736 | template<typename V, typename M> |
|---|
| 737 | inline ConvertMap<M, V> convertMap(const M &map) { |
|---|
| 738 | return ConvertMap<M, V>(map); |
|---|
| 739 | } |
|---|
| 740 | |
|---|
| 741 | |
|---|
| 742 | /// Applies all map setting operations to two maps |
|---|
| 743 | |
|---|
| 744 | /// This map has two \ref concepts::WriteMap "writable map" parameters |
|---|
| 745 | /// and each write request will be passed to both of them. |
|---|
| 746 | /// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
|---|
| 747 | /// operations will return the corresponding values of \c M1. |
|---|
| 748 | /// |
|---|
| 749 | /// The \c Key and \c Value types are inherited from \c M1. |
|---|
| 750 | /// The \c Key and \c Value of \c M2 must be convertible from those |
|---|
| 751 | /// of \c M1. |
|---|
| 752 | /// |
|---|
| 753 | /// The simplest way of using this map is through the forkMap() |
|---|
| 754 | /// function. |
|---|
| 755 | template<typename M1, typename M2> |
|---|
| 756 | class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 757 | M1 &_m1; |
|---|
| 758 | M2 &_m2; |
|---|
| 759 | public: |
|---|
| 760 | ///\e |
|---|
| 761 | typedef typename M1::Key Key; |
|---|
| 762 | ///\e |
|---|
| 763 | typedef typename M1::Value Value; |
|---|
| 764 | |
|---|
| 765 | /// Constructor |
|---|
| 766 | ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 767 | /// Returns the value associated with the given key in the first map. |
|---|
| 768 | Value operator[](const Key &k) const { return _m1[k]; } |
|---|
| 769 | /// Sets the value associated with the given key in both maps. |
|---|
| 770 | void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); } |
|---|
| 771 | }; |
|---|
| 772 | |
|---|
| 773 | /// Returns a \c ForkMap class |
|---|
| 774 | |
|---|
| 775 | /// This function just returns a \c ForkMap class. |
|---|
| 776 | /// \relates ForkMap |
|---|
| 777 | template <typename M1, typename M2> |
|---|
| 778 | inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) { |
|---|
| 779 | return ForkMap<M1,M2>(m1,m2); |
|---|
| 780 | } |
|---|
| 781 | |
|---|
| 782 | |
|---|
| 783 | /// Sum of two maps |
|---|
| 784 | |
|---|
| 785 | /// This \ref concepts::ReadMap "read-only map" returns the sum |
|---|
| 786 | /// of the values of the two given maps. |
|---|
| 787 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 788 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 789 | /// \c M1. |
|---|
| 790 | /// |
|---|
| 791 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 792 | /// \code |
|---|
| 793 | /// AddMap<M1,M2> am(m1,m2); |
|---|
| 794 | /// \endcode |
|---|
| 795 | /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
|---|
| 796 | /// |
|---|
| 797 | /// The simplest way of using this map is through the addMap() |
|---|
| 798 | /// function. |
|---|
| 799 | /// |
|---|
| 800 | /// \sa SubMap, MulMap, DivMap |
|---|
| 801 | /// \sa ShiftMap, ShiftWriteMap |
|---|
| 802 | template<typename M1, typename M2> |
|---|
| 803 | class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 804 | const M1 &_m1; |
|---|
| 805 | const M2 &_m2; |
|---|
| 806 | public: |
|---|
| 807 | ///\e |
|---|
| 808 | typedef typename M1::Key Key; |
|---|
| 809 | ///\e |
|---|
| 810 | typedef typename M1::Value Value; |
|---|
| 811 | |
|---|
| 812 | /// Constructor |
|---|
| 813 | AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 814 | ///\e |
|---|
| 815 | Value operator[](const Key &k) const { return _m1[k]+_m2[k]; } |
|---|
| 816 | }; |
|---|
| 817 | |
|---|
| 818 | /// Returns an \c AddMap class |
|---|
| 819 | |
|---|
| 820 | /// This function just returns an \c AddMap class. |
|---|
| 821 | /// |
|---|
| 822 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 823 | /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
|---|
| 824 | /// <tt>m1[x]+m2[x]</tt>. |
|---|
| 825 | /// |
|---|
| 826 | /// \relates AddMap |
|---|
| 827 | template<typename M1, typename M2> |
|---|
| 828 | inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) { |
|---|
| 829 | return AddMap<M1, M2>(m1,m2); |
|---|
| 830 | } |
|---|
| 831 | |
|---|
| 832 | |
|---|
| 833 | /// Difference of two maps |
|---|
| 834 | |
|---|
| 835 | /// This \ref concepts::ReadMap "read-only map" returns the difference |
|---|
| 836 | /// of the values of the two given maps. |
|---|
| 837 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 838 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 839 | /// \c M1. |
|---|
| 840 | /// |
|---|
| 841 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 842 | /// \code |
|---|
| 843 | /// SubMap<M1,M2> sm(m1,m2); |
|---|
| 844 | /// \endcode |
|---|
| 845 | /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
|---|
| 846 | /// |
|---|
| 847 | /// The simplest way of using this map is through the subMap() |
|---|
| 848 | /// function. |
|---|
| 849 | /// |
|---|
| 850 | /// \sa AddMap, MulMap, DivMap |
|---|
| 851 | template<typename M1, typename M2> |
|---|
| 852 | class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 853 | const M1 &_m1; |
|---|
| 854 | const M2 &_m2; |
|---|
| 855 | public: |
|---|
| 856 | ///\e |
|---|
| 857 | typedef typename M1::Key Key; |
|---|
| 858 | ///\e |
|---|
| 859 | typedef typename M1::Value Value; |
|---|
| 860 | |
|---|
| 861 | /// Constructor |
|---|
| 862 | SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 863 | ///\e |
|---|
| 864 | Value operator[](const Key &k) const { return _m1[k]-_m2[k]; } |
|---|
| 865 | }; |
|---|
| 866 | |
|---|
| 867 | /// Returns a \c SubMap class |
|---|
| 868 | |
|---|
| 869 | /// This function just returns a \c SubMap class. |
|---|
| 870 | /// |
|---|
| 871 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 872 | /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
|---|
| 873 | /// <tt>m1[x]-m2[x]</tt>. |
|---|
| 874 | /// |
|---|
| 875 | /// \relates SubMap |
|---|
| 876 | template<typename M1, typename M2> |
|---|
| 877 | inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
|---|
| 878 | return SubMap<M1, M2>(m1,m2); |
|---|
| 879 | } |
|---|
| 880 | |
|---|
| 881 | |
|---|
| 882 | /// Product of two maps |
|---|
| 883 | |
|---|
| 884 | /// This \ref concepts::ReadMap "read-only map" returns the product |
|---|
| 885 | /// of the values of the two given maps. |
|---|
| 886 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 887 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 888 | /// \c M1. |
|---|
| 889 | /// |
|---|
| 890 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 891 | /// \code |
|---|
| 892 | /// MulMap<M1,M2> mm(m1,m2); |
|---|
| 893 | /// \endcode |
|---|
| 894 | /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
|---|
| 895 | /// |
|---|
| 896 | /// The simplest way of using this map is through the mulMap() |
|---|
| 897 | /// function. |
|---|
| 898 | /// |
|---|
| 899 | /// \sa AddMap, SubMap, DivMap |
|---|
| 900 | /// \sa ScaleMap, ScaleWriteMap |
|---|
| 901 | template<typename M1, typename M2> |
|---|
| 902 | class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 903 | const M1 &_m1; |
|---|
| 904 | const M2 &_m2; |
|---|
| 905 | public: |
|---|
| 906 | ///\e |
|---|
| 907 | typedef typename M1::Key Key; |
|---|
| 908 | ///\e |
|---|
| 909 | typedef typename M1::Value Value; |
|---|
| 910 | |
|---|
| 911 | /// Constructor |
|---|
| 912 | MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 913 | ///\e |
|---|
| 914 | Value operator[](const Key &k) const { return _m1[k]*_m2[k]; } |
|---|
| 915 | }; |
|---|
| 916 | |
|---|
| 917 | /// Returns a \c MulMap class |
|---|
| 918 | |
|---|
| 919 | /// This function just returns a \c MulMap class. |
|---|
| 920 | /// |
|---|
| 921 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 922 | /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
|---|
| 923 | /// <tt>m1[x]*m2[x]</tt>. |
|---|
| 924 | /// |
|---|
| 925 | /// \relates MulMap |
|---|
| 926 | template<typename M1, typename M2> |
|---|
| 927 | inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
|---|
| 928 | return MulMap<M1, M2>(m1,m2); |
|---|
| 929 | } |
|---|
| 930 | |
|---|
| 931 | |
|---|
| 932 | /// Quotient of two maps |
|---|
| 933 | |
|---|
| 934 | /// This \ref concepts::ReadMap "read-only map" returns the quotient |
|---|
| 935 | /// of the values of the two given maps. |
|---|
| 936 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 937 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 938 | /// \c M1. |
|---|
| 939 | /// |
|---|
| 940 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 941 | /// \code |
|---|
| 942 | /// DivMap<M1,M2> dm(m1,m2); |
|---|
| 943 | /// \endcode |
|---|
| 944 | /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
|---|
| 945 | /// |
|---|
| 946 | /// The simplest way of using this map is through the divMap() |
|---|
| 947 | /// function. |
|---|
| 948 | /// |
|---|
| 949 | /// \sa AddMap, SubMap, MulMap |
|---|
| 950 | template<typename M1, typename M2> |
|---|
| 951 | class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 952 | const M1 &_m1; |
|---|
| 953 | const M2 &_m2; |
|---|
| 954 | public: |
|---|
| 955 | ///\e |
|---|
| 956 | typedef typename M1::Key Key; |
|---|
| 957 | ///\e |
|---|
| 958 | typedef typename M1::Value Value; |
|---|
| 959 | |
|---|
| 960 | /// Constructor |
|---|
| 961 | DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 962 | ///\e |
|---|
| 963 | Value operator[](const Key &k) const { return _m1[k]/_m2[k]; } |
|---|
| 964 | }; |
|---|
| 965 | |
|---|
| 966 | /// Returns a \c DivMap class |
|---|
| 967 | |
|---|
| 968 | /// This function just returns a \c DivMap class. |
|---|
| 969 | /// |
|---|
| 970 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 971 | /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
|---|
| 972 | /// <tt>m1[x]/m2[x]</tt>. |
|---|
| 973 | /// |
|---|
| 974 | /// \relates DivMap |
|---|
| 975 | template<typename M1, typename M2> |
|---|
| 976 | inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
|---|
| 977 | return DivMap<M1, M2>(m1,m2); |
|---|
| 978 | } |
|---|
| 979 | |
|---|
| 980 | |
|---|
| 981 | /// Shifts a map with a constant. |
|---|
| 982 | |
|---|
| 983 | /// This \ref concepts::ReadMap "read-only map" returns the sum of |
|---|
| 984 | /// the given map and a constant value (i.e. it shifts the map with |
|---|
| 985 | /// the constant). Its \c Key and \c Value are inherited from \c M. |
|---|
| 986 | /// |
|---|
| 987 | /// Actually, |
|---|
| 988 | /// \code |
|---|
| 989 | /// ShiftMap<M> sh(m,v); |
|---|
| 990 | /// \endcode |
|---|
| 991 | /// is equivalent to |
|---|
| 992 | /// \code |
|---|
| 993 | /// ConstMap<M::Key, M::Value> cm(v); |
|---|
| 994 | /// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
|---|
| 995 | /// \endcode |
|---|
| 996 | /// |
|---|
| 997 | /// The simplest way of using this map is through the shiftMap() |
|---|
| 998 | /// function. |
|---|
| 999 | /// |
|---|
| 1000 | /// \sa ShiftWriteMap |
|---|
| 1001 | template<typename M, typename C = typename M::Value> |
|---|
| 1002 | class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1003 | const M &_m; |
|---|
| 1004 | C _v; |
|---|
| 1005 | public: |
|---|
| 1006 | ///\e |
|---|
| 1007 | typedef typename M::Key Key; |
|---|
| 1008 | ///\e |
|---|
| 1009 | typedef typename M::Value Value; |
|---|
| 1010 | |
|---|
| 1011 | /// Constructor |
|---|
| 1012 | |
|---|
| 1013 | /// Constructor. |
|---|
| 1014 | /// \param m The undelying map. |
|---|
| 1015 | /// \param v The constant value. |
|---|
| 1016 | ShiftMap(const M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1017 | ///\e |
|---|
| 1018 | Value operator[](const Key &k) const { return _m[k]+_v; } |
|---|
| 1019 | }; |
|---|
| 1020 | |
|---|
| 1021 | /// Shifts a map with a constant (read-write version). |
|---|
| 1022 | |
|---|
| 1023 | /// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
|---|
| 1024 | /// of the given map and a constant value (i.e. it shifts the map with |
|---|
| 1025 | /// the constant). Its \c Key and \c Value are inherited from \c M. |
|---|
| 1026 | /// It makes also possible to write the map. |
|---|
| 1027 | /// |
|---|
| 1028 | /// The simplest way of using this map is through the shiftWriteMap() |
|---|
| 1029 | /// function. |
|---|
| 1030 | /// |
|---|
| 1031 | /// \sa ShiftMap |
|---|
| 1032 | template<typename M, typename C = typename M::Value> |
|---|
| 1033 | class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1034 | M &_m; |
|---|
| 1035 | C _v; |
|---|
| 1036 | public: |
|---|
| 1037 | ///\e |
|---|
| 1038 | typedef typename M::Key Key; |
|---|
| 1039 | ///\e |
|---|
| 1040 | typedef typename M::Value Value; |
|---|
| 1041 | |
|---|
| 1042 | /// Constructor |
|---|
| 1043 | |
|---|
| 1044 | /// Constructor. |
|---|
| 1045 | /// \param m The undelying map. |
|---|
| 1046 | /// \param v The constant value. |
|---|
| 1047 | ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1048 | ///\e |
|---|
| 1049 | Value operator[](const Key &k) const { return _m[k]+_v; } |
|---|
| 1050 | ///\e |
|---|
| 1051 | void set(const Key &k, const Value &v) { _m.set(k, v-_v); } |
|---|
| 1052 | }; |
|---|
| 1053 | |
|---|
| 1054 | /// Returns a \c ShiftMap class |
|---|
| 1055 | |
|---|
| 1056 | /// This function just returns a \c ShiftMap class. |
|---|
| 1057 | /// |
|---|
| 1058 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1059 | /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
|---|
| 1060 | /// <tt>m[x]+v</tt>. |
|---|
| 1061 | /// |
|---|
| 1062 | /// \relates ShiftMap |
|---|
| 1063 | template<typename M, typename C> |
|---|
| 1064 | inline ShiftMap<M, C> shiftMap(const M &m, const C &v) { |
|---|
| 1065 | return ShiftMap<M, C>(m,v); |
|---|
| 1066 | } |
|---|
| 1067 | |
|---|
| 1068 | /// Returns a \c ShiftWriteMap class |
|---|
| 1069 | |
|---|
| 1070 | /// This function just returns a \c ShiftWriteMap class. |
|---|
| 1071 | /// |
|---|
| 1072 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1073 | /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
|---|
| 1074 | /// <tt>m[x]+v</tt>. |
|---|
| 1075 | /// Moreover it makes also possible to write the map. |
|---|
| 1076 | /// |
|---|
| 1077 | /// \relates ShiftWriteMap |
|---|
| 1078 | template<typename M, typename C> |
|---|
| 1079 | inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) { |
|---|
| 1080 | return ShiftWriteMap<M, C>(m,v); |
|---|
| 1081 | } |
|---|
| 1082 | |
|---|
| 1083 | |
|---|
| 1084 | /// Scales a map with a constant. |
|---|
| 1085 | |
|---|
| 1086 | /// This \ref concepts::ReadMap "read-only map" returns the value of |
|---|
| 1087 | /// the given map multiplied from the left side with a constant value. |
|---|
| 1088 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1089 | /// |
|---|
| 1090 | /// Actually, |
|---|
| 1091 | /// \code |
|---|
| 1092 | /// ScaleMap<M> sc(m,v); |
|---|
| 1093 | /// \endcode |
|---|
| 1094 | /// is equivalent to |
|---|
| 1095 | /// \code |
|---|
| 1096 | /// ConstMap<M::Key, M::Value> cm(v); |
|---|
| 1097 | /// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
|---|
| 1098 | /// \endcode |
|---|
| 1099 | /// |
|---|
| 1100 | /// The simplest way of using this map is through the scaleMap() |
|---|
| 1101 | /// function. |
|---|
| 1102 | /// |
|---|
| 1103 | /// \sa ScaleWriteMap |
|---|
| 1104 | template<typename M, typename C = typename M::Value> |
|---|
| 1105 | class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1106 | const M &_m; |
|---|
| 1107 | C _v; |
|---|
| 1108 | public: |
|---|
| 1109 | ///\e |
|---|
| 1110 | typedef typename M::Key Key; |
|---|
| 1111 | ///\e |
|---|
| 1112 | typedef typename M::Value Value; |
|---|
| 1113 | |
|---|
| 1114 | /// Constructor |
|---|
| 1115 | |
|---|
| 1116 | /// Constructor. |
|---|
| 1117 | /// \param m The undelying map. |
|---|
| 1118 | /// \param v The constant value. |
|---|
| 1119 | ScaleMap(const M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1120 | ///\e |
|---|
| 1121 | Value operator[](const Key &k) const { return _v*_m[k]; } |
|---|
| 1122 | }; |
|---|
| 1123 | |
|---|
| 1124 | /// Scales a map with a constant (read-write version). |
|---|
| 1125 | |
|---|
| 1126 | /// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
|---|
| 1127 | /// the given map multiplied from the left side with a constant value. |
|---|
| 1128 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1129 | /// It can also be used as write map if the \c / operator is defined |
|---|
| 1130 | /// between \c Value and \c C and the given multiplier is not zero. |
|---|
| 1131 | /// |
|---|
| 1132 | /// The simplest way of using this map is through the scaleWriteMap() |
|---|
| 1133 | /// function. |
|---|
| 1134 | /// |
|---|
| 1135 | /// \sa ScaleMap |
|---|
| 1136 | template<typename M, typename C = typename M::Value> |
|---|
| 1137 | class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1138 | M &_m; |
|---|
| 1139 | C _v; |
|---|
| 1140 | public: |
|---|
| 1141 | ///\e |
|---|
| 1142 | typedef typename M::Key Key; |
|---|
| 1143 | ///\e |
|---|
| 1144 | typedef typename M::Value Value; |
|---|
| 1145 | |
|---|
| 1146 | /// Constructor |
|---|
| 1147 | |
|---|
| 1148 | /// Constructor. |
|---|
| 1149 | /// \param m The undelying map. |
|---|
| 1150 | /// \param v The constant value. |
|---|
| 1151 | ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1152 | ///\e |
|---|
| 1153 | Value operator[](const Key &k) const { return _v*_m[k]; } |
|---|
| 1154 | ///\e |
|---|
| 1155 | void set(const Key &k, const Value &v) { _m.set(k, v/_v); } |
|---|
| 1156 | }; |
|---|
| 1157 | |
|---|
| 1158 | /// Returns a \c ScaleMap class |
|---|
| 1159 | |
|---|
| 1160 | /// This function just returns a \c ScaleMap class. |
|---|
| 1161 | /// |
|---|
| 1162 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1163 | /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
|---|
| 1164 | /// <tt>v*m[x]</tt>. |
|---|
| 1165 | /// |
|---|
| 1166 | /// \relates ScaleMap |
|---|
| 1167 | template<typename M, typename C> |
|---|
| 1168 | inline ScaleMap<M, C> scaleMap(const M &m, const C &v) { |
|---|
| 1169 | return ScaleMap<M, C>(m,v); |
|---|
| 1170 | } |
|---|
| 1171 | |
|---|
| 1172 | /// Returns a \c ScaleWriteMap class |
|---|
| 1173 | |
|---|
| 1174 | /// This function just returns a \c ScaleWriteMap class. |
|---|
| 1175 | /// |
|---|
| 1176 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1177 | /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
|---|
| 1178 | /// <tt>v*m[x]</tt>. |
|---|
| 1179 | /// Moreover it makes also possible to write the map. |
|---|
| 1180 | /// |
|---|
| 1181 | /// \relates ScaleWriteMap |
|---|
| 1182 | template<typename M, typename C> |
|---|
| 1183 | inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) { |
|---|
| 1184 | return ScaleWriteMap<M, C>(m,v); |
|---|
| 1185 | } |
|---|
| 1186 | |
|---|
| 1187 | |
|---|
| 1188 | /// Negative of a map |
|---|
| 1189 | |
|---|
| 1190 | /// This \ref concepts::ReadMap "read-only map" returns the negative |
|---|
| 1191 | /// of the values of the given map (using the unary \c - operator). |
|---|
| 1192 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1193 | /// |
|---|
| 1194 | /// If M::Value is \c int, \c double etc., then |
|---|
| 1195 | /// \code |
|---|
| 1196 | /// NegMap<M> neg(m); |
|---|
| 1197 | /// \endcode |
|---|
| 1198 | /// is equivalent to |
|---|
| 1199 | /// \code |
|---|
| 1200 | /// ScaleMap<M> neg(m,-1); |
|---|
| 1201 | /// \endcode |
|---|
| 1202 | /// |
|---|
| 1203 | /// The simplest way of using this map is through the negMap() |
|---|
| 1204 | /// function. |
|---|
| 1205 | /// |
|---|
| 1206 | /// \sa NegWriteMap |
|---|
| 1207 | template<typename M> |
|---|
| 1208 | class NegMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1209 | const M& _m; |
|---|
| 1210 | public: |
|---|
| 1211 | ///\e |
|---|
| 1212 | typedef typename M::Key Key; |
|---|
| 1213 | ///\e |
|---|
| 1214 | typedef typename M::Value Value; |
|---|
| 1215 | |
|---|
| 1216 | /// Constructor |
|---|
| 1217 | NegMap(const M &m) : _m(m) {} |
|---|
| 1218 | ///\e |
|---|
| 1219 | Value operator[](const Key &k) const { return -_m[k]; } |
|---|
| 1220 | }; |
|---|
| 1221 | |
|---|
| 1222 | /// Negative of a map (read-write version) |
|---|
| 1223 | |
|---|
| 1224 | /// This \ref concepts::ReadWriteMap "read-write map" returns the |
|---|
| 1225 | /// negative of the values of the given map (using the unary \c - |
|---|
| 1226 | /// operator). |
|---|
| 1227 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1228 | /// It makes also possible to write the map. |
|---|
| 1229 | /// |
|---|
| 1230 | /// If M::Value is \c int, \c double etc., then |
|---|
| 1231 | /// \code |
|---|
| 1232 | /// NegWriteMap<M> neg(m); |
|---|
| 1233 | /// \endcode |
|---|
| 1234 | /// is equivalent to |
|---|
| 1235 | /// \code |
|---|
| 1236 | /// ScaleWriteMap<M> neg(m,-1); |
|---|
| 1237 | /// \endcode |
|---|
| 1238 | /// |
|---|
| 1239 | /// The simplest way of using this map is through the negWriteMap() |
|---|
| 1240 | /// function. |
|---|
| 1241 | /// |
|---|
| 1242 | /// \sa NegMap |
|---|
| 1243 | template<typename M> |
|---|
| 1244 | class NegWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1245 | M &_m; |
|---|
| 1246 | public: |
|---|
| 1247 | ///\e |
|---|
| 1248 | typedef typename M::Key Key; |
|---|
| 1249 | ///\e |
|---|
| 1250 | typedef typename M::Value Value; |
|---|
| 1251 | |
|---|
| 1252 | /// Constructor |
|---|
| 1253 | NegWriteMap(M &m) : _m(m) {} |
|---|
| 1254 | ///\e |
|---|
| 1255 | Value operator[](const Key &k) const { return -_m[k]; } |
|---|
| 1256 | ///\e |
|---|
| 1257 | void set(const Key &k, const Value &v) { _m.set(k, -v); } |
|---|
| 1258 | }; |
|---|
| 1259 | |
|---|
| 1260 | /// Returns a \c NegMap class |
|---|
| 1261 | |
|---|
| 1262 | /// This function just returns a \c NegMap class. |
|---|
| 1263 | /// |
|---|
| 1264 | /// For example, if \c m is a map with \c double values, then |
|---|
| 1265 | /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
|---|
| 1266 | /// |
|---|
| 1267 | /// \relates NegMap |
|---|
| 1268 | template <typename M> |
|---|
| 1269 | inline NegMap<M> negMap(const M &m) { |
|---|
| 1270 | return NegMap<M>(m); |
|---|
| 1271 | } |
|---|
| 1272 | |
|---|
| 1273 | /// Returns a \c NegWriteMap class |
|---|
| 1274 | |
|---|
| 1275 | /// This function just returns a \c NegWriteMap class. |
|---|
| 1276 | /// |
|---|
| 1277 | /// For example, if \c m is a map with \c double values, then |
|---|
| 1278 | /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
|---|
| 1279 | /// Moreover it makes also possible to write the map. |
|---|
| 1280 | /// |
|---|
| 1281 | /// \relates NegWriteMap |
|---|
| 1282 | template <typename M> |
|---|
| 1283 | inline NegWriteMap<M> negWriteMap(M &m) { |
|---|
| 1284 | return NegWriteMap<M>(m); |
|---|
| 1285 | } |
|---|
| 1286 | |
|---|
| 1287 | |
|---|
| 1288 | /// Absolute value of a map |
|---|
| 1289 | |
|---|
| 1290 | /// This \ref concepts::ReadMap "read-only map" returns the absolute |
|---|
| 1291 | /// value of the values of the given map. |
|---|
| 1292 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1293 | /// \c Value must be comparable to \c 0 and the unary \c - |
|---|
| 1294 | /// operator must be defined for it, of course. |
|---|
| 1295 | /// |
|---|
| 1296 | /// The simplest way of using this map is through the absMap() |
|---|
| 1297 | /// function. |
|---|
| 1298 | template<typename M> |
|---|
| 1299 | class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1300 | const M &_m; |
|---|
| 1301 | public: |
|---|
| 1302 | ///\e |
|---|
| 1303 | typedef typename M::Key Key; |
|---|
| 1304 | ///\e |
|---|
| 1305 | typedef typename M::Value Value; |
|---|
| 1306 | |
|---|
| 1307 | /// Constructor |
|---|
| 1308 | AbsMap(const M &m) : _m(m) {} |
|---|
| 1309 | ///\e |
|---|
| 1310 | Value operator[](const Key &k) const { |
|---|
| 1311 | Value tmp = _m[k]; |
|---|
| 1312 | return tmp >= 0 ? tmp : -tmp; |
|---|
| 1313 | } |
|---|
| 1314 | |
|---|
| 1315 | }; |
|---|
| 1316 | |
|---|
| 1317 | /// Returns an \c AbsMap class |
|---|
| 1318 | |
|---|
| 1319 | /// This function just returns an \c AbsMap class. |
|---|
| 1320 | /// |
|---|
| 1321 | /// For example, if \c m is a map with \c double values, then |
|---|
| 1322 | /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
|---|
| 1323 | /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
|---|
| 1324 | /// negative. |
|---|
| 1325 | /// |
|---|
| 1326 | /// \relates AbsMap |
|---|
| 1327 | template<typename M> |
|---|
| 1328 | inline AbsMap<M> absMap(const M &m) { |
|---|
| 1329 | return AbsMap<M>(m); |
|---|
| 1330 | } |
|---|
| 1331 | |
|---|
| 1332 | /// @} |
|---|
| 1333 | |
|---|
| 1334 | // Logical maps and map adaptors: |
|---|
| 1335 | |
|---|
| 1336 | /// \addtogroup maps |
|---|
| 1337 | /// @{ |
|---|
| 1338 | |
|---|
| 1339 | /// Constant \c true map. |
|---|
| 1340 | |
|---|
| 1341 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
|---|
| 1342 | /// each key. |
|---|
| 1343 | /// |
|---|
| 1344 | /// Note that |
|---|
| 1345 | /// \code |
|---|
| 1346 | /// TrueMap<K> tm; |
|---|
| 1347 | /// \endcode |
|---|
| 1348 | /// is equivalent to |
|---|
| 1349 | /// \code |
|---|
| 1350 | /// ConstMap<K,bool> tm(true); |
|---|
| 1351 | /// \endcode |
|---|
| 1352 | /// |
|---|
| 1353 | /// \sa FalseMap |
|---|
| 1354 | /// \sa ConstMap |
|---|
| 1355 | template <typename K> |
|---|
| 1356 | class TrueMap : public MapBase<K, bool> { |
|---|
| 1357 | public: |
|---|
| 1358 | ///\e |
|---|
| 1359 | typedef K Key; |
|---|
| 1360 | ///\e |
|---|
| 1361 | typedef bool Value; |
|---|
| 1362 | |
|---|
| 1363 | /// Gives back \c true. |
|---|
| 1364 | Value operator[](const Key&) const { return true; } |
|---|
| 1365 | }; |
|---|
| 1366 | |
|---|
| 1367 | /// Returns a \c TrueMap class |
|---|
| 1368 | |
|---|
| 1369 | /// This function just returns a \c TrueMap class. |
|---|
| 1370 | /// \relates TrueMap |
|---|
| 1371 | template<typename K> |
|---|
| 1372 | inline TrueMap<K> trueMap() { |
|---|
| 1373 | return TrueMap<K>(); |
|---|
| 1374 | } |
|---|
| 1375 | |
|---|
| 1376 | |
|---|
| 1377 | /// Constant \c false map. |
|---|
| 1378 | |
|---|
| 1379 | /// This \ref concepts::ReadMap "read-only map" assigns \c false to |
|---|
| 1380 | /// each key. |
|---|
| 1381 | /// |
|---|
| 1382 | /// Note that |
|---|
| 1383 | /// \code |
|---|
| 1384 | /// FalseMap<K> fm; |
|---|
| 1385 | /// \endcode |
|---|
| 1386 | /// is equivalent to |
|---|
| 1387 | /// \code |
|---|
| 1388 | /// ConstMap<K,bool> fm(false); |
|---|
| 1389 | /// \endcode |
|---|
| 1390 | /// |
|---|
| 1391 | /// \sa TrueMap |
|---|
| 1392 | /// \sa ConstMap |
|---|
| 1393 | template <typename K> |
|---|
| 1394 | class FalseMap : public MapBase<K, bool> { |
|---|
| 1395 | public: |
|---|
| 1396 | ///\e |
|---|
| 1397 | typedef K Key; |
|---|
| 1398 | ///\e |
|---|
| 1399 | typedef bool Value; |
|---|
| 1400 | |
|---|
| 1401 | /// Gives back \c false. |
|---|
| 1402 | Value operator[](const Key&) const { return false; } |
|---|
| 1403 | }; |
|---|
| 1404 | |
|---|
| 1405 | /// Returns a \c FalseMap class |
|---|
| 1406 | |
|---|
| 1407 | /// This function just returns a \c FalseMap class. |
|---|
| 1408 | /// \relates FalseMap |
|---|
| 1409 | template<typename K> |
|---|
| 1410 | inline FalseMap<K> falseMap() { |
|---|
| 1411 | return FalseMap<K>(); |
|---|
| 1412 | } |
|---|
| 1413 | |
|---|
| 1414 | /// @} |
|---|
| 1415 | |
|---|
| 1416 | /// \addtogroup map_adaptors |
|---|
| 1417 | /// @{ |
|---|
| 1418 | |
|---|
| 1419 | /// Logical 'and' of two maps |
|---|
| 1420 | |
|---|
| 1421 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
|---|
| 1422 | /// 'and' of the values of the two given maps. |
|---|
| 1423 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
|---|
| 1424 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|---|
| 1425 | /// |
|---|
| 1426 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 1427 | /// \code |
|---|
| 1428 | /// AndMap<M1,M2> am(m1,m2); |
|---|
| 1429 | /// \endcode |
|---|
| 1430 | /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
|---|
| 1431 | /// |
|---|
| 1432 | /// The simplest way of using this map is through the andMap() |
|---|
| 1433 | /// function. |
|---|
| 1434 | /// |
|---|
| 1435 | /// \sa OrMap |
|---|
| 1436 | /// \sa NotMap, NotWriteMap |
|---|
| 1437 | template<typename M1, typename M2> |
|---|
| 1438 | class AndMap : public MapBase<typename M1::Key, bool> { |
|---|
| 1439 | const M1 &_m1; |
|---|
| 1440 | const M2 &_m2; |
|---|
| 1441 | public: |
|---|
| 1442 | ///\e |
|---|
| 1443 | typedef typename M1::Key Key; |
|---|
| 1444 | ///\e |
|---|
| 1445 | typedef bool Value; |
|---|
| 1446 | |
|---|
| 1447 | /// Constructor |
|---|
| 1448 | AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 1449 | ///\e |
|---|
| 1450 | Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; } |
|---|
| 1451 | }; |
|---|
| 1452 | |
|---|
| 1453 | /// Returns an \c AndMap class |
|---|
| 1454 | |
|---|
| 1455 | /// This function just returns an \c AndMap class. |
|---|
| 1456 | /// |
|---|
| 1457 | /// For example, if \c m1 and \c m2 are both maps with \c bool values, |
|---|
| 1458 | /// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
|---|
| 1459 | /// <tt>m1[x]&&m2[x]</tt>. |
|---|
| 1460 | /// |
|---|
| 1461 | /// \relates AndMap |
|---|
| 1462 | template<typename M1, typename M2> |
|---|
| 1463 | inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) { |
|---|
| 1464 | return AndMap<M1, M2>(m1,m2); |
|---|
| 1465 | } |
|---|
| 1466 | |
|---|
| 1467 | |
|---|
| 1468 | /// Logical 'or' of two maps |
|---|
| 1469 | |
|---|
| 1470 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
|---|
| 1471 | /// 'or' of the values of the two given maps. |
|---|
| 1472 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
|---|
| 1473 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|---|
| 1474 | /// |
|---|
| 1475 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 1476 | /// \code |
|---|
| 1477 | /// OrMap<M1,M2> om(m1,m2); |
|---|
| 1478 | /// \endcode |
|---|
| 1479 | /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
|---|
| 1480 | /// |
|---|
| 1481 | /// The simplest way of using this map is through the orMap() |
|---|
| 1482 | /// function. |
|---|
| 1483 | /// |
|---|
| 1484 | /// \sa AndMap |
|---|
| 1485 | /// \sa NotMap, NotWriteMap |
|---|
| 1486 | template<typename M1, typename M2> |
|---|
| 1487 | class OrMap : public MapBase<typename M1::Key, bool> { |
|---|
| 1488 | const M1 &_m1; |
|---|
| 1489 | const M2 &_m2; |
|---|
| 1490 | public: |
|---|
| 1491 | ///\e |
|---|
| 1492 | typedef typename M1::Key Key; |
|---|
| 1493 | ///\e |
|---|
| 1494 | typedef bool Value; |
|---|
| 1495 | |
|---|
| 1496 | /// Constructor |
|---|
| 1497 | OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 1498 | ///\e |
|---|
| 1499 | Value operator[](const Key &k) const { return _m1[k]||_m2[k]; } |
|---|
| 1500 | }; |
|---|
| 1501 | |
|---|
| 1502 | /// Returns an \c OrMap class |
|---|
| 1503 | |
|---|
| 1504 | /// This function just returns an \c OrMap class. |
|---|
| 1505 | /// |
|---|
| 1506 | /// For example, if \c m1 and \c m2 are both maps with \c bool values, |
|---|
| 1507 | /// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
|---|
| 1508 | /// <tt>m1[x]||m2[x]</tt>. |
|---|
| 1509 | /// |
|---|
| 1510 | /// \relates OrMap |
|---|
| 1511 | template<typename M1, typename M2> |
|---|
| 1512 | inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) { |
|---|
| 1513 | return OrMap<M1, M2>(m1,m2); |
|---|
| 1514 | } |
|---|
| 1515 | |
|---|
| 1516 | |
|---|
| 1517 | /// Logical 'not' of a map |
|---|
| 1518 | |
|---|
| 1519 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
|---|
| 1520 | /// negation of the values of the given map. |
|---|
| 1521 | /// Its \c Key is inherited from \c M and its \c Value is \c bool. |
|---|
| 1522 | /// |
|---|
| 1523 | /// The simplest way of using this map is through the notMap() |
|---|
| 1524 | /// function. |
|---|
| 1525 | /// |
|---|
| 1526 | /// \sa NotWriteMap |
|---|
| 1527 | template <typename M> |
|---|
| 1528 | class NotMap : public MapBase<typename M::Key, bool> { |
|---|
| 1529 | const M &_m; |
|---|
| 1530 | public: |
|---|
| 1531 | ///\e |
|---|
| 1532 | typedef typename M::Key Key; |
|---|
| 1533 | ///\e |
|---|
| 1534 | typedef bool Value; |
|---|
| 1535 | |
|---|
| 1536 | /// Constructor |
|---|
| 1537 | NotMap(const M &m) : _m(m) {} |
|---|
| 1538 | ///\e |
|---|
| 1539 | Value operator[](const Key &k) const { return !_m[k]; } |
|---|
| 1540 | }; |
|---|
| 1541 | |
|---|
| 1542 | /// Logical 'not' of a map (read-write version) |
|---|
| 1543 | |
|---|
| 1544 | /// This \ref concepts::ReadWriteMap "read-write map" returns the |
|---|
| 1545 | /// logical negation of the values of the given map. |
|---|
| 1546 | /// Its \c Key is inherited from \c M and its \c Value is \c bool. |
|---|
| 1547 | /// It makes also possible to write the map. When a value is set, |
|---|
| 1548 | /// the opposite value is set to the original map. |
|---|
| 1549 | /// |
|---|
| 1550 | /// The simplest way of using this map is through the notWriteMap() |
|---|
| 1551 | /// function. |
|---|
| 1552 | /// |
|---|
| 1553 | /// \sa NotMap |
|---|
| 1554 | template <typename M> |
|---|
| 1555 | class NotWriteMap : public MapBase<typename M::Key, bool> { |
|---|
| 1556 | M &_m; |
|---|
| 1557 | public: |
|---|
| 1558 | ///\e |
|---|
| 1559 | typedef typename M::Key Key; |
|---|
| 1560 | ///\e |
|---|
| 1561 | typedef bool Value; |
|---|
| 1562 | |
|---|
| 1563 | /// Constructor |
|---|
| 1564 | NotWriteMap(M &m) : _m(m) {} |
|---|
| 1565 | ///\e |
|---|
| 1566 | Value operator[](const Key &k) const { return !_m[k]; } |
|---|
| 1567 | ///\e |
|---|
| 1568 | void set(const Key &k, bool v) { _m.set(k, !v); } |
|---|
| 1569 | }; |
|---|
| 1570 | |
|---|
| 1571 | /// Returns a \c NotMap class |
|---|
| 1572 | |
|---|
| 1573 | /// This function just returns a \c NotMap class. |
|---|
| 1574 | /// |
|---|
| 1575 | /// For example, if \c m is a map with \c bool values, then |
|---|
| 1576 | /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
|---|
| 1577 | /// |
|---|
| 1578 | /// \relates NotMap |
|---|
| 1579 | template <typename M> |
|---|
| 1580 | inline NotMap<M> notMap(const M &m) { |
|---|
| 1581 | return NotMap<M>(m); |
|---|
| 1582 | } |
|---|
| 1583 | |
|---|
| 1584 | /// Returns a \c NotWriteMap class |
|---|
| 1585 | |
|---|
| 1586 | /// This function just returns a \c NotWriteMap class. |
|---|
| 1587 | /// |
|---|
| 1588 | /// For example, if \c m is a map with \c bool values, then |
|---|
| 1589 | /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
|---|
| 1590 | /// Moreover it makes also possible to write the map. |
|---|
| 1591 | /// |
|---|
| 1592 | /// \relates NotWriteMap |
|---|
| 1593 | template <typename M> |
|---|
| 1594 | inline NotWriteMap<M> notWriteMap(M &m) { |
|---|
| 1595 | return NotWriteMap<M>(m); |
|---|
| 1596 | } |
|---|
| 1597 | |
|---|
| 1598 | |
|---|
| 1599 | /// Combination of two maps using the \c == operator |
|---|
| 1600 | |
|---|
| 1601 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
|---|
| 1602 | /// the keys for which the corresponding values of the two maps are |
|---|
| 1603 | /// equal. |
|---|
| 1604 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
|---|
| 1605 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|---|
| 1606 | /// |
|---|
| 1607 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 1608 | /// \code |
|---|
| 1609 | /// EqualMap<M1,M2> em(m1,m2); |
|---|
| 1610 | /// \endcode |
|---|
| 1611 | /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
|---|
| 1612 | /// |
|---|
| 1613 | /// The simplest way of using this map is through the equalMap() |
|---|
| 1614 | /// function. |
|---|
| 1615 | /// |
|---|
| 1616 | /// \sa LessMap |
|---|
| 1617 | template<typename M1, typename M2> |
|---|
| 1618 | class EqualMap : public MapBase<typename M1::Key, bool> { |
|---|
| 1619 | const M1 &_m1; |
|---|
| 1620 | const M2 &_m2; |
|---|
| 1621 | public: |
|---|
| 1622 | ///\e |
|---|
| 1623 | typedef typename M1::Key Key; |
|---|
| 1624 | ///\e |
|---|
| 1625 | typedef bool Value; |
|---|
| 1626 | |
|---|
| 1627 | /// Constructor |
|---|
| 1628 | EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 1629 | ///\e |
|---|
| 1630 | Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
|---|
| 1631 | }; |
|---|
| 1632 | |
|---|
| 1633 | /// Returns an \c EqualMap class |
|---|
| 1634 | |
|---|
| 1635 | /// This function just returns an \c EqualMap class. |
|---|
| 1636 | /// |
|---|
| 1637 | /// For example, if \c m1 and \c m2 are maps with keys and values of |
|---|
| 1638 | /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
|---|
| 1639 | /// <tt>m1[x]==m2[x]</tt>. |
|---|
| 1640 | /// |
|---|
| 1641 | /// \relates EqualMap |
|---|
| 1642 | template<typename M1, typename M2> |
|---|
| 1643 | inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
|---|
| 1644 | return EqualMap<M1, M2>(m1,m2); |
|---|
| 1645 | } |
|---|
| 1646 | |
|---|
| 1647 | |
|---|
| 1648 | /// Combination of two maps using the \c < operator |
|---|
| 1649 | |
|---|
| 1650 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
|---|
| 1651 | /// the keys for which the corresponding value of the first map is |
|---|
| 1652 | /// less then the value of the second map. |
|---|
| 1653 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
|---|
| 1654 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|---|
| 1655 | /// |
|---|
| 1656 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 1657 | /// \code |
|---|
| 1658 | /// LessMap<M1,M2> lm(m1,m2); |
|---|
| 1659 | /// \endcode |
|---|
| 1660 | /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
|---|
| 1661 | /// |
|---|
| 1662 | /// The simplest way of using this map is through the lessMap() |
|---|
| 1663 | /// function. |
|---|
| 1664 | /// |
|---|
| 1665 | /// \sa EqualMap |
|---|
| 1666 | template<typename M1, typename M2> |
|---|
| 1667 | class LessMap : public MapBase<typename M1::Key, bool> { |
|---|
| 1668 | const M1 &_m1; |
|---|
| 1669 | const M2 &_m2; |
|---|
| 1670 | public: |
|---|
| 1671 | ///\e |
|---|
| 1672 | typedef typename M1::Key Key; |
|---|
| 1673 | ///\e |
|---|
| 1674 | typedef bool Value; |
|---|
| 1675 | |
|---|
| 1676 | /// Constructor |
|---|
| 1677 | LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 1678 | ///\e |
|---|
| 1679 | Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
|---|
| 1680 | }; |
|---|
| 1681 | |
|---|
| 1682 | /// Returns an \c LessMap class |
|---|
| 1683 | |
|---|
| 1684 | /// This function just returns an \c LessMap class. |
|---|
| 1685 | /// |
|---|
| 1686 | /// For example, if \c m1 and \c m2 are maps with keys and values of |
|---|
| 1687 | /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
|---|
| 1688 | /// <tt>m1[x]<m2[x]</tt>. |
|---|
| 1689 | /// |
|---|
| 1690 | /// \relates LessMap |
|---|
| 1691 | template<typename M1, typename M2> |
|---|
| 1692 | inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
|---|
| 1693 | return LessMap<M1, M2>(m1,m2); |
|---|
| 1694 | } |
|---|
| 1695 | |
|---|
| 1696 | namespace _maps_bits { |
|---|
| 1697 | |
|---|
| 1698 | template <typename _Iterator, typename Enable = void> |
|---|
| 1699 | struct IteratorTraits { |
|---|
| 1700 | typedef typename std::iterator_traits<_Iterator>::value_type Value; |
|---|
| 1701 | }; |
|---|
| 1702 | |
|---|
| 1703 | template <typename _Iterator> |
|---|
| 1704 | struct IteratorTraits<_Iterator, |
|---|
| 1705 | typename exists<typename _Iterator::container_type>::type> |
|---|
| 1706 | { |
|---|
| 1707 | typedef typename _Iterator::container_type::value_type Value; |
|---|
| 1708 | }; |
|---|
| 1709 | |
|---|
| 1710 | } |
|---|
| 1711 | |
|---|
| 1712 | /// @} |
|---|
| 1713 | |
|---|
| 1714 | /// \addtogroup maps |
|---|
| 1715 | /// @{ |
|---|
| 1716 | |
|---|
| 1717 | /// \brief Writable bool map for logging each \c true assigned element |
|---|
| 1718 | /// |
|---|
| 1719 | /// A \ref concepts::WriteMap "writable" bool map for logging |
|---|
| 1720 | /// each \c true assigned element, i.e it copies subsequently each |
|---|
| 1721 | /// keys set to \c true to the given iterator. |
|---|
| 1722 | /// The most important usage of it is storing certain nodes or arcs |
|---|
| 1723 | /// that were marked \c true by an algorithm. |
|---|
| 1724 | /// |
|---|
| 1725 | /// There are several algorithms that provide solutions through bool |
|---|
| 1726 | /// maps and most of them assign \c true at most once for each key. |
|---|
| 1727 | /// In these cases it is a natural request to store each \c true |
|---|
| 1728 | /// assigned elements (in order of the assignment), which can be |
|---|
| 1729 | /// easily done with LoggerBoolMap. |
|---|
| 1730 | /// |
|---|
| 1731 | /// The simplest way of using this map is through the loggerBoolMap() |
|---|
| 1732 | /// function. |
|---|
| 1733 | /// |
|---|
| 1734 | /// \tparam IT The type of the iterator. |
|---|
| 1735 | /// \tparam KEY The key type of the map. The default value set |
|---|
| 1736 | /// according to the iterator type should work in most cases. |
|---|
| 1737 | /// |
|---|
| 1738 | /// \note The container of the iterator must contain enough space |
|---|
| 1739 | /// for the elements or the iterator should be an inserter iterator. |
|---|
| 1740 | #ifdef DOXYGEN |
|---|
| 1741 | template <typename IT, typename KEY> |
|---|
| 1742 | #else |
|---|
| 1743 | template <typename IT, |
|---|
| 1744 | typename KEY = typename _maps_bits::IteratorTraits<IT>::Value> |
|---|
| 1745 | #endif |
|---|
| 1746 | class LoggerBoolMap : public MapBase<KEY, bool> { |
|---|
| 1747 | public: |
|---|
| 1748 | |
|---|
| 1749 | ///\e |
|---|
| 1750 | typedef KEY Key; |
|---|
| 1751 | ///\e |
|---|
| 1752 | typedef bool Value; |
|---|
| 1753 | ///\e |
|---|
| 1754 | typedef IT Iterator; |
|---|
| 1755 | |
|---|
| 1756 | /// Constructor |
|---|
| 1757 | LoggerBoolMap(Iterator it) |
|---|
| 1758 | : _begin(it), _end(it) {} |
|---|
| 1759 | |
|---|
| 1760 | /// Gives back the given iterator set for the first key |
|---|
| 1761 | Iterator begin() const { |
|---|
| 1762 | return _begin; |
|---|
| 1763 | } |
|---|
| 1764 | |
|---|
| 1765 | /// Gives back the the 'after the last' iterator |
|---|
| 1766 | Iterator end() const { |
|---|
| 1767 | return _end; |
|---|
| 1768 | } |
|---|
| 1769 | |
|---|
| 1770 | /// The set function of the map |
|---|
| 1771 | void set(const Key& key, Value value) { |
|---|
| 1772 | if (value) { |
|---|
| 1773 | *_end++ = key; |
|---|
| 1774 | } |
|---|
| 1775 | } |
|---|
| 1776 | |
|---|
| 1777 | private: |
|---|
| 1778 | Iterator _begin; |
|---|
| 1779 | Iterator _end; |
|---|
| 1780 | }; |
|---|
| 1781 | |
|---|
| 1782 | /// Returns a \c LoggerBoolMap class |
|---|
| 1783 | |
|---|
| 1784 | /// This function just returns a \c LoggerBoolMap class. |
|---|
| 1785 | /// |
|---|
| 1786 | /// The most important usage of it is storing certain nodes or arcs |
|---|
| 1787 | /// that were marked \c true by an algorithm. |
|---|
| 1788 | /// For example it makes easier to store the nodes in the processing |
|---|
| 1789 | /// order of Dfs algorithm, as the following examples show. |
|---|
| 1790 | /// \code |
|---|
| 1791 | /// std::vector<Node> v; |
|---|
| 1792 | /// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
|---|
| 1793 | /// \endcode |
|---|
| 1794 | /// \code |
|---|
| 1795 | /// std::vector<Node> v(countNodes(g)); |
|---|
| 1796 | /// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
|---|
| 1797 | /// \endcode |
|---|
| 1798 | /// |
|---|
| 1799 | /// \note The container of the iterator must contain enough space |
|---|
| 1800 | /// for the elements or the iterator should be an inserter iterator. |
|---|
| 1801 | /// |
|---|
| 1802 | /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
|---|
| 1803 | /// it cannot be used when a readable map is needed, for example as |
|---|
| 1804 | /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
|---|
| 1805 | /// |
|---|
| 1806 | /// \relates LoggerBoolMap |
|---|
| 1807 | template<typename Iterator> |
|---|
| 1808 | inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
|---|
| 1809 | return LoggerBoolMap<Iterator>(it); |
|---|
| 1810 | } |
|---|
| 1811 | |
|---|
| 1812 | /// @} |
|---|
| 1813 | |
|---|
| 1814 | /// \addtogroup graph_maps |
|---|
| 1815 | /// @{ |
|---|
| 1816 | |
|---|
| 1817 | /// \brief Provides an immutable and unique id for each item in a graph. |
|---|
| 1818 | /// |
|---|
| 1819 | /// IdMap provides a unique and immutable id for each item of the |
|---|
| 1820 | /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|---|
| 1821 | /// - \b unique: different items get different ids, |
|---|
| 1822 | /// - \b immutable: the id of an item does not change (even if you |
|---|
| 1823 | /// delete other nodes). |
|---|
| 1824 | /// |
|---|
| 1825 | /// Using this map you get access (i.e. can read) the inner id values of |
|---|
| 1826 | /// the items stored in the graph, which is returned by the \c id() |
|---|
| 1827 | /// function of the graph. This map can be inverted with its member |
|---|
| 1828 | /// class \c InverseMap or with the \c operator()() member. |
|---|
| 1829 | /// |
|---|
| 1830 | /// \tparam GR The graph type. |
|---|
| 1831 | /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|---|
| 1832 | /// \c GR::Edge). |
|---|
| 1833 | /// |
|---|
| 1834 | /// \see RangeIdMap |
|---|
| 1835 | template <typename GR, typename K> |
|---|
| 1836 | class IdMap : public MapBase<K, int> { |
|---|
| 1837 | public: |
|---|
| 1838 | /// The graph type of IdMap. |
|---|
| 1839 | typedef GR Graph; |
|---|
| 1840 | typedef GR Digraph; |
|---|
| 1841 | /// The key type of IdMap (\c Node, \c Arc or \c Edge). |
|---|
| 1842 | typedef K Item; |
|---|
| 1843 | /// The key type of IdMap (\c Node, \c Arc or \c Edge). |
|---|
| 1844 | typedef K Key; |
|---|
| 1845 | /// The value type of IdMap. |
|---|
| 1846 | typedef int Value; |
|---|
| 1847 | |
|---|
| 1848 | /// \brief Constructor. |
|---|
| 1849 | /// |
|---|
| 1850 | /// Constructor of the map. |
|---|
| 1851 | explicit IdMap(const Graph& graph) : _graph(&graph) {} |
|---|
| 1852 | |
|---|
| 1853 | /// \brief Gives back the \e id of the item. |
|---|
| 1854 | /// |
|---|
| 1855 | /// Gives back the immutable and unique \e id of the item. |
|---|
| 1856 | int operator[](const Item& item) const { return _graph->id(item);} |
|---|
| 1857 | |
|---|
| 1858 | /// \brief Gives back the \e item by its id. |
|---|
| 1859 | /// |
|---|
| 1860 | /// Gives back the \e item by its id. |
|---|
| 1861 | Item operator()(int id) { return _graph->fromId(id, Item()); } |
|---|
| 1862 | |
|---|
| 1863 | private: |
|---|
| 1864 | const Graph* _graph; |
|---|
| 1865 | |
|---|
| 1866 | public: |
|---|
| 1867 | |
|---|
| 1868 | /// \brief The inverse map type of IdMap. |
|---|
| 1869 | /// |
|---|
| 1870 | /// The inverse map type of IdMap. The subscript operator gives back |
|---|
| 1871 | /// an item by its id. |
|---|
| 1872 | /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|---|
| 1873 | /// \see inverse() |
|---|
| 1874 | class InverseMap { |
|---|
| 1875 | public: |
|---|
| 1876 | |
|---|
| 1877 | /// \brief Constructor. |
|---|
| 1878 | /// |
|---|
| 1879 | /// Constructor for creating an id-to-item map. |
|---|
| 1880 | explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
|---|
| 1881 | |
|---|
| 1882 | /// \brief Constructor. |
|---|
| 1883 | /// |
|---|
| 1884 | /// Constructor for creating an id-to-item map. |
|---|
| 1885 | explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
|---|
| 1886 | |
|---|
| 1887 | /// \brief Gives back an item by its id. |
|---|
| 1888 | /// |
|---|
| 1889 | /// Gives back an item by its id. |
|---|
| 1890 | Item operator[](int id) const { return _graph->fromId(id, Item());} |
|---|
| 1891 | |
|---|
| 1892 | private: |
|---|
| 1893 | const Graph* _graph; |
|---|
| 1894 | }; |
|---|
| 1895 | |
|---|
| 1896 | /// \brief Gives back the inverse of the map. |
|---|
| 1897 | /// |
|---|
| 1898 | /// Gives back the inverse of the IdMap. |
|---|
| 1899 | InverseMap inverse() const { return InverseMap(*_graph);} |
|---|
| 1900 | }; |
|---|
| 1901 | |
|---|
| 1902 | /// \brief Returns an \c IdMap class. |
|---|
| 1903 | /// |
|---|
| 1904 | /// This function just returns an \c IdMap class. |
|---|
| 1905 | /// \relates IdMap |
|---|
| 1906 | template <typename K, typename GR> |
|---|
| 1907 | inline IdMap<GR, K> idMap(const GR& graph) { |
|---|
| 1908 | return IdMap<GR, K>(graph); |
|---|
| 1909 | } |
|---|
| 1910 | |
|---|
| 1911 | /// \brief General cross reference graph map type. |
|---|
| 1912 | |
|---|
| 1913 | /// This class provides simple invertable graph maps. |
|---|
| 1914 | /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
|---|
| 1915 | /// and if a key is set to a new value, then stores it in the inverse map. |
|---|
| 1916 | /// The graph items can be accessed by their values either using |
|---|
| 1917 | /// \c InverseMap or \c operator()(), and the values of the map can be |
|---|
| 1918 | /// accessed with an STL compatible forward iterator (\c ValueIt). |
|---|
| 1919 | /// |
|---|
| 1920 | /// This map is intended to be used when all associated values are |
|---|
| 1921 | /// different (the map is actually invertable) or there are only a few |
|---|
| 1922 | /// items with the same value. |
|---|
| 1923 | /// Otherwise consider to use \c IterableValueMap, which is more |
|---|
| 1924 | /// suitable and more efficient for such cases. It provides iterators |
|---|
| 1925 | /// to traverse the items with the same associated value, however |
|---|
| 1926 | /// it does not have \c InverseMap. |
|---|
| 1927 | /// |
|---|
| 1928 | /// This type is not reference map, so it cannot be modified with |
|---|
| 1929 | /// the subscript operator. |
|---|
| 1930 | /// |
|---|
| 1931 | /// \tparam GR The graph type. |
|---|
| 1932 | /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|---|
| 1933 | /// \c GR::Edge). |
|---|
| 1934 | /// \tparam V The value type of the map. |
|---|
| 1935 | /// |
|---|
| 1936 | /// \see IterableValueMap |
|---|
| 1937 | template <typename GR, typename K, typename V> |
|---|
| 1938 | class CrossRefMap |
|---|
| 1939 | : protected ItemSetTraits<GR, K>::template Map<V>::Type { |
|---|
| 1940 | private: |
|---|
| 1941 | |
|---|
| 1942 | typedef typename ItemSetTraits<GR, K>:: |
|---|
| 1943 | template Map<V>::Type Map; |
|---|
| 1944 | |
|---|
| 1945 | typedef std::multimap<V, K> Container; |
|---|
| 1946 | Container _inv_map; |
|---|
| 1947 | |
|---|
| 1948 | public: |
|---|
| 1949 | |
|---|
| 1950 | /// The graph type of CrossRefMap. |
|---|
| 1951 | typedef GR Graph; |
|---|
| 1952 | typedef GR Digraph; |
|---|
| 1953 | /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
|---|
| 1954 | typedef K Item; |
|---|
| 1955 | /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
|---|
| 1956 | typedef K Key; |
|---|
| 1957 | /// The value type of CrossRefMap. |
|---|
| 1958 | typedef V Value; |
|---|
| 1959 | |
|---|
| 1960 | /// \brief Constructor. |
|---|
| 1961 | /// |
|---|
| 1962 | /// Construct a new CrossRefMap for the given graph. |
|---|
| 1963 | explicit CrossRefMap(const Graph& graph) : Map(graph) {} |
|---|
| 1964 | |
|---|
| 1965 | /// \brief Forward iterator for values. |
|---|
| 1966 | /// |
|---|
| 1967 | /// This iterator is an STL compatible forward |
|---|
| 1968 | /// iterator on the values of the map. The values can |
|---|
| 1969 | /// be accessed in the <tt>[beginValue, endValue)</tt> range. |
|---|
| 1970 | /// They are considered with multiplicity, so each value is |
|---|
| 1971 | /// traversed for each item it is assigned to. |
|---|
| 1972 | class ValueIt |
|---|
| 1973 | : public std::iterator<std::forward_iterator_tag, Value> { |
|---|
| 1974 | friend class CrossRefMap; |
|---|
| 1975 | private: |
|---|
| 1976 | ValueIt(typename Container::const_iterator _it) |
|---|
| 1977 | : it(_it) {} |
|---|
| 1978 | public: |
|---|
| 1979 | |
|---|
| 1980 | /// Constructor |
|---|
| 1981 | ValueIt() {} |
|---|
| 1982 | |
|---|
| 1983 | /// \e |
|---|
| 1984 | ValueIt& operator++() { ++it; return *this; } |
|---|
| 1985 | /// \e |
|---|
| 1986 | ValueIt operator++(int) { |
|---|
| 1987 | ValueIt tmp(*this); |
|---|
| 1988 | operator++(); |
|---|
| 1989 | return tmp; |
|---|
| 1990 | } |
|---|
| 1991 | |
|---|
| 1992 | /// \e |
|---|
| 1993 | const Value& operator*() const { return it->first; } |
|---|
| 1994 | /// \e |
|---|
| 1995 | const Value* operator->() const { return &(it->first); } |
|---|
| 1996 | |
|---|
| 1997 | /// \e |
|---|
| 1998 | bool operator==(ValueIt jt) const { return it == jt.it; } |
|---|
| 1999 | /// \e |
|---|
| 2000 | bool operator!=(ValueIt jt) const { return it != jt.it; } |
|---|
| 2001 | |
|---|
| 2002 | private: |
|---|
| 2003 | typename Container::const_iterator it; |
|---|
| 2004 | }; |
|---|
| 2005 | |
|---|
| 2006 | /// Alias for \c ValueIt |
|---|
| 2007 | typedef ValueIt ValueIterator; |
|---|
| 2008 | |
|---|
| 2009 | /// \brief Returns an iterator to the first value. |
|---|
| 2010 | /// |
|---|
| 2011 | /// Returns an STL compatible iterator to the |
|---|
| 2012 | /// first value of the map. The values of the |
|---|
| 2013 | /// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|---|
| 2014 | /// range. |
|---|
| 2015 | ValueIt beginValue() const { |
|---|
| 2016 | return ValueIt(_inv_map.begin()); |
|---|
| 2017 | } |
|---|
| 2018 | |
|---|
| 2019 | /// \brief Returns an iterator after the last value. |
|---|
| 2020 | /// |
|---|
| 2021 | /// Returns an STL compatible iterator after the |
|---|
| 2022 | /// last value of the map. The values of the |
|---|
| 2023 | /// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|---|
| 2024 | /// range. |
|---|
| 2025 | ValueIt endValue() const { |
|---|
| 2026 | return ValueIt(_inv_map.end()); |
|---|
| 2027 | } |
|---|
| 2028 | |
|---|
| 2029 | /// \brief Sets the value associated with the given key. |
|---|
| 2030 | /// |
|---|
| 2031 | /// Sets the value associated with the given key. |
|---|
| 2032 | void set(const Key& key, const Value& val) { |
|---|
| 2033 | Value oldval = Map::operator[](key); |
|---|
| 2034 | typename Container::iterator it; |
|---|
| 2035 | for (it = _inv_map.equal_range(oldval).first; |
|---|
| 2036 | it != _inv_map.equal_range(oldval).second; ++it) { |
|---|
| 2037 | if (it->second == key) { |
|---|
| 2038 | _inv_map.erase(it); |
|---|
| 2039 | break; |
|---|
| 2040 | } |
|---|
| 2041 | } |
|---|
| 2042 | _inv_map.insert(std::make_pair(val, key)); |
|---|
| 2043 | Map::set(key, val); |
|---|
| 2044 | } |
|---|
| 2045 | |
|---|
| 2046 | /// \brief Returns the value associated with the given key. |
|---|
| 2047 | /// |
|---|
| 2048 | /// Returns the value associated with the given key. |
|---|
| 2049 | typename MapTraits<Map>::ConstReturnValue |
|---|
| 2050 | operator[](const Key& key) const { |
|---|
| 2051 | return Map::operator[](key); |
|---|
| 2052 | } |
|---|
| 2053 | |
|---|
| 2054 | /// \brief Gives back an item by its value. |
|---|
| 2055 | /// |
|---|
| 2056 | /// This function gives back an item that is assigned to |
|---|
| 2057 | /// the given value or \c INVALID if no such item exists. |
|---|
| 2058 | /// If there are more items with the same associated value, |
|---|
| 2059 | /// only one of them is returned. |
|---|
| 2060 | Key operator()(const Value& val) const { |
|---|
| 2061 | typename Container::const_iterator it = _inv_map.find(val); |
|---|
| 2062 | return it != _inv_map.end() ? it->second : INVALID; |
|---|
| 2063 | } |
|---|
| 2064 | |
|---|
| 2065 | /// \brief Returns the number of items with the given value. |
|---|
| 2066 | /// |
|---|
| 2067 | /// This function returns the number of items with the given value |
|---|
| 2068 | /// associated with it. |
|---|
| 2069 | int count(const Value &val) const { |
|---|
| 2070 | return _inv_map.count(val); |
|---|
| 2071 | } |
|---|
| 2072 | |
|---|
| 2073 | protected: |
|---|
| 2074 | |
|---|
| 2075 | /// \brief Erase the key from the map and the inverse map. |
|---|
| 2076 | /// |
|---|
| 2077 | /// Erase the key from the map and the inverse map. It is called by the |
|---|
| 2078 | /// \c AlterationNotifier. |
|---|
| 2079 | virtual void erase(const Key& key) { |
|---|
| 2080 | Value val = Map::operator[](key); |
|---|
| 2081 | typename Container::iterator it; |
|---|
| 2082 | for (it = _inv_map.equal_range(val).first; |
|---|
| 2083 | it != _inv_map.equal_range(val).second; ++it) { |
|---|
| 2084 | if (it->second == key) { |
|---|
| 2085 | _inv_map.erase(it); |
|---|
| 2086 | break; |
|---|
| 2087 | } |
|---|
| 2088 | } |
|---|
| 2089 | Map::erase(key); |
|---|
| 2090 | } |
|---|
| 2091 | |
|---|
| 2092 | /// \brief Erase more keys from the map and the inverse map. |
|---|
| 2093 | /// |
|---|
| 2094 | /// Erase more keys from the map and the inverse map. It is called by the |
|---|
| 2095 | /// \c AlterationNotifier. |
|---|
| 2096 | virtual void erase(const std::vector<Key>& keys) { |
|---|
| 2097 | for (int i = 0; i < int(keys.size()); ++i) { |
|---|
| 2098 | Value val = Map::operator[](keys[i]); |
|---|
| 2099 | typename Container::iterator it; |
|---|
| 2100 | for (it = _inv_map.equal_range(val).first; |
|---|
| 2101 | it != _inv_map.equal_range(val).second; ++it) { |
|---|
| 2102 | if (it->second == keys[i]) { |
|---|
| 2103 | _inv_map.erase(it); |
|---|
| 2104 | break; |
|---|
| 2105 | } |
|---|
| 2106 | } |
|---|
| 2107 | } |
|---|
| 2108 | Map::erase(keys); |
|---|
| 2109 | } |
|---|
| 2110 | |
|---|
| 2111 | /// \brief Clear the keys from the map and the inverse map. |
|---|
| 2112 | /// |
|---|
| 2113 | /// Clear the keys from the map and the inverse map. It is called by the |
|---|
| 2114 | /// \c AlterationNotifier. |
|---|
| 2115 | virtual void clear() { |
|---|
| 2116 | _inv_map.clear(); |
|---|
| 2117 | Map::clear(); |
|---|
| 2118 | } |
|---|
| 2119 | |
|---|
| 2120 | public: |
|---|
| 2121 | |
|---|
| 2122 | /// \brief The inverse map type of CrossRefMap. |
|---|
| 2123 | /// |
|---|
| 2124 | /// The inverse map type of CrossRefMap. The subscript operator gives |
|---|
| 2125 | /// back an item by its value. |
|---|
| 2126 | /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|---|
| 2127 | /// \see inverse() |
|---|
| 2128 | class InverseMap { |
|---|
| 2129 | public: |
|---|
| 2130 | /// \brief Constructor |
|---|
| 2131 | /// |
|---|
| 2132 | /// Constructor of the InverseMap. |
|---|
| 2133 | explicit InverseMap(const CrossRefMap& inverted) |
|---|
| 2134 | : _inverted(inverted) {} |
|---|
| 2135 | |
|---|
| 2136 | /// The value type of the InverseMap. |
|---|
| 2137 | typedef typename CrossRefMap::Key Value; |
|---|
| 2138 | /// The key type of the InverseMap. |
|---|
| 2139 | typedef typename CrossRefMap::Value Key; |
|---|
| 2140 | |
|---|
| 2141 | /// \brief Subscript operator. |
|---|
| 2142 | /// |
|---|
| 2143 | /// Subscript operator. It gives back an item |
|---|
| 2144 | /// that is assigned to the given value or \c INVALID |
|---|
| 2145 | /// if no such item exists. |
|---|
| 2146 | Value operator[](const Key& key) const { |
|---|
| 2147 | return _inverted(key); |
|---|
| 2148 | } |
|---|
| 2149 | |
|---|
| 2150 | private: |
|---|
| 2151 | const CrossRefMap& _inverted; |
|---|
| 2152 | }; |
|---|
| 2153 | |
|---|
| 2154 | /// \brief Gives back the inverse of the map. |
|---|
| 2155 | /// |
|---|
| 2156 | /// Gives back the inverse of the CrossRefMap. |
|---|
| 2157 | InverseMap inverse() const { |
|---|
| 2158 | return InverseMap(*this); |
|---|
| 2159 | } |
|---|
| 2160 | |
|---|
| 2161 | }; |
|---|
| 2162 | |
|---|
| 2163 | /// \brief Provides continuous and unique id for the |
|---|
| 2164 | /// items of a graph. |
|---|
| 2165 | /// |
|---|
| 2166 | /// RangeIdMap provides a unique and continuous |
|---|
| 2167 | /// id for each item of a given type (\c Node, \c Arc or |
|---|
| 2168 | /// \c Edge) in a graph. This id is |
|---|
| 2169 | /// - \b unique: different items get different ids, |
|---|
| 2170 | /// - \b continuous: the range of the ids is the set of integers |
|---|
| 2171 | /// between 0 and \c n-1, where \c n is the number of the items of |
|---|
| 2172 | /// this type (\c Node, \c Arc or \c Edge). |
|---|
| 2173 | /// - So, the ids can change when deleting an item of the same type. |
|---|
| 2174 | /// |
|---|
| 2175 | /// Thus this id is not (necessarily) the same as what can get using |
|---|
| 2176 | /// the \c id() function of the graph or \ref IdMap. |
|---|
| 2177 | /// This map can be inverted with its member class \c InverseMap, |
|---|
| 2178 | /// or with the \c operator()() member. |
|---|
| 2179 | /// |
|---|
| 2180 | /// \tparam GR The graph type. |
|---|
| 2181 | /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|---|
| 2182 | /// \c GR::Edge). |
|---|
| 2183 | /// |
|---|
| 2184 | /// \see IdMap |
|---|
| 2185 | template <typename GR, typename K> |
|---|
| 2186 | class RangeIdMap |
|---|
| 2187 | : protected ItemSetTraits<GR, K>::template Map<int>::Type { |
|---|
| 2188 | |
|---|
| 2189 | typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map; |
|---|
| 2190 | |
|---|
| 2191 | public: |
|---|
| 2192 | /// The graph type of RangeIdMap. |
|---|
| 2193 | typedef GR Graph; |
|---|
| 2194 | typedef GR Digraph; |
|---|
| 2195 | /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
|---|
| 2196 | typedef K Item; |
|---|
| 2197 | /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
|---|
| 2198 | typedef K Key; |
|---|
| 2199 | /// The value type of RangeIdMap. |
|---|
| 2200 | typedef int Value; |
|---|
| 2201 | |
|---|
| 2202 | /// \brief Constructor. |
|---|
| 2203 | /// |
|---|
| 2204 | /// Constructor. |
|---|
| 2205 | explicit RangeIdMap(const Graph& gr) : Map(gr) { |
|---|
| 2206 | Item it; |
|---|
| 2207 | const typename Map::Notifier* nf = Map::notifier(); |
|---|
| 2208 | for (nf->first(it); it != INVALID; nf->next(it)) { |
|---|
| 2209 | Map::set(it, _inv_map.size()); |
|---|
| 2210 | _inv_map.push_back(it); |
|---|
| 2211 | } |
|---|
| 2212 | } |
|---|
| 2213 | |
|---|
| 2214 | protected: |
|---|
| 2215 | |
|---|
| 2216 | /// \brief Adds a new key to the map. |
|---|
| 2217 | /// |
|---|
| 2218 | /// Add a new key to the map. It is called by the |
|---|
| 2219 | /// \c AlterationNotifier. |
|---|
| 2220 | virtual void add(const Item& item) { |
|---|
| 2221 | Map::add(item); |
|---|
| 2222 | Map::set(item, _inv_map.size()); |
|---|
| 2223 | _inv_map.push_back(item); |
|---|
| 2224 | } |
|---|
| 2225 | |
|---|
| 2226 | /// \brief Add more new keys to the map. |
|---|
| 2227 | /// |
|---|
| 2228 | /// Add more new keys to the map. It is called by the |
|---|
| 2229 | /// \c AlterationNotifier. |
|---|
| 2230 | virtual void add(const std::vector<Item>& items) { |
|---|
| 2231 | Map::add(items); |
|---|
| 2232 | for (int i = 0; i < int(items.size()); ++i) { |
|---|
| 2233 | Map::set(items[i], _inv_map.size()); |
|---|
| 2234 | _inv_map.push_back(items[i]); |
|---|
| 2235 | } |
|---|
| 2236 | } |
|---|
| 2237 | |
|---|
| 2238 | /// \brief Erase the key from the map. |
|---|
| 2239 | /// |
|---|
| 2240 | /// Erase the key from the map. It is called by the |
|---|
| 2241 | /// \c AlterationNotifier. |
|---|
| 2242 | virtual void erase(const Item& item) { |
|---|
| 2243 | Map::set(_inv_map.back(), Map::operator[](item)); |
|---|
| 2244 | _inv_map[Map::operator[](item)] = _inv_map.back(); |
|---|
| 2245 | _inv_map.pop_back(); |
|---|
| 2246 | Map::erase(item); |
|---|
| 2247 | } |
|---|
| 2248 | |
|---|
| 2249 | /// \brief Erase more keys from the map. |
|---|
| 2250 | /// |
|---|
| 2251 | /// Erase more keys from the map. It is called by the |
|---|
| 2252 | /// \c AlterationNotifier. |
|---|
| 2253 | virtual void erase(const std::vector<Item>& items) { |
|---|
| 2254 | for (int i = 0; i < int(items.size()); ++i) { |
|---|
| 2255 | Map::set(_inv_map.back(), Map::operator[](items[i])); |
|---|
| 2256 | _inv_map[Map::operator[](items[i])] = _inv_map.back(); |
|---|
| 2257 | _inv_map.pop_back(); |
|---|
| 2258 | } |
|---|
| 2259 | Map::erase(items); |
|---|
| 2260 | } |
|---|
| 2261 | |
|---|
| 2262 | /// \brief Build the unique map. |
|---|
| 2263 | /// |
|---|
| 2264 | /// Build the unique map. It is called by the |
|---|
| 2265 | /// \c AlterationNotifier. |
|---|
| 2266 | virtual void build() { |
|---|
| 2267 | Map::build(); |
|---|
| 2268 | Item it; |
|---|
| 2269 | const typename Map::Notifier* nf = Map::notifier(); |
|---|
| 2270 | for (nf->first(it); it != INVALID; nf->next(it)) { |
|---|
| 2271 | Map::set(it, _inv_map.size()); |
|---|
| 2272 | _inv_map.push_back(it); |
|---|
| 2273 | } |
|---|
| 2274 | } |
|---|
| 2275 | |
|---|
| 2276 | /// \brief Clear the keys from the map. |
|---|
| 2277 | /// |
|---|
| 2278 | /// Clear the keys from the map. It is called by the |
|---|
| 2279 | /// \c AlterationNotifier. |
|---|
| 2280 | virtual void clear() { |
|---|
| 2281 | _inv_map.clear(); |
|---|
| 2282 | Map::clear(); |
|---|
| 2283 | } |
|---|
| 2284 | |
|---|
| 2285 | public: |
|---|
| 2286 | |
|---|
| 2287 | /// \brief Returns the maximal value plus one. |
|---|
| 2288 | /// |
|---|
| 2289 | /// Returns the maximal value plus one in the map. |
|---|
| 2290 | unsigned int size() const { |
|---|
| 2291 | return _inv_map.size(); |
|---|
| 2292 | } |
|---|
| 2293 | |
|---|
| 2294 | /// \brief Swaps the position of the two items in the map. |
|---|
| 2295 | /// |
|---|
| 2296 | /// Swaps the position of the two items in the map. |
|---|
| 2297 | void swap(const Item& p, const Item& q) { |
|---|
| 2298 | int pi = Map::operator[](p); |
|---|
| 2299 | int qi = Map::operator[](q); |
|---|
| 2300 | Map::set(p, qi); |
|---|
| 2301 | _inv_map[qi] = p; |
|---|
| 2302 | Map::set(q, pi); |
|---|
| 2303 | _inv_map[pi] = q; |
|---|
| 2304 | } |
|---|
| 2305 | |
|---|
| 2306 | /// \brief Gives back the \e range \e id of the item |
|---|
| 2307 | /// |
|---|
| 2308 | /// Gives back the \e range \e id of the item. |
|---|
| 2309 | int operator[](const Item& item) const { |
|---|
| 2310 | return Map::operator[](item); |
|---|
| 2311 | } |
|---|
| 2312 | |
|---|
| 2313 | /// \brief Gives back the item belonging to a \e range \e id |
|---|
| 2314 | /// |
|---|
| 2315 | /// Gives back the item belonging to the given \e range \e id. |
|---|
| 2316 | Item operator()(int id) const { |
|---|
| 2317 | return _inv_map[id]; |
|---|
| 2318 | } |
|---|
| 2319 | |
|---|
| 2320 | private: |
|---|
| 2321 | |
|---|
| 2322 | typedef std::vector<Item> Container; |
|---|
| 2323 | Container _inv_map; |
|---|
| 2324 | |
|---|
| 2325 | public: |
|---|
| 2326 | |
|---|
| 2327 | /// \brief The inverse map type of RangeIdMap. |
|---|
| 2328 | /// |
|---|
| 2329 | /// The inverse map type of RangeIdMap. The subscript operator gives |
|---|
| 2330 | /// back an item by its \e range \e id. |
|---|
| 2331 | /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|---|
| 2332 | class InverseMap { |
|---|
| 2333 | public: |
|---|
| 2334 | /// \brief Constructor |
|---|
| 2335 | /// |
|---|
| 2336 | /// Constructor of the InverseMap. |
|---|
| 2337 | explicit InverseMap(const RangeIdMap& inverted) |
|---|
| 2338 | : _inverted(inverted) {} |
|---|
| 2339 | |
|---|
| 2340 | |
|---|
| 2341 | /// The value type of the InverseMap. |
|---|
| 2342 | typedef typename RangeIdMap::Key Value; |
|---|
| 2343 | /// The key type of the InverseMap. |
|---|
| 2344 | typedef typename RangeIdMap::Value Key; |
|---|
| 2345 | |
|---|
| 2346 | /// \brief Subscript operator. |
|---|
| 2347 | /// |
|---|
| 2348 | /// Subscript operator. It gives back the item |
|---|
| 2349 | /// that the given \e range \e id currently belongs to. |
|---|
| 2350 | Value operator[](const Key& key) const { |
|---|
| 2351 | return _inverted(key); |
|---|
| 2352 | } |
|---|
| 2353 | |
|---|
| 2354 | /// \brief Size of the map. |
|---|
| 2355 | /// |
|---|
| 2356 | /// Returns the size of the map. |
|---|
| 2357 | unsigned int size() const { |
|---|
| 2358 | return _inverted.size(); |
|---|
| 2359 | } |
|---|
| 2360 | |
|---|
| 2361 | private: |
|---|
| 2362 | const RangeIdMap& _inverted; |
|---|
| 2363 | }; |
|---|
| 2364 | |
|---|
| 2365 | /// \brief Gives back the inverse of the map. |
|---|
| 2366 | /// |
|---|
| 2367 | /// Gives back the inverse of the RangeIdMap. |
|---|
| 2368 | const InverseMap inverse() const { |
|---|
| 2369 | return InverseMap(*this); |
|---|
| 2370 | } |
|---|
| 2371 | }; |
|---|
| 2372 | |
|---|
| 2373 | /// \brief Returns a \c RangeIdMap class. |
|---|
| 2374 | /// |
|---|
| 2375 | /// This function just returns an \c RangeIdMap class. |
|---|
| 2376 | /// \relates RangeIdMap |
|---|
| 2377 | template <typename K, typename GR> |
|---|
| 2378 | inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) { |
|---|
| 2379 | return RangeIdMap<GR, K>(graph); |
|---|
| 2380 | } |
|---|
| 2381 | |
|---|
| 2382 | /// \brief Dynamic iterable \c bool map. |
|---|
| 2383 | /// |
|---|
| 2384 | /// This class provides a special graph map type which can store a |
|---|
| 2385 | /// \c bool value for graph items (\c Node, \c Arc or \c Edge). |
|---|
| 2386 | /// For both \c true and \c false values it is possible to iterate on |
|---|
| 2387 | /// the keys mapped to the value. |
|---|
| 2388 | /// |
|---|
| 2389 | /// This type is a reference map, so it can be modified with the |
|---|
| 2390 | /// subscript operator. |
|---|
| 2391 | /// |
|---|
| 2392 | /// \tparam GR The graph type. |
|---|
| 2393 | /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|---|
| 2394 | /// \c GR::Edge). |
|---|
| 2395 | /// |
|---|
| 2396 | /// \see IterableIntMap, IterableValueMap |
|---|
| 2397 | /// \see CrossRefMap |
|---|
| 2398 | template <typename GR, typename K> |
|---|
| 2399 | class IterableBoolMap |
|---|
| 2400 | : protected ItemSetTraits<GR, K>::template Map<int>::Type { |
|---|
| 2401 | private: |
|---|
| 2402 | typedef GR Graph; |
|---|
| 2403 | |
|---|
| 2404 | typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt; |
|---|
| 2405 | typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent; |
|---|
| 2406 | |
|---|
| 2407 | std::vector<K> _array; |
|---|
| 2408 | int _sep; |
|---|
| 2409 | |
|---|
| 2410 | public: |
|---|
| 2411 | |
|---|
| 2412 | /// Indicates that the map is reference map. |
|---|
| 2413 | typedef True ReferenceMapTag; |
|---|
| 2414 | |
|---|
| 2415 | /// The key type |
|---|
| 2416 | typedef K Key; |
|---|
| 2417 | /// The value type |
|---|
| 2418 | typedef bool Value; |
|---|
| 2419 | /// The const reference type. |
|---|
| 2420 | typedef const Value& ConstReference; |
|---|
| 2421 | |
|---|
| 2422 | private: |
|---|
| 2423 | |
|---|
| 2424 | int position(const Key& key) const { |
|---|
| 2425 | return Parent::operator[](key); |
|---|
| 2426 | } |
|---|
| 2427 | |
|---|
| 2428 | public: |
|---|
| 2429 | |
|---|
| 2430 | /// \brief Reference to the value of the map. |
|---|
| 2431 | /// |
|---|
| 2432 | /// This class is similar to the \c bool type. It can be converted to |
|---|
| 2433 | /// \c bool and it provides the same operators. |
|---|
| 2434 | class Reference { |
|---|
| 2435 | friend class IterableBoolMap; |
|---|
| 2436 | private: |
|---|
| 2437 | Reference(IterableBoolMap& map, const Key& key) |
|---|
| 2438 | : _key(key), _map(map) {} |
|---|
| 2439 | public: |
|---|
| 2440 | |
|---|
| 2441 | Reference& operator=(const Reference& value) { |
|---|
| 2442 | _map.set(_key, static_cast<bool>(value)); |
|---|
| 2443 | return *this; |
|---|
| 2444 | } |
|---|
| 2445 | |
|---|
| 2446 | operator bool() const { |
|---|
| 2447 | return static_cast<const IterableBoolMap&>(_map)[_key]; |
|---|
| 2448 | } |
|---|
| 2449 | |
|---|
| 2450 | Reference& operator=(bool value) { |
|---|
| 2451 | _map.set(_key, value); |
|---|
| 2452 | return *this; |
|---|
| 2453 | } |
|---|
| 2454 | Reference& operator&=(bool value) { |
|---|
| 2455 | _map.set(_key, _map[_key] & value); |
|---|
| 2456 | return *this; |
|---|
| 2457 | } |
|---|
| 2458 | Reference& operator|=(bool value) { |
|---|
| 2459 | _map.set(_key, _map[_key] | value); |
|---|
| 2460 | return *this; |
|---|
| 2461 | } |
|---|
| 2462 | Reference& operator^=(bool value) { |
|---|
| 2463 | _map.set(_key, _map[_key] ^ value); |
|---|
| 2464 | return *this; |
|---|
| 2465 | } |
|---|
| 2466 | private: |
|---|
| 2467 | Key _key; |
|---|
| 2468 | IterableBoolMap& _map; |
|---|
| 2469 | }; |
|---|
| 2470 | |
|---|
| 2471 | /// \brief Constructor of the map with a default value. |
|---|
| 2472 | /// |
|---|
| 2473 | /// Constructor of the map with a default value. |
|---|
| 2474 | explicit IterableBoolMap(const Graph& graph, bool def = false) |
|---|
| 2475 | : Parent(graph) { |
|---|
| 2476 | typename Parent::Notifier* nf = Parent::notifier(); |
|---|
| 2477 | Key it; |
|---|
| 2478 | for (nf->first(it); it != INVALID; nf->next(it)) { |
|---|
| 2479 | Parent::set(it, _array.size()); |
|---|
| 2480 | _array.push_back(it); |
|---|
| 2481 | } |
|---|
| 2482 | _sep = (def ? _array.size() : 0); |
|---|
| 2483 | } |
|---|
| 2484 | |
|---|
| 2485 | /// \brief Const subscript operator of the map. |
|---|
| 2486 | /// |
|---|
| 2487 | /// Const subscript operator of the map. |
|---|
| 2488 | bool operator[](const Key& key) const { |
|---|
| 2489 | return position(key) < _sep; |
|---|
| 2490 | } |
|---|
| 2491 | |
|---|
| 2492 | /// \brief Subscript operator of the map. |
|---|
| 2493 | /// |
|---|
| 2494 | /// Subscript operator of the map. |
|---|
| 2495 | Reference operator[](const Key& key) { |
|---|
| 2496 | return Reference(*this, key); |
|---|
| 2497 | } |
|---|
| 2498 | |
|---|
| 2499 | /// \brief Set operation of the map. |
|---|
| 2500 | /// |
|---|
| 2501 | /// Set operation of the map. |
|---|
| 2502 | void set(const Key& key, bool value) { |
|---|
| 2503 | int pos = position(key); |
|---|
| 2504 | if (value) { |
|---|
| 2505 | if (pos < _sep) return; |
|---|
| 2506 | Key tmp = _array[_sep]; |
|---|
| 2507 | _array[_sep] = key; |
|---|
| 2508 | Parent::set(key, _sep); |
|---|
| 2509 | _array[pos] = tmp; |
|---|
| 2510 | Parent::set(tmp, pos); |
|---|
| 2511 | ++_sep; |
|---|
| 2512 | } else { |
|---|
| 2513 | if (pos >= _sep) return; |
|---|
| 2514 | --_sep; |
|---|
| 2515 | Key tmp = _array[_sep]; |
|---|
| 2516 | _array[_sep] = key; |
|---|
| 2517 | Parent::set(key, _sep); |
|---|
| 2518 | _array[pos] = tmp; |
|---|
| 2519 | Parent::set(tmp, pos); |
|---|
| 2520 | } |
|---|
| 2521 | } |
|---|
| 2522 | |
|---|
| 2523 | /// \brief Set all items. |
|---|
| 2524 | /// |
|---|
| 2525 | /// Set all items in the map. |
|---|
| 2526 | /// \note Constant time operation. |
|---|
| 2527 | void setAll(bool value) { |
|---|
| 2528 | _sep = (value ? _array.size() : 0); |
|---|
| 2529 | } |
|---|
| 2530 | |
|---|
| 2531 | /// \brief Returns the number of the keys mapped to \c true. |
|---|
| 2532 | /// |
|---|
| 2533 | /// Returns the number of the keys mapped to \c true. |
|---|
| 2534 | int trueNum() const { |
|---|
| 2535 | return _sep; |
|---|
| 2536 | } |
|---|
| 2537 | |
|---|
| 2538 | /// \brief Returns the number of the keys mapped to \c false. |
|---|
| 2539 | /// |
|---|
| 2540 | /// Returns the number of the keys mapped to \c false. |
|---|
| 2541 | int falseNum() const { |
|---|
| 2542 | return _array.size() - _sep; |
|---|
| 2543 | } |
|---|
| 2544 | |
|---|
| 2545 | /// \brief Iterator for the keys mapped to \c true. |
|---|
| 2546 | /// |
|---|
| 2547 | /// Iterator for the keys mapped to \c true. It works |
|---|
| 2548 | /// like a graph item iterator, it can be converted to |
|---|
| 2549 | /// the key type of the map, incremented with \c ++ operator, and |
|---|
| 2550 | /// if the iterator leaves the last valid key, it will be equal to |
|---|
| 2551 | /// \c INVALID. |
|---|
| 2552 | class TrueIt : public Key { |
|---|
| 2553 | public: |
|---|
| 2554 | typedef Key Parent; |
|---|
| 2555 | |
|---|
| 2556 | /// \brief Creates an iterator. |
|---|
| 2557 | /// |
|---|
| 2558 | /// Creates an iterator. It iterates on the |
|---|
| 2559 | /// keys mapped to \c true. |
|---|
| 2560 | /// \param map The IterableBoolMap. |
|---|
| 2561 | explicit TrueIt(const IterableBoolMap& map) |
|---|
| 2562 | : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID), |
|---|
| 2563 | _map(&map) {} |
|---|
| 2564 | |
|---|
| 2565 | /// \brief Invalid constructor \& conversion. |
|---|
| 2566 | /// |
|---|
| 2567 | /// This constructor initializes the iterator to be invalid. |
|---|
| 2568 | /// \sa Invalid for more details. |
|---|
| 2569 | TrueIt(Invalid) : Parent(INVALID), _map(0) {} |
|---|
| 2570 | |
|---|
| 2571 | /// \brief Increment operator. |
|---|
| 2572 | /// |
|---|
| 2573 | /// Increment operator. |
|---|
| 2574 | TrueIt& operator++() { |
|---|
| 2575 | int pos = _map->position(*this); |
|---|
| 2576 | Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID); |
|---|
| 2577 | return *this; |
|---|
| 2578 | } |
|---|
| 2579 | |
|---|
| 2580 | private: |
|---|
| 2581 | const IterableBoolMap* _map; |
|---|
| 2582 | }; |
|---|
| 2583 | |
|---|
| 2584 | /// \brief Iterator for the keys mapped to \c false. |
|---|
| 2585 | /// |
|---|
| 2586 | /// Iterator for the keys mapped to \c false. It works |
|---|
| 2587 | /// like a graph item iterator, it can be converted to |
|---|
| 2588 | /// the key type of the map, incremented with \c ++ operator, and |
|---|
| 2589 | /// if the iterator leaves the last valid key, it will be equal to |
|---|
| 2590 | /// \c INVALID. |
|---|
| 2591 | class FalseIt : public Key { |
|---|
| 2592 | public: |
|---|
| 2593 | typedef Key Parent; |
|---|
| 2594 | |
|---|
| 2595 | /// \brief Creates an iterator. |
|---|
| 2596 | /// |
|---|
| 2597 | /// Creates an iterator. It iterates on the |
|---|
| 2598 | /// keys mapped to \c false. |
|---|
| 2599 | /// \param map The IterableBoolMap. |
|---|
| 2600 | explicit FalseIt(const IterableBoolMap& map) |
|---|
| 2601 | : Parent(map._sep < int(map._array.size()) ? |
|---|
| 2602 | map._array.back() : INVALID), _map(&map) {} |
|---|
| 2603 | |
|---|
| 2604 | /// \brief Invalid constructor \& conversion. |
|---|
| 2605 | /// |
|---|
| 2606 | /// This constructor initializes the iterator to be invalid. |
|---|
| 2607 | /// \sa Invalid for more details. |
|---|
| 2608 | FalseIt(Invalid) : Parent(INVALID), _map(0) {} |
|---|
| 2609 | |
|---|
| 2610 | /// \brief Increment operator. |
|---|
| 2611 | /// |
|---|
| 2612 | /// Increment operator. |
|---|
| 2613 | FalseIt& operator++() { |
|---|
| 2614 | int pos = _map->position(*this); |
|---|
| 2615 | Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID); |
|---|
| 2616 | return *this; |
|---|
| 2617 | } |
|---|
| 2618 | |
|---|
| 2619 | private: |
|---|
| 2620 | const IterableBoolMap* _map; |
|---|
| 2621 | }; |
|---|
| 2622 | |
|---|
| 2623 | /// \brief Iterator for the keys mapped to a given value. |
|---|
| 2624 | /// |
|---|
| 2625 | /// Iterator for the keys mapped to a given value. It works |
|---|
| 2626 | /// like a graph item iterator, it can be converted to |
|---|
| 2627 | /// the key type of the map, incremented with \c ++ operator, and |
|---|
| 2628 | /// if the iterator leaves the last valid key, it will be equal to |
|---|
| 2629 | /// \c INVALID. |
|---|
| 2630 | class ItemIt : public Key { |
|---|
| 2631 | public: |
|---|
| 2632 | typedef Key Parent; |
|---|
| 2633 | |
|---|
| 2634 | /// \brief Creates an iterator with a value. |
|---|
| 2635 | /// |
|---|
| 2636 | /// Creates an iterator with a value. It iterates on the |
|---|
| 2637 | /// keys mapped to the given value. |
|---|
| 2638 | /// \param map The IterableBoolMap. |
|---|
| 2639 | /// \param value The value. |
|---|
| 2640 | ItemIt(const IterableBoolMap& map, bool value) |
|---|
| 2641 | : Parent(value ? |
|---|
| 2642 | (map._sep > 0 ? |
|---|
| 2643 | map._array[map._sep - 1] : INVALID) : |
|---|
| 2644 | (map._sep < int(map._array.size()) ? |
|---|
| 2645 | map._array.back() : INVALID)), _map(&map) {} |
|---|
| 2646 | |
|---|
| 2647 | /// \brief Invalid constructor \& conversion. |
|---|
| 2648 | /// |
|---|
| 2649 | /// This constructor initializes the iterator to be invalid. |
|---|
| 2650 | /// \sa Invalid for more details. |
|---|
| 2651 | ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
|---|
| 2652 | |
|---|
| 2653 | /// \brief Increment operator. |
|---|
| 2654 | /// |
|---|
| 2655 | /// Increment operator. |
|---|
| 2656 | ItemIt& operator++() { |
|---|
| 2657 | int pos = _map->position(*this); |
|---|
| 2658 | int _sep = pos >= _map->_sep ? _map->_sep : 0; |
|---|
| 2659 | Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID); |
|---|
| 2660 | return *this; |
|---|
| 2661 | } |
|---|
| 2662 | |
|---|
| 2663 | private: |
|---|
| 2664 | const IterableBoolMap* _map; |
|---|
| 2665 | }; |
|---|
| 2666 | |
|---|
| 2667 | protected: |
|---|
| 2668 | |
|---|
| 2669 | virtual void add(const Key& key) { |
|---|
| 2670 | Parent::add(key); |
|---|
| 2671 | Parent::set(key, _array.size()); |
|---|
| 2672 | _array.push_back(key); |
|---|
| 2673 | } |
|---|
| 2674 | |
|---|
| 2675 | virtual void add(const std::vector<Key>& keys) { |
|---|
| 2676 | Parent::add(keys); |
|---|
| 2677 | for (int i = 0; i < int(keys.size()); ++i) { |
|---|
| 2678 | Parent::set(keys[i], _array.size()); |
|---|
| 2679 | _array.push_back(keys[i]); |
|---|
| 2680 | } |
|---|
| 2681 | } |
|---|
| 2682 | |
|---|
| 2683 | virtual void erase(const Key& key) { |
|---|
| 2684 | int pos = position(key); |
|---|
| 2685 | if (pos < _sep) { |
|---|
| 2686 | --_sep; |
|---|
| 2687 | Parent::set(_array[_sep], pos); |
|---|
| 2688 | _array[pos] = _array[_sep]; |
|---|
| 2689 | Parent::set(_array.back(), _sep); |
|---|
| 2690 | _array[_sep] = _array.back(); |
|---|
| 2691 | _array.pop_back(); |
|---|
| 2692 | } else { |
|---|
| 2693 | Parent::set(_array.back(), pos); |
|---|
| 2694 | _array[pos] = _array.back(); |
|---|
| 2695 | _array.pop_back(); |
|---|
| 2696 | } |
|---|
| 2697 | Parent::erase(key); |
|---|
| 2698 | } |
|---|
| 2699 | |
|---|
| 2700 | virtual void erase(const std::vector<Key>& keys) { |
|---|
| 2701 | for (int i = 0; i < int(keys.size()); ++i) { |
|---|
| 2702 | int pos = position(keys[i]); |
|---|
| 2703 | if (pos < _sep) { |
|---|
| 2704 | --_sep; |
|---|
| 2705 | Parent::set(_array[_sep], pos); |
|---|
| 2706 | _array[pos] = _array[_sep]; |
|---|
| 2707 | Parent::set(_array.back(), _sep); |
|---|
| 2708 | _array[_sep] = _array.back(); |
|---|
| 2709 | _array.pop_back(); |
|---|
| 2710 | } else { |
|---|
| 2711 | Parent::set(_array.back(), pos); |
|---|
| 2712 | _array[pos] = _array.back(); |
|---|
| 2713 | _array.pop_back(); |
|---|
| 2714 | } |
|---|
| 2715 | } |
|---|
| 2716 | Parent::erase(keys); |
|---|
| 2717 | } |
|---|
| 2718 | |
|---|
| 2719 | virtual void build() { |
|---|
| 2720 | Parent::build(); |
|---|
| 2721 | typename Parent::Notifier* nf = Parent::notifier(); |
|---|
| 2722 | Key it; |
|---|
| 2723 | for (nf->first(it); it != INVALID; nf->next(it)) { |
|---|
| 2724 | Parent::set(it, _array.size()); |
|---|
| 2725 | _array.push_back(it); |
|---|
| 2726 | } |
|---|
| 2727 | _sep = 0; |
|---|
| 2728 | } |
|---|
| 2729 | |
|---|
| 2730 | virtual void clear() { |
|---|
| 2731 | _array.clear(); |
|---|
| 2732 | _sep = 0; |
|---|
| 2733 | Parent::clear(); |
|---|
| 2734 | } |
|---|
| 2735 | |
|---|
| 2736 | }; |
|---|
| 2737 | |
|---|
| 2738 | |
|---|
| 2739 | namespace _maps_bits { |
|---|
| 2740 | template <typename Item> |
|---|
| 2741 | struct IterableIntMapNode { |
|---|
| 2742 | IterableIntMapNode() : value(-1) {} |
|---|
| 2743 | IterableIntMapNode(int _value) : value(_value) {} |
|---|
| 2744 | Item prev, next; |
|---|
| 2745 | int value; |
|---|
| 2746 | }; |
|---|
| 2747 | } |
|---|
| 2748 | |
|---|
| 2749 | /// \brief Dynamic iterable integer map. |
|---|
| 2750 | /// |
|---|
| 2751 | /// This class provides a special graph map type which can store an |
|---|
| 2752 | /// integer value for graph items (\c Node, \c Arc or \c Edge). |
|---|
| 2753 | /// For each non-negative value it is possible to iterate on the keys |
|---|
| 2754 | /// mapped to the value. |
|---|
| 2755 | /// |
|---|
| 2756 | /// This map is intended to be used with small integer values, for which |
|---|
| 2757 | /// it is efficient, and supports iteration only for non-negative values. |
|---|
| 2758 | /// If you need large values and/or iteration for negative integers, |
|---|
| 2759 | /// consider to use \ref IterableValueMap instead. |
|---|
| 2760 | /// |
|---|
| 2761 | /// This type is a reference map, so it can be modified with the |
|---|
| 2762 | /// subscript operator. |
|---|
| 2763 | /// |
|---|
| 2764 | /// \note The size of the data structure depends on the largest |
|---|
| 2765 | /// value in the map. |
|---|
| 2766 | /// |
|---|
| 2767 | /// \tparam GR The graph type. |
|---|
| 2768 | /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|---|
| 2769 | /// \c GR::Edge). |
|---|
| 2770 | /// |
|---|
| 2771 | /// \see IterableBoolMap, IterableValueMap |
|---|
| 2772 | /// \see CrossRefMap |
|---|
| 2773 | template <typename GR, typename K> |
|---|
| 2774 | class IterableIntMap |
|---|
| 2775 | : protected ItemSetTraits<GR, K>:: |
|---|
| 2776 | template Map<_maps_bits::IterableIntMapNode<K> >::Type { |
|---|
| 2777 | public: |
|---|
| 2778 | typedef typename ItemSetTraits<GR, K>:: |
|---|
| 2779 | template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent; |
|---|
| 2780 | |
|---|
| 2781 | /// The key type |
|---|
| 2782 | typedef K Key; |
|---|
| 2783 | /// The value type |
|---|
| 2784 | typedef int Value; |
|---|
| 2785 | /// The graph type |
|---|
| 2786 | typedef GR Graph; |
|---|
| 2787 | |
|---|
| 2788 | /// \brief Constructor of the map. |
|---|
| 2789 | /// |
|---|
| 2790 | /// Constructor of the map. It sets all values to -1. |
|---|
| 2791 | explicit IterableIntMap(const Graph& graph) |
|---|
| 2792 | : Parent(graph) {} |
|---|
| 2793 | |
|---|
| 2794 | /// \brief Constructor of the map with a given value. |
|---|
| 2795 | /// |
|---|
| 2796 | /// Constructor of the map with a given value. |
|---|
| 2797 | explicit IterableIntMap(const Graph& graph, int value) |
|---|
| 2798 | : Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) { |
|---|
| 2799 | if (value >= 0) { |
|---|
| 2800 | for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
|---|
| 2801 | lace(it); |
|---|
| 2802 | } |
|---|
| 2803 | } |
|---|
| 2804 | } |
|---|
| 2805 | |
|---|
| 2806 | private: |
|---|
| 2807 | |
|---|
| 2808 | void unlace(const Key& key) { |
|---|
| 2809 | typename Parent::Value& node = Parent::operator[](key); |
|---|
| 2810 | if (node.value < 0) return; |
|---|
| 2811 | if (node.prev != INVALID) { |
|---|
| 2812 | Parent::operator[](node.prev).next = node.next; |
|---|
| 2813 | } else { |
|---|
| 2814 | _first[node.value] = node.next; |
|---|
| 2815 | } |
|---|
| 2816 | if (node.next != INVALID) { |
|---|
| 2817 | Parent::operator[](node.next).prev = node.prev; |
|---|
| 2818 | } |
|---|
| 2819 | while (!_first.empty() && _first.back() == INVALID) { |
|---|
| 2820 | _first.pop_back(); |
|---|
| 2821 | } |
|---|
| 2822 | } |
|---|
| 2823 | |
|---|
| 2824 | void lace(const Key& key) { |
|---|
| 2825 | typename Parent::Value& node = Parent::operator[](key); |
|---|
| 2826 | if (node.value < 0) return; |
|---|
| 2827 | if (node.value >= int(_first.size())) { |
|---|
| 2828 | _first.resize(node.value + 1, INVALID); |
|---|
| 2829 | } |
|---|
| 2830 | node.prev = INVALID; |
|---|
| 2831 | node.next = _first[node.value]; |
|---|
| 2832 | if (node.next != INVALID) { |
|---|
| 2833 | Parent::operator[](node.next).prev = key; |
|---|
| 2834 | } |
|---|
| 2835 | _first[node.value] = key; |
|---|
| 2836 | } |
|---|
| 2837 | |
|---|
| 2838 | public: |
|---|
| 2839 | |
|---|
| 2840 | /// Indicates that the map is reference map. |
|---|
| 2841 | typedef True ReferenceMapTag; |
|---|
| 2842 | |
|---|
| 2843 | /// \brief Reference to the value of the map. |
|---|
| 2844 | /// |
|---|
| 2845 | /// This class is similar to the \c int type. It can |
|---|
| 2846 | /// be converted to \c int and it has the same operators. |
|---|
| 2847 | class Reference { |
|---|
| 2848 | friend class IterableIntMap; |
|---|
| 2849 | private: |
|---|
| 2850 | Reference(IterableIntMap& map, const Key& key) |
|---|
| 2851 | : _key(key), _map(map) {} |
|---|
| 2852 | public: |
|---|
| 2853 | |
|---|
| 2854 | Reference& operator=(const Reference& value) { |
|---|
| 2855 | _map.set(_key, static_cast<const int&>(value)); |
|---|
| 2856 | return *this; |
|---|
| 2857 | } |
|---|
| 2858 | |
|---|
| 2859 | operator const int&() const { |
|---|
| 2860 | return static_cast<const IterableIntMap&>(_map)[_key]; |
|---|
| 2861 | } |
|---|
| 2862 | |
|---|
| 2863 | Reference& operator=(int value) { |
|---|
| 2864 | _map.set(_key, value); |
|---|
| 2865 | return *this; |
|---|
| 2866 | } |
|---|
| 2867 | Reference& operator++() { |
|---|
| 2868 | _map.set(_key, _map[_key] + 1); |
|---|
| 2869 | return *this; |
|---|
| 2870 | } |
|---|
| 2871 | int operator++(int) { |
|---|
| 2872 | int value = _map[_key]; |
|---|
| 2873 | _map.set(_key, value + 1); |
|---|
| 2874 | return value; |
|---|
| 2875 | } |
|---|
| 2876 | Reference& operator--() { |
|---|
| 2877 | _map.set(_key, _map[_key] - 1); |
|---|
| 2878 | return *this; |
|---|
| 2879 | } |
|---|
| 2880 | int operator--(int) { |
|---|
| 2881 | int value = _map[_key]; |
|---|
| 2882 | _map.set(_key, value - 1); |
|---|
| 2883 | return value; |
|---|
| 2884 | } |
|---|
| 2885 | Reference& operator+=(int value) { |
|---|
| 2886 | _map.set(_key, _map[_key] + value); |
|---|
| 2887 | return *this; |
|---|
| 2888 | } |
|---|
| 2889 | Reference& operator-=(int value) { |
|---|
| 2890 | _map.set(_key, _map[_key] - value); |
|---|
| 2891 | return *this; |
|---|
| 2892 | } |
|---|
| 2893 | Reference& operator*=(int value) { |
|---|
| 2894 | _map.set(_key, _map[_key] * value); |
|---|
| 2895 | return *this; |
|---|
| 2896 | } |
|---|
| 2897 | Reference& operator/=(int value) { |
|---|
| 2898 | _map.set(_key, _map[_key] / value); |
|---|
| 2899 | return *this; |
|---|
| 2900 | } |
|---|
| 2901 | Reference& operator%=(int value) { |
|---|
| 2902 | _map.set(_key, _map[_key] % value); |
|---|
| 2903 | return *this; |
|---|
| 2904 | } |
|---|
| 2905 | Reference& operator&=(int value) { |
|---|
| 2906 | _map.set(_key, _map[_key] & value); |
|---|
| 2907 | return *this; |
|---|
| 2908 | } |
|---|
| 2909 | Reference& operator|=(int value) { |
|---|
| 2910 | _map.set(_key, _map[_key] | value); |
|---|
| 2911 | return *this; |
|---|
| 2912 | } |
|---|
| 2913 | Reference& operator^=(int value) { |
|---|
| 2914 | _map.set(_key, _map[_key] ^ value); |
|---|
| 2915 | return *this; |
|---|
| 2916 | } |
|---|
| 2917 | Reference& operator<<=(int value) { |
|---|
| 2918 | _map.set(_key, _map[_key] << value); |
|---|
| 2919 | return *this; |
|---|
| 2920 | } |
|---|
| 2921 | Reference& operator>>=(int value) { |
|---|
| 2922 | _map.set(_key, _map[_key] >> value); |
|---|
| 2923 | return *this; |
|---|
| 2924 | } |
|---|
| 2925 | |
|---|
| 2926 | private: |
|---|
| 2927 | Key _key; |
|---|
| 2928 | IterableIntMap& _map; |
|---|
| 2929 | }; |
|---|
| 2930 | |
|---|
| 2931 | /// The const reference type. |
|---|
| 2932 | typedef const Value& ConstReference; |
|---|
| 2933 | |
|---|
| 2934 | /// \brief Gives back the maximal value plus one. |
|---|
| 2935 | /// |
|---|
| 2936 | /// Gives back the maximal value plus one. |
|---|
| 2937 | int size() const { |
|---|
| 2938 | return _first.size(); |
|---|
| 2939 | } |
|---|
| 2940 | |
|---|
| 2941 | /// \brief Set operation of the map. |
|---|
| 2942 | /// |
|---|
| 2943 | /// Set operation of the map. |
|---|
| 2944 | void set(const Key& key, const Value& value) { |
|---|
| 2945 | unlace(key); |
|---|
| 2946 | Parent::operator[](key).value = value; |
|---|
| 2947 | lace(key); |
|---|
| 2948 | } |
|---|
| 2949 | |
|---|
| 2950 | /// \brief Const subscript operator of the map. |
|---|
| 2951 | /// |
|---|
| 2952 | /// Const subscript operator of the map. |
|---|
| 2953 | const Value& operator[](const Key& key) const { |
|---|
| 2954 | return Parent::operator[](key).value; |
|---|
| 2955 | } |
|---|
| 2956 | |
|---|
| 2957 | /// \brief Subscript operator of the map. |
|---|
| 2958 | /// |
|---|
| 2959 | /// Subscript operator of the map. |
|---|
| 2960 | Reference operator[](const Key& key) { |
|---|
| 2961 | return Reference(*this, key); |
|---|
| 2962 | } |
|---|
| 2963 | |
|---|
| 2964 | /// \brief Iterator for the keys with the same value. |
|---|
| 2965 | /// |
|---|
| 2966 | /// Iterator for the keys with the same value. It works |
|---|
| 2967 | /// like a graph item iterator, it can be converted to |
|---|
| 2968 | /// the item type of the map, incremented with \c ++ operator, and |
|---|
| 2969 | /// if the iterator leaves the last valid item, it will be equal to |
|---|
| 2970 | /// \c INVALID. |
|---|
| 2971 | class ItemIt : public Key { |
|---|
| 2972 | public: |
|---|
| 2973 | typedef Key Parent; |
|---|
| 2974 | |
|---|
| 2975 | /// \brief Invalid constructor \& conversion. |
|---|
| 2976 | /// |
|---|
| 2977 | /// This constructor initializes the iterator to be invalid. |
|---|
| 2978 | /// \sa Invalid for more details. |
|---|
| 2979 | ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
|---|
| 2980 | |
|---|
| 2981 | /// \brief Creates an iterator with a value. |
|---|
| 2982 | /// |
|---|
| 2983 | /// Creates an iterator with a value. It iterates on the |
|---|
| 2984 | /// keys mapped to the given value. |
|---|
| 2985 | /// \param map The IterableIntMap. |
|---|
| 2986 | /// \param value The value. |
|---|
| 2987 | ItemIt(const IterableIntMap& map, int value) : _map(&map) { |
|---|
| 2988 | if (value < 0 || value >= int(_map->_first.size())) { |
|---|
| 2989 | Parent::operator=(INVALID); |
|---|
| 2990 | } else { |
|---|
| 2991 | Parent::operator=(_map->_first[value]); |
|---|
| 2992 | } |
|---|
| 2993 | } |
|---|
| 2994 | |
|---|
| 2995 | /// \brief Increment operator. |
|---|
| 2996 | /// |
|---|
| 2997 | /// Increment operator. |
|---|
| 2998 | ItemIt& operator++() { |
|---|
| 2999 | Parent::operator=(_map->IterableIntMap::Parent:: |
|---|
| 3000 | operator[](static_cast<Parent&>(*this)).next); |
|---|
| 3001 | return *this; |
|---|
| 3002 | } |
|---|
| 3003 | |
|---|
| 3004 | private: |
|---|
| 3005 | const IterableIntMap* _map; |
|---|
| 3006 | }; |
|---|
| 3007 | |
|---|
| 3008 | protected: |
|---|
| 3009 | |
|---|
| 3010 | virtual void erase(const Key& key) { |
|---|
| 3011 | unlace(key); |
|---|
| 3012 | Parent::erase(key); |
|---|
| 3013 | } |
|---|
| 3014 | |
|---|
| 3015 | virtual void erase(const std::vector<Key>& keys) { |
|---|
| 3016 | for (int i = 0; i < int(keys.size()); ++i) { |
|---|
| 3017 | unlace(keys[i]); |
|---|
| 3018 | } |
|---|
| 3019 | Parent::erase(keys); |
|---|
| 3020 | } |
|---|
| 3021 | |
|---|
| 3022 | virtual void clear() { |
|---|
| 3023 | _first.clear(); |
|---|
| 3024 | Parent::clear(); |
|---|
| 3025 | } |
|---|
| 3026 | |
|---|
| 3027 | private: |
|---|
| 3028 | std::vector<Key> _first; |
|---|
| 3029 | }; |
|---|
| 3030 | |
|---|
| 3031 | namespace _maps_bits { |
|---|
| 3032 | template <typename Item, typename Value> |
|---|
| 3033 | struct IterableValueMapNode { |
|---|
| 3034 | IterableValueMapNode(Value _value = Value()) : value(_value) {} |
|---|
| 3035 | Item prev, next; |
|---|
| 3036 | Value value; |
|---|
| 3037 | }; |
|---|
| 3038 | } |
|---|
| 3039 | |
|---|
| 3040 | /// \brief Dynamic iterable map for comparable values. |
|---|
| 3041 | /// |
|---|
| 3042 | /// This class provides a special graph map type which can store a |
|---|
| 3043 | /// comparable value for graph items (\c Node, \c Arc or \c Edge). |
|---|
| 3044 | /// For each value it is possible to iterate on the keys mapped to |
|---|
| 3045 | /// the value (\c ItemIt), and the values of the map can be accessed |
|---|
| 3046 | /// with an STL compatible forward iterator (\c ValueIt). |
|---|
| 3047 | /// The map stores a linked list for each value, which contains |
|---|
| 3048 | /// the items mapped to the value, and the used values are stored |
|---|
| 3049 | /// in balanced binary tree (\c std::map). |
|---|
| 3050 | /// |
|---|
| 3051 | /// \ref IterableBoolMap and \ref IterableIntMap are similar classes |
|---|
| 3052 | /// specialized for \c bool and \c int values, respectively. |
|---|
| 3053 | /// |
|---|
| 3054 | /// This type is not reference map, so it cannot be modified with |
|---|
| 3055 | /// the subscript operator. |
|---|
| 3056 | /// |
|---|
| 3057 | /// \tparam GR The graph type. |
|---|
| 3058 | /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|---|
| 3059 | /// \c GR::Edge). |
|---|
| 3060 | /// \tparam V The value type of the map. It can be any comparable |
|---|
| 3061 | /// value type. |
|---|
| 3062 | /// |
|---|
| 3063 | /// \see IterableBoolMap, IterableIntMap |
|---|
| 3064 | /// \see CrossRefMap |
|---|
| 3065 | template <typename GR, typename K, typename V> |
|---|
| 3066 | class IterableValueMap |
|---|
| 3067 | : protected ItemSetTraits<GR, K>:: |
|---|
| 3068 | template Map<_maps_bits::IterableValueMapNode<K, V> >::Type { |
|---|
| 3069 | public: |
|---|
| 3070 | typedef typename ItemSetTraits<GR, K>:: |
|---|
| 3071 | template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent; |
|---|
| 3072 | |
|---|
| 3073 | /// The key type |
|---|
| 3074 | typedef K Key; |
|---|
| 3075 | /// The value type |
|---|
| 3076 | typedef V Value; |
|---|
| 3077 | /// The graph type |
|---|
| 3078 | typedef GR Graph; |
|---|
| 3079 | |
|---|
| 3080 | public: |
|---|
| 3081 | |
|---|
| 3082 | /// \brief Constructor of the map with a given value. |
|---|
| 3083 | /// |
|---|
| 3084 | /// Constructor of the map with a given value. |
|---|
| 3085 | explicit IterableValueMap(const Graph& graph, |
|---|
| 3086 | const Value& value = Value()) |
|---|
| 3087 | : Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) { |
|---|
| 3088 | for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
|---|
| 3089 | lace(it); |
|---|
| 3090 | } |
|---|
| 3091 | } |
|---|
| 3092 | |
|---|
| 3093 | protected: |
|---|
| 3094 | |
|---|
| 3095 | void unlace(const Key& key) { |
|---|
| 3096 | typename Parent::Value& node = Parent::operator[](key); |
|---|
| 3097 | if (node.prev != INVALID) { |
|---|
| 3098 | Parent::operator[](node.prev).next = node.next; |
|---|
| 3099 | } else { |
|---|
| 3100 | if (node.next != INVALID) { |
|---|
| 3101 | _first[node.value] = node.next; |
|---|
| 3102 | } else { |
|---|
| 3103 | _first.erase(node.value); |
|---|
| 3104 | } |
|---|
| 3105 | } |
|---|
| 3106 | if (node.next != INVALID) { |
|---|
| 3107 | Parent::operator[](node.next).prev = node.prev; |
|---|
| 3108 | } |
|---|
| 3109 | } |
|---|
| 3110 | |
|---|
| 3111 | void lace(const Key& key) { |
|---|
| 3112 | typename Parent::Value& node = Parent::operator[](key); |
|---|
| 3113 | typename std::map<Value, Key>::iterator it = _first.find(node.value); |
|---|
| 3114 | if (it == _first.end()) { |
|---|
| 3115 | node.prev = node.next = INVALID; |
|---|
| 3116 | _first.insert(std::make_pair(node.value, key)); |
|---|
| 3117 | } else { |
|---|
| 3118 | node.prev = INVALID; |
|---|
| 3119 | node.next = it->second; |
|---|
| 3120 | if (node.next != INVALID) { |
|---|
| 3121 | Parent::operator[](node.next).prev = key; |
|---|
| 3122 | } |
|---|
| 3123 | it->second = key; |
|---|
| 3124 | } |
|---|
| 3125 | } |
|---|
| 3126 | |
|---|
| 3127 | public: |
|---|
| 3128 | |
|---|
| 3129 | /// \brief Forward iterator for values. |
|---|
| 3130 | /// |
|---|
| 3131 | /// This iterator is an STL compatible forward |
|---|
| 3132 | /// iterator on the values of the map. The values can |
|---|
| 3133 | /// be accessed in the <tt>[beginValue, endValue)</tt> range. |
|---|
| 3134 | class ValueIt |
|---|
| 3135 | : public std::iterator<std::forward_iterator_tag, Value> { |
|---|
| 3136 | friend class IterableValueMap; |
|---|
| 3137 | private: |
|---|
| 3138 | ValueIt(typename std::map<Value, Key>::const_iterator _it) |
|---|
| 3139 | : it(_it) {} |
|---|
| 3140 | public: |
|---|
| 3141 | |
|---|
| 3142 | /// Constructor |
|---|
| 3143 | ValueIt() {} |
|---|
| 3144 | |
|---|
| 3145 | /// \e |
|---|
| 3146 | ValueIt& operator++() { ++it; return *this; } |
|---|
| 3147 | /// \e |
|---|
| 3148 | ValueIt operator++(int) { |
|---|
| 3149 | ValueIt tmp(*this); |
|---|
| 3150 | operator++(); |
|---|
| 3151 | return tmp; |
|---|
| 3152 | } |
|---|
| 3153 | |
|---|
| 3154 | /// \e |
|---|
| 3155 | const Value& operator*() const { return it->first; } |
|---|
| 3156 | /// \e |
|---|
| 3157 | const Value* operator->() const { return &(it->first); } |
|---|
| 3158 | |
|---|
| 3159 | /// \e |
|---|
| 3160 | bool operator==(ValueIt jt) const { return it == jt.it; } |
|---|
| 3161 | /// \e |
|---|
| 3162 | bool operator!=(ValueIt jt) const { return it != jt.it; } |
|---|
| 3163 | |
|---|
| 3164 | private: |
|---|
| 3165 | typename std::map<Value, Key>::const_iterator it; |
|---|
| 3166 | }; |
|---|
| 3167 | |
|---|
| 3168 | /// \brief Returns an iterator to the first value. |
|---|
| 3169 | /// |
|---|
| 3170 | /// Returns an STL compatible iterator to the |
|---|
| 3171 | /// first value of the map. The values of the |
|---|
| 3172 | /// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|---|
| 3173 | /// range. |
|---|
| 3174 | ValueIt beginValue() const { |
|---|
| 3175 | return ValueIt(_first.begin()); |
|---|
| 3176 | } |
|---|
| 3177 | |
|---|
| 3178 | /// \brief Returns an iterator after the last value. |
|---|
| 3179 | /// |
|---|
| 3180 | /// Returns an STL compatible iterator after the |
|---|
| 3181 | /// last value of the map. The values of the |
|---|
| 3182 | /// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|---|
| 3183 | /// range. |
|---|
| 3184 | ValueIt endValue() const { |
|---|
| 3185 | return ValueIt(_first.end()); |
|---|
| 3186 | } |
|---|
| 3187 | |
|---|
| 3188 | /// \brief Set operation of the map. |
|---|
| 3189 | /// |
|---|
| 3190 | /// Set operation of the map. |
|---|
| 3191 | void set(const Key& key, const Value& value) { |
|---|
| 3192 | unlace(key); |
|---|
| 3193 | Parent::operator[](key).value = value; |
|---|
| 3194 | lace(key); |
|---|
| 3195 | } |
|---|
| 3196 | |
|---|
| 3197 | /// \brief Const subscript operator of the map. |
|---|
| 3198 | /// |
|---|
| 3199 | /// Const subscript operator of the map. |
|---|
| 3200 | const Value& operator[](const Key& key) const { |
|---|
| 3201 | return Parent::operator[](key).value; |
|---|
| 3202 | } |
|---|
| 3203 | |
|---|
| 3204 | /// \brief Iterator for the keys with the same value. |
|---|
| 3205 | /// |
|---|
| 3206 | /// Iterator for the keys with the same value. It works |
|---|
| 3207 | /// like a graph item iterator, it can be converted to |
|---|
| 3208 | /// the item type of the map, incremented with \c ++ operator, and |
|---|
| 3209 | /// if the iterator leaves the last valid item, it will be equal to |
|---|
| 3210 | /// \c INVALID. |
|---|
| 3211 | class ItemIt : public Key { |
|---|
| 3212 | public: |
|---|
| 3213 | typedef Key Parent; |
|---|
| 3214 | |
|---|
| 3215 | /// \brief Invalid constructor \& conversion. |
|---|
| 3216 | /// |
|---|
| 3217 | /// This constructor initializes the iterator to be invalid. |
|---|
| 3218 | /// \sa Invalid for more details. |
|---|
| 3219 | ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
|---|
| 3220 | |
|---|
| 3221 | /// \brief Creates an iterator with a value. |
|---|
| 3222 | /// |
|---|
| 3223 | /// Creates an iterator with a value. It iterates on the |
|---|
| 3224 | /// keys which have the given value. |
|---|
| 3225 | /// \param map The IterableValueMap |
|---|
| 3226 | /// \param value The value |
|---|
| 3227 | ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) { |
|---|
| 3228 | typename std::map<Value, Key>::const_iterator it = |
|---|
| 3229 | map._first.find(value); |
|---|
| 3230 | if (it == map._first.end()) { |
|---|
| 3231 | Parent::operator=(INVALID); |
|---|
| 3232 | } else { |
|---|
| 3233 | Parent::operator=(it->second); |
|---|
| 3234 | } |
|---|
| 3235 | } |
|---|
| 3236 | |
|---|
| 3237 | /// \brief Increment operator. |
|---|
| 3238 | /// |
|---|
| 3239 | /// Increment Operator. |
|---|
| 3240 | ItemIt& operator++() { |
|---|
| 3241 | Parent::operator=(_map->IterableValueMap::Parent:: |
|---|
| 3242 | operator[](static_cast<Parent&>(*this)).next); |
|---|
| 3243 | return *this; |
|---|
| 3244 | } |
|---|
| 3245 | |
|---|
| 3246 | |
|---|
| 3247 | private: |
|---|
| 3248 | const IterableValueMap* _map; |
|---|
| 3249 | }; |
|---|
| 3250 | |
|---|
| 3251 | protected: |
|---|
| 3252 | |
|---|
| 3253 | virtual void add(const Key& key) { |
|---|
| 3254 | Parent::add(key); |
|---|
| 3255 | unlace(key); |
|---|
| 3256 | } |
|---|
| 3257 | |
|---|
| 3258 | virtual void add(const std::vector<Key>& keys) { |
|---|
| 3259 | Parent::add(keys); |
|---|
| 3260 | for (int i = 0; i < int(keys.size()); ++i) { |
|---|
| 3261 | lace(keys[i]); |
|---|
| 3262 | } |
|---|
| 3263 | } |
|---|
| 3264 | |
|---|
| 3265 | virtual void erase(const Key& key) { |
|---|
| 3266 | unlace(key); |
|---|
| 3267 | Parent::erase(key); |
|---|
| 3268 | } |
|---|
| 3269 | |
|---|
| 3270 | virtual void erase(const std::vector<Key>& keys) { |
|---|
| 3271 | for (int i = 0; i < int(keys.size()); ++i) { |
|---|
| 3272 | unlace(keys[i]); |
|---|
| 3273 | } |
|---|
| 3274 | Parent::erase(keys); |
|---|
| 3275 | } |
|---|
| 3276 | |
|---|
| 3277 | virtual void build() { |
|---|
| 3278 | Parent::build(); |
|---|
| 3279 | for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
|---|
| 3280 | lace(it); |
|---|
| 3281 | } |
|---|
| 3282 | } |
|---|
| 3283 | |
|---|
| 3284 | virtual void clear() { |
|---|
| 3285 | _first.clear(); |
|---|
| 3286 | Parent::clear(); |
|---|
| 3287 | } |
|---|
| 3288 | |
|---|
| 3289 | private: |
|---|
| 3290 | std::map<Value, Key> _first; |
|---|
| 3291 | }; |
|---|
| 3292 | |
|---|
| 3293 | /// \brief Map of the source nodes of arcs in a digraph. |
|---|
| 3294 | /// |
|---|
| 3295 | /// SourceMap provides access for the source node of each arc in a digraph, |
|---|
| 3296 | /// which is returned by the \c source() function of the digraph. |
|---|
| 3297 | /// \tparam GR The digraph type. |
|---|
| 3298 | /// \see TargetMap |
|---|
| 3299 | template <typename GR> |
|---|
| 3300 | class SourceMap { |
|---|
| 3301 | public: |
|---|
| 3302 | |
|---|
| 3303 | /// The key type (the \c Arc type of the digraph). |
|---|
| 3304 | typedef typename GR::Arc Key; |
|---|
| 3305 | /// The value type (the \c Node type of the digraph). |
|---|
| 3306 | typedef typename GR::Node Value; |
|---|
| 3307 | |
|---|
| 3308 | /// \brief Constructor |
|---|
| 3309 | /// |
|---|
| 3310 | /// Constructor. |
|---|
| 3311 | /// \param digraph The digraph that the map belongs to. |
|---|
| 3312 | explicit SourceMap(const GR& digraph) : _graph(digraph) {} |
|---|
| 3313 | |
|---|
| 3314 | /// \brief Returns the source node of the given arc. |
|---|
| 3315 | /// |
|---|
| 3316 | /// Returns the source node of the given arc. |
|---|
| 3317 | Value operator[](const Key& arc) const { |
|---|
| 3318 | return _graph.source(arc); |
|---|
| 3319 | } |
|---|
| 3320 | |
|---|
| 3321 | private: |
|---|
| 3322 | const GR& _graph; |
|---|
| 3323 | }; |
|---|
| 3324 | |
|---|
| 3325 | /// \brief Returns a \c SourceMap class. |
|---|
| 3326 | /// |
|---|
| 3327 | /// This function just returns an \c SourceMap class. |
|---|
| 3328 | /// \relates SourceMap |
|---|
| 3329 | template <typename GR> |
|---|
| 3330 | inline SourceMap<GR> sourceMap(const GR& graph) { |
|---|
| 3331 | return SourceMap<GR>(graph); |
|---|
| 3332 | } |
|---|
| 3333 | |
|---|
| 3334 | /// \brief Map of the target nodes of arcs in a digraph. |
|---|
| 3335 | /// |
|---|
| 3336 | /// TargetMap provides access for the target node of each arc in a digraph, |
|---|
| 3337 | /// which is returned by the \c target() function of the digraph. |
|---|
| 3338 | /// \tparam GR The digraph type. |
|---|
| 3339 | /// \see SourceMap |
|---|
| 3340 | template <typename GR> |
|---|
| 3341 | class TargetMap { |
|---|
| 3342 | public: |
|---|
| 3343 | |
|---|
| 3344 | /// The key type (the \c Arc type of the digraph). |
|---|
| 3345 | typedef typename GR::Arc Key; |
|---|
| 3346 | /// The value type (the \c Node type of the digraph). |
|---|
| 3347 | typedef typename GR::Node Value; |
|---|
| 3348 | |
|---|
| 3349 | /// \brief Constructor |
|---|
| 3350 | /// |
|---|
| 3351 | /// Constructor. |
|---|
| 3352 | /// \param digraph The digraph that the map belongs to. |
|---|
| 3353 | explicit TargetMap(const GR& digraph) : _graph(digraph) {} |
|---|
| 3354 | |
|---|
| 3355 | /// \brief Returns the target node of the given arc. |
|---|
| 3356 | /// |
|---|
| 3357 | /// Returns the target node of the given arc. |
|---|
| 3358 | Value operator[](const Key& e) const { |
|---|
| 3359 | return _graph.target(e); |
|---|
| 3360 | } |
|---|
| 3361 | |
|---|
| 3362 | private: |
|---|
| 3363 | const GR& _graph; |
|---|
| 3364 | }; |
|---|
| 3365 | |
|---|
| 3366 | /// \brief Returns a \c TargetMap class. |
|---|
| 3367 | /// |
|---|
| 3368 | /// This function just returns a \c TargetMap class. |
|---|
| 3369 | /// \relates TargetMap |
|---|
| 3370 | template <typename GR> |
|---|
| 3371 | inline TargetMap<GR> targetMap(const GR& graph) { |
|---|
| 3372 | return TargetMap<GR>(graph); |
|---|
| 3373 | } |
|---|
| 3374 | |
|---|
| 3375 | /// \brief Map of the "forward" directed arc view of edges in a graph. |
|---|
| 3376 | /// |
|---|
| 3377 | /// ForwardMap provides access for the "forward" directed arc view of |
|---|
| 3378 | /// each edge in a graph, which is returned by the \c direct() function |
|---|
| 3379 | /// of the graph with \c true parameter. |
|---|
| 3380 | /// \tparam GR The graph type. |
|---|
| 3381 | /// \see BackwardMap |
|---|
| 3382 | template <typename GR> |
|---|
| 3383 | class ForwardMap { |
|---|
| 3384 | public: |
|---|
| 3385 | |
|---|
| 3386 | /// The key type (the \c Edge type of the digraph). |
|---|
| 3387 | typedef typename GR::Edge Key; |
|---|
| 3388 | /// The value type (the \c Arc type of the digraph). |
|---|
| 3389 | typedef typename GR::Arc Value; |
|---|
| 3390 | |
|---|
| 3391 | /// \brief Constructor |
|---|
| 3392 | /// |
|---|
| 3393 | /// Constructor. |
|---|
| 3394 | /// \param graph The graph that the map belongs to. |
|---|
| 3395 | explicit ForwardMap(const GR& graph) : _graph(graph) {} |
|---|
| 3396 | |
|---|
| 3397 | /// \brief Returns the "forward" directed arc view of the given edge. |
|---|
| 3398 | /// |
|---|
| 3399 | /// Returns the "forward" directed arc view of the given edge. |
|---|
| 3400 | Value operator[](const Key& key) const { |
|---|
| 3401 | return _graph.direct(key, true); |
|---|
| 3402 | } |
|---|
| 3403 | |
|---|
| 3404 | private: |
|---|
| 3405 | const GR& _graph; |
|---|
| 3406 | }; |
|---|
| 3407 | |
|---|
| 3408 | /// \brief Returns a \c ForwardMap class. |
|---|
| 3409 | /// |
|---|
| 3410 | /// This function just returns an \c ForwardMap class. |
|---|
| 3411 | /// \relates ForwardMap |
|---|
| 3412 | template <typename GR> |
|---|
| 3413 | inline ForwardMap<GR> forwardMap(const GR& graph) { |
|---|
| 3414 | return ForwardMap<GR>(graph); |
|---|
| 3415 | } |
|---|
| 3416 | |
|---|
| 3417 | /// \brief Map of the "backward" directed arc view of edges in a graph. |
|---|
| 3418 | /// |
|---|
| 3419 | /// BackwardMap provides access for the "backward" directed arc view of |
|---|
| 3420 | /// each edge in a graph, which is returned by the \c direct() function |
|---|
| 3421 | /// of the graph with \c false parameter. |
|---|
| 3422 | /// \tparam GR The graph type. |
|---|
| 3423 | /// \see ForwardMap |
|---|
| 3424 | template <typename GR> |
|---|
| 3425 | class BackwardMap { |
|---|
| 3426 | public: |
|---|
| 3427 | |
|---|
| 3428 | /// The key type (the \c Edge type of the digraph). |
|---|
| 3429 | typedef typename GR::Edge Key; |
|---|
| 3430 | /// The value type (the \c Arc type of the digraph). |
|---|
| 3431 | typedef typename GR::Arc Value; |
|---|
| 3432 | |
|---|
| 3433 | /// \brief Constructor |
|---|
| 3434 | /// |
|---|
| 3435 | /// Constructor. |
|---|
| 3436 | /// \param graph The graph that the map belongs to. |
|---|
| 3437 | explicit BackwardMap(const GR& graph) : _graph(graph) {} |
|---|
| 3438 | |
|---|
| 3439 | /// \brief Returns the "backward" directed arc view of the given edge. |
|---|
| 3440 | /// |
|---|
| 3441 | /// Returns the "backward" directed arc view of the given edge. |
|---|
| 3442 | Value operator[](const Key& key) const { |
|---|
| 3443 | return _graph.direct(key, false); |
|---|
| 3444 | } |
|---|
| 3445 | |
|---|
| 3446 | private: |
|---|
| 3447 | const GR& _graph; |
|---|
| 3448 | }; |
|---|
| 3449 | |
|---|
| 3450 | /// \brief Returns a \c BackwardMap class |
|---|
| 3451 | |
|---|
| 3452 | /// This function just returns a \c BackwardMap class. |
|---|
| 3453 | /// \relates BackwardMap |
|---|
| 3454 | template <typename GR> |
|---|
| 3455 | inline BackwardMap<GR> backwardMap(const GR& graph) { |
|---|
| 3456 | return BackwardMap<GR>(graph); |
|---|
| 3457 | } |
|---|
| 3458 | |
|---|
| 3459 | /// \brief Map of the in-degrees of nodes in a digraph. |
|---|
| 3460 | /// |
|---|
| 3461 | /// This map returns the in-degree of a node. Once it is constructed, |
|---|
| 3462 | /// the degrees are stored in a standard \c NodeMap, so each query is done |
|---|
| 3463 | /// in constant time. On the other hand, the values are updated automatically |
|---|
| 3464 | /// whenever the digraph changes. |
|---|
| 3465 | /// |
|---|
| 3466 | /// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|---|
| 3467 | /// may provide alternative ways to modify the digraph. |
|---|
| 3468 | /// The correct behavior of InDegMap is not guarantied if these additional |
|---|
| 3469 | /// features are used. For example the functions |
|---|
| 3470 | /// \ref ListDigraph::changeSource() "changeSource()", |
|---|
| 3471 | /// \ref ListDigraph::changeTarget() "changeTarget()" and |
|---|
| 3472 | /// \ref ListDigraph::reverseArc() "reverseArc()" |
|---|
| 3473 | /// of \ref ListDigraph will \e not update the degree values correctly. |
|---|
| 3474 | /// |
|---|
| 3475 | /// \sa OutDegMap |
|---|
| 3476 | template <typename GR> |
|---|
| 3477 | class InDegMap |
|---|
| 3478 | : protected ItemSetTraits<GR, typename GR::Arc> |
|---|
| 3479 | ::ItemNotifier::ObserverBase { |
|---|
| 3480 | |
|---|
| 3481 | public: |
|---|
| 3482 | |
|---|
| 3483 | /// The graph type of InDegMap |
|---|
| 3484 | typedef GR Graph; |
|---|
| 3485 | typedef GR Digraph; |
|---|
| 3486 | /// The key type |
|---|
| 3487 | typedef typename Digraph::Node Key; |
|---|
| 3488 | /// The value type |
|---|
| 3489 | typedef int Value; |
|---|
| 3490 | |
|---|
| 3491 | typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
|---|
| 3492 | ::ItemNotifier::ObserverBase Parent; |
|---|
| 3493 | |
|---|
| 3494 | private: |
|---|
| 3495 | |
|---|
| 3496 | class AutoNodeMap |
|---|
| 3497 | : public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
|---|
| 3498 | public: |
|---|
| 3499 | |
|---|
| 3500 | typedef typename ItemSetTraits<Digraph, Key>:: |
|---|
| 3501 | template Map<int>::Type Parent; |
|---|
| 3502 | |
|---|
| 3503 | AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
|---|
| 3504 | |
|---|
| 3505 | virtual void add(const Key& key) { |
|---|
| 3506 | Parent::add(key); |
|---|
| 3507 | Parent::set(key, 0); |
|---|
| 3508 | } |
|---|
| 3509 | |
|---|
| 3510 | virtual void add(const std::vector<Key>& keys) { |
|---|
| 3511 | Parent::add(keys); |
|---|
| 3512 | for (int i = 0; i < int(keys.size()); ++i) { |
|---|
| 3513 | Parent::set(keys[i], 0); |
|---|
| 3514 | } |
|---|
| 3515 | } |
|---|
| 3516 | |
|---|
| 3517 | virtual void build() { |
|---|
| 3518 | Parent::build(); |
|---|
| 3519 | Key it; |
|---|
| 3520 | typename Parent::Notifier* nf = Parent::notifier(); |
|---|
| 3521 | for (nf->first(it); it != INVALID; nf->next(it)) { |
|---|
| 3522 | Parent::set(it, 0); |
|---|
| 3523 | } |
|---|
| 3524 | } |
|---|
| 3525 | }; |
|---|
| 3526 | |
|---|
| 3527 | public: |
|---|
| 3528 | |
|---|
| 3529 | /// \brief Constructor. |
|---|
| 3530 | /// |
|---|
| 3531 | /// Constructor for creating an in-degree map. |
|---|
| 3532 | explicit InDegMap(const Digraph& graph) |
|---|
| 3533 | : _digraph(graph), _deg(graph) { |
|---|
| 3534 | Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
|---|
| 3535 | |
|---|
| 3536 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 3537 | _deg[it] = countInArcs(_digraph, it); |
|---|
| 3538 | } |
|---|
| 3539 | } |
|---|
| 3540 | |
|---|
| 3541 | /// \brief Gives back the in-degree of a Node. |
|---|
| 3542 | /// |
|---|
| 3543 | /// Gives back the in-degree of a Node. |
|---|
| 3544 | int operator[](const Key& key) const { |
|---|
| 3545 | return _deg[key]; |
|---|
| 3546 | } |
|---|
| 3547 | |
|---|
| 3548 | protected: |
|---|
| 3549 | |
|---|
| 3550 | typedef typename Digraph::Arc Arc; |
|---|
| 3551 | |
|---|
| 3552 | virtual void add(const Arc& arc) { |
|---|
| 3553 | ++_deg[_digraph.target(arc)]; |
|---|
| 3554 | } |
|---|
| 3555 | |
|---|
| 3556 | virtual void add(const std::vector<Arc>& arcs) { |
|---|
| 3557 | for (int i = 0; i < int(arcs.size()); ++i) { |
|---|
| 3558 | ++_deg[_digraph.target(arcs[i])]; |
|---|
| 3559 | } |
|---|
| 3560 | } |
|---|
| 3561 | |
|---|
| 3562 | virtual void erase(const Arc& arc) { |
|---|
| 3563 | --_deg[_digraph.target(arc)]; |
|---|
| 3564 | } |
|---|
| 3565 | |
|---|
| 3566 | virtual void erase(const std::vector<Arc>& arcs) { |
|---|
| 3567 | for (int i = 0; i < int(arcs.size()); ++i) { |
|---|
| 3568 | --_deg[_digraph.target(arcs[i])]; |
|---|
| 3569 | } |
|---|
| 3570 | } |
|---|
| 3571 | |
|---|
| 3572 | virtual void build() { |
|---|
| 3573 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 3574 | _deg[it] = countInArcs(_digraph, it); |
|---|
| 3575 | } |
|---|
| 3576 | } |
|---|
| 3577 | |
|---|
| 3578 | virtual void clear() { |
|---|
| 3579 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 3580 | _deg[it] = 0; |
|---|
| 3581 | } |
|---|
| 3582 | } |
|---|
| 3583 | private: |
|---|
| 3584 | |
|---|
| 3585 | const Digraph& _digraph; |
|---|
| 3586 | AutoNodeMap _deg; |
|---|
| 3587 | }; |
|---|
| 3588 | |
|---|
| 3589 | /// \brief Map of the out-degrees of nodes in a digraph. |
|---|
| 3590 | /// |
|---|
| 3591 | /// This map returns the out-degree of a node. Once it is constructed, |
|---|
| 3592 | /// the degrees are stored in a standard \c NodeMap, so each query is done |
|---|
| 3593 | /// in constant time. On the other hand, the values are updated automatically |
|---|
| 3594 | /// whenever the digraph changes. |
|---|
| 3595 | /// |
|---|
| 3596 | /// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|---|
| 3597 | /// may provide alternative ways to modify the digraph. |
|---|
| 3598 | /// The correct behavior of OutDegMap is not guarantied if these additional |
|---|
| 3599 | /// features are used. For example the functions |
|---|
| 3600 | /// \ref ListDigraph::changeSource() "changeSource()", |
|---|
| 3601 | /// \ref ListDigraph::changeTarget() "changeTarget()" and |
|---|
| 3602 | /// \ref ListDigraph::reverseArc() "reverseArc()" |
|---|
| 3603 | /// of \ref ListDigraph will \e not update the degree values correctly. |
|---|
| 3604 | /// |
|---|
| 3605 | /// \sa InDegMap |
|---|
| 3606 | template <typename GR> |
|---|
| 3607 | class OutDegMap |
|---|
| 3608 | : protected ItemSetTraits<GR, typename GR::Arc> |
|---|
| 3609 | ::ItemNotifier::ObserverBase { |
|---|
| 3610 | |
|---|
| 3611 | public: |
|---|
| 3612 | |
|---|
| 3613 | /// The graph type of OutDegMap |
|---|
| 3614 | typedef GR Graph; |
|---|
| 3615 | typedef GR Digraph; |
|---|
| 3616 | /// The key type |
|---|
| 3617 | typedef typename Digraph::Node Key; |
|---|
| 3618 | /// The value type |
|---|
| 3619 | typedef int Value; |
|---|
| 3620 | |
|---|
| 3621 | typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
|---|
| 3622 | ::ItemNotifier::ObserverBase Parent; |
|---|
| 3623 | |
|---|
| 3624 | private: |
|---|
| 3625 | |
|---|
| 3626 | class AutoNodeMap |
|---|
| 3627 | : public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
|---|
| 3628 | public: |
|---|
| 3629 | |
|---|
| 3630 | typedef typename ItemSetTraits<Digraph, Key>:: |
|---|
| 3631 | template Map<int>::Type Parent; |
|---|
| 3632 | |
|---|
| 3633 | AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
|---|
| 3634 | |
|---|
| 3635 | virtual void add(const Key& key) { |
|---|
| 3636 | Parent::add(key); |
|---|
| 3637 | Parent::set(key, 0); |
|---|
| 3638 | } |
|---|
| 3639 | virtual void add(const std::vector<Key>& keys) { |
|---|
| 3640 | Parent::add(keys); |
|---|
| 3641 | for (int i = 0; i < int(keys.size()); ++i) { |
|---|
| 3642 | Parent::set(keys[i], 0); |
|---|
| 3643 | } |
|---|
| 3644 | } |
|---|
| 3645 | virtual void build() { |
|---|
| 3646 | Parent::build(); |
|---|
| 3647 | Key it; |
|---|
| 3648 | typename Parent::Notifier* nf = Parent::notifier(); |
|---|
| 3649 | for (nf->first(it); it != INVALID; nf->next(it)) { |
|---|
| 3650 | Parent::set(it, 0); |
|---|
| 3651 | } |
|---|
| 3652 | } |
|---|
| 3653 | }; |
|---|
| 3654 | |
|---|
| 3655 | public: |
|---|
| 3656 | |
|---|
| 3657 | /// \brief Constructor. |
|---|
| 3658 | /// |
|---|
| 3659 | /// Constructor for creating an out-degree map. |
|---|
| 3660 | explicit OutDegMap(const Digraph& graph) |
|---|
| 3661 | : _digraph(graph), _deg(graph) { |
|---|
| 3662 | Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
|---|
| 3663 | |
|---|
| 3664 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 3665 | _deg[it] = countOutArcs(_digraph, it); |
|---|
| 3666 | } |
|---|
| 3667 | } |
|---|
| 3668 | |
|---|
| 3669 | /// \brief Gives back the out-degree of a Node. |
|---|
| 3670 | /// |
|---|
| 3671 | /// Gives back the out-degree of a Node. |
|---|
| 3672 | int operator[](const Key& key) const { |
|---|
| 3673 | return _deg[key]; |
|---|
| 3674 | } |
|---|
| 3675 | |
|---|
| 3676 | protected: |
|---|
| 3677 | |
|---|
| 3678 | typedef typename Digraph::Arc Arc; |
|---|
| 3679 | |
|---|
| 3680 | virtual void add(const Arc& arc) { |
|---|
| 3681 | ++_deg[_digraph.source(arc)]; |
|---|
| 3682 | } |
|---|
| 3683 | |
|---|
| 3684 | virtual void add(const std::vector<Arc>& arcs) { |
|---|
| 3685 | for (int i = 0; i < int(arcs.size()); ++i) { |
|---|
| 3686 | ++_deg[_digraph.source(arcs[i])]; |
|---|
| 3687 | } |
|---|
| 3688 | } |
|---|
| 3689 | |
|---|
| 3690 | virtual void erase(const Arc& arc) { |
|---|
| 3691 | --_deg[_digraph.source(arc)]; |
|---|
| 3692 | } |
|---|
| 3693 | |
|---|
| 3694 | virtual void erase(const std::vector<Arc>& arcs) { |
|---|
| 3695 | for (int i = 0; i < int(arcs.size()); ++i) { |
|---|
| 3696 | --_deg[_digraph.source(arcs[i])]; |
|---|
| 3697 | } |
|---|
| 3698 | } |
|---|
| 3699 | |
|---|
| 3700 | virtual void build() { |
|---|
| 3701 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 3702 | _deg[it] = countOutArcs(_digraph, it); |
|---|
| 3703 | } |
|---|
| 3704 | } |
|---|
| 3705 | |
|---|
| 3706 | virtual void clear() { |
|---|
| 3707 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 3708 | _deg[it] = 0; |
|---|
| 3709 | } |
|---|
| 3710 | } |
|---|
| 3711 | private: |
|---|
| 3712 | |
|---|
| 3713 | const Digraph& _digraph; |
|---|
| 3714 | AutoNodeMap _deg; |
|---|
| 3715 | }; |
|---|
| 3716 | |
|---|
| 3717 | /// \brief Potential difference map |
|---|
| 3718 | /// |
|---|
| 3719 | /// PotentialDifferenceMap returns the difference between the potentials of |
|---|
| 3720 | /// the source and target nodes of each arc in a digraph, i.e. it returns |
|---|
| 3721 | /// \code |
|---|
| 3722 | /// potential[gr.target(arc)] - potential[gr.source(arc)]. |
|---|
| 3723 | /// \endcode |
|---|
| 3724 | /// \tparam GR The digraph type. |
|---|
| 3725 | /// \tparam POT A node map storing the potentials. |
|---|
| 3726 | template <typename GR, typename POT> |
|---|
| 3727 | class PotentialDifferenceMap { |
|---|
| 3728 | public: |
|---|
| 3729 | /// Key type |
|---|
| 3730 | typedef typename GR::Arc Key; |
|---|
| 3731 | /// Value type |
|---|
| 3732 | typedef typename POT::Value Value; |
|---|
| 3733 | |
|---|
| 3734 | /// \brief Constructor |
|---|
| 3735 | /// |
|---|
| 3736 | /// Contructor of the map. |
|---|
| 3737 | explicit PotentialDifferenceMap(const GR& gr, |
|---|
| 3738 | const POT& potential) |
|---|
| 3739 | : _digraph(gr), _potential(potential) {} |
|---|
| 3740 | |
|---|
| 3741 | /// \brief Returns the potential difference for the given arc. |
|---|
| 3742 | /// |
|---|
| 3743 | /// Returns the potential difference for the given arc, i.e. |
|---|
| 3744 | /// \code |
|---|
| 3745 | /// potential[gr.target(arc)] - potential[gr.source(arc)]. |
|---|
| 3746 | /// \endcode |
|---|
| 3747 | Value operator[](const Key& arc) const { |
|---|
| 3748 | return _potential[_digraph.target(arc)] - |
|---|
| 3749 | _potential[_digraph.source(arc)]; |
|---|
| 3750 | } |
|---|
| 3751 | |
|---|
| 3752 | private: |
|---|
| 3753 | const GR& _digraph; |
|---|
| 3754 | const POT& _potential; |
|---|
| 3755 | }; |
|---|
| 3756 | |
|---|
| 3757 | /// \brief Returns a PotentialDifferenceMap. |
|---|
| 3758 | /// |
|---|
| 3759 | /// This function just returns a PotentialDifferenceMap. |
|---|
| 3760 | /// \relates PotentialDifferenceMap |
|---|
| 3761 | template <typename GR, typename POT> |
|---|
| 3762 | PotentialDifferenceMap<GR, POT> |
|---|
| 3763 | potentialDifferenceMap(const GR& gr, const POT& potential) { |
|---|
| 3764 | return PotentialDifferenceMap<GR, POT>(gr, potential); |
|---|
| 3765 | } |
|---|
| 3766 | |
|---|
| 3767 | /// @} |
|---|
| 3768 | } |
|---|
| 3769 | |
|---|
| 3770 | #endif // LEMON_MAPS_H |
|---|