| [913] | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- | 
|---|
|  | 2 | * | 
|---|
|  | 3 | * This file is a part of LEMON, a generic C++ optimization library. | 
|---|
|  | 4 | * | 
|---|
|  | 5 | * Copyright (C) 2003-2010 | 
|---|
|  | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport | 
|---|
|  | 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). | 
|---|
|  | 8 | * | 
|---|
|  | 9 | * Permission to use, modify and distribute this software is granted | 
|---|
|  | 10 | * provided that this copyright notice appears in all copies. For | 
|---|
|  | 11 | * precise terms see the accompanying LICENSE file. | 
|---|
|  | 12 | * | 
|---|
|  | 13 | * This software is provided "AS IS" with no warranty of any kind, | 
|---|
|  | 14 | * express or implied, and with no claim as to its suitability for any | 
|---|
|  | 15 | * purpose. | 
|---|
|  | 16 | * | 
|---|
|  | 17 | */ | 
|---|
|  | 18 |  | 
|---|
|  | 19 | #ifndef LEMON_NAGAMOCHI_IBARAKI_H | 
|---|
|  | 20 | #define LEMON_NAGAMOCHI_IBARAKI_H | 
|---|
|  | 21 |  | 
|---|
|  | 22 |  | 
|---|
|  | 23 | /// \ingroup min_cut | 
|---|
|  | 24 | /// \file | 
|---|
|  | 25 | /// \brief Implementation of the Nagamochi-Ibaraki algorithm. | 
|---|
|  | 26 |  | 
|---|
|  | 27 | #include <lemon/core.h> | 
|---|
|  | 28 | #include <lemon/bin_heap.h> | 
|---|
|  | 29 | #include <lemon/bucket_heap.h> | 
|---|
|  | 30 | #include <lemon/maps.h> | 
|---|
|  | 31 | #include <lemon/radix_sort.h> | 
|---|
|  | 32 | #include <lemon/unionfind.h> | 
|---|
|  | 33 |  | 
|---|
|  | 34 | #include <cassert> | 
|---|
|  | 35 |  | 
|---|
|  | 36 | namespace lemon { | 
|---|
|  | 37 |  | 
|---|
|  | 38 | /// \brief Default traits class for NagamochiIbaraki class. | 
|---|
|  | 39 | /// | 
|---|
|  | 40 | /// Default traits class for NagamochiIbaraki class. | 
|---|
|  | 41 | /// \param GR The undirected graph type. | 
|---|
|  | 42 | /// \param CM Type of capacity map. | 
|---|
|  | 43 | template <typename GR, typename CM> | 
|---|
|  | 44 | struct NagamochiIbarakiDefaultTraits { | 
|---|
|  | 45 | /// The type of the capacity map. | 
|---|
|  | 46 | typedef typename CM::Value Value; | 
|---|
|  | 47 |  | 
|---|
|  | 48 | /// The undirected graph type the algorithm runs on. | 
|---|
|  | 49 | typedef GR Graph; | 
|---|
|  | 50 |  | 
|---|
|  | 51 | /// \brief The type of the map that stores the edge capacities. | 
|---|
|  | 52 | /// | 
|---|
|  | 53 | /// The type of the map that stores the edge capacities. | 
|---|
|  | 54 | /// It must meet the \ref concepts::ReadMap "ReadMap" concept. | 
|---|
|  | 55 | typedef CM CapacityMap; | 
|---|
|  | 56 |  | 
|---|
|  | 57 | /// \brief Instantiates a CapacityMap. | 
|---|
|  | 58 | /// | 
|---|
|  | 59 | /// This function instantiates a \ref CapacityMap. | 
|---|
|  | 60 | #ifdef DOXYGEN | 
|---|
|  | 61 | static CapacityMap *createCapacityMap(const Graph& graph) | 
|---|
|  | 62 | #else | 
|---|
|  | 63 | static CapacityMap *createCapacityMap(const Graph&) | 
|---|
|  | 64 | #endif | 
|---|
|  | 65 | { | 
|---|
|  | 66 | LEMON_ASSERT(false, "CapacityMap is not initialized"); | 
|---|
|  | 67 | return 0; // ignore warnings | 
|---|
|  | 68 | } | 
|---|
|  | 69 |  | 
|---|
|  | 70 | /// \brief The cross reference type used by heap. | 
|---|
|  | 71 | /// | 
|---|
|  | 72 | /// The cross reference type used by heap. | 
|---|
|  | 73 | /// Usually \c Graph::NodeMap<int>. | 
|---|
|  | 74 | typedef typename Graph::template NodeMap<int> HeapCrossRef; | 
|---|
|  | 75 |  | 
|---|
|  | 76 | /// \brief Instantiates a HeapCrossRef. | 
|---|
|  | 77 | /// | 
|---|
|  | 78 | /// This function instantiates a \ref HeapCrossRef. | 
|---|
|  | 79 | /// \param g is the graph, to which we would like to define the | 
|---|
|  | 80 | /// \ref HeapCrossRef. | 
|---|
|  | 81 | static HeapCrossRef *createHeapCrossRef(const Graph& g) { | 
|---|
|  | 82 | return new HeapCrossRef(g); | 
|---|
|  | 83 | } | 
|---|
|  | 84 |  | 
|---|
|  | 85 | /// \brief The heap type used by NagamochiIbaraki algorithm. | 
|---|
|  | 86 | /// | 
|---|
|  | 87 | /// The heap type used by NagamochiIbaraki algorithm. It has to | 
|---|
|  | 88 | /// maximize the priorities. | 
|---|
|  | 89 | /// | 
|---|
|  | 90 | /// \sa BinHeap | 
|---|
|  | 91 | /// \sa NagamochiIbaraki | 
|---|
|  | 92 | typedef BinHeap<Value, HeapCrossRef, std::greater<Value> > Heap; | 
|---|
|  | 93 |  | 
|---|
|  | 94 | /// \brief Instantiates a Heap. | 
|---|
|  | 95 | /// | 
|---|
|  | 96 | /// This function instantiates a \ref Heap. | 
|---|
|  | 97 | /// \param r is the cross reference of the heap. | 
|---|
|  | 98 | static Heap *createHeap(HeapCrossRef& r) { | 
|---|
|  | 99 | return new Heap(r); | 
|---|
|  | 100 | } | 
|---|
|  | 101 | }; | 
|---|
|  | 102 |  | 
|---|
|  | 103 | /// \ingroup min_cut | 
|---|
|  | 104 | /// | 
|---|
|  | 105 | /// \brief Calculates the minimum cut in an undirected graph. | 
|---|
|  | 106 | /// | 
|---|
|  | 107 | /// Calculates the minimum cut in an undirected graph with the | 
|---|
|  | 108 | /// Nagamochi-Ibaraki algorithm. The algorithm separates the graph's | 
|---|
|  | 109 | /// nodes into two partitions with the minimum sum of edge capacities | 
|---|
|  | 110 | /// between the two partitions. The algorithm can be used to test | 
|---|
|  | 111 | /// the network reliability, especially to test how many links have | 
|---|
|  | 112 | /// to be destroyed in the network to split it to at least two | 
|---|
|  | 113 | /// distinict subnetworks. | 
|---|
|  | 114 | /// | 
|---|
|  | 115 | /// The complexity of the algorithm is \f$ O(nm\log(n)) \f$ but with | 
|---|
|  | 116 | /// \ref FibHeap "Fibonacci heap" it can be decreased to | 
|---|
|  | 117 | /// \f$ O(nm+n^2\log(n)) \f$.  When the edges have unit capacities, | 
|---|
|  | 118 | /// \c BucketHeap can be used which yields \f$ O(nm) \f$ time | 
|---|
|  | 119 | /// complexity. | 
|---|
|  | 120 | /// | 
|---|
|  | 121 | /// \warning The value type of the capacity map should be able to | 
|---|
|  | 122 | /// hold any cut value of the graph, otherwise the result can | 
|---|
|  | 123 | /// overflow. | 
|---|
|  | 124 | /// \note This capacity is supposed to be integer type. | 
|---|
|  | 125 | #ifdef DOXYGEN | 
|---|
|  | 126 | template <typename GR, typename CM, typename TR> | 
|---|
|  | 127 | #else | 
|---|
|  | 128 | template <typename GR, | 
|---|
|  | 129 | typename CM = typename GR::template EdgeMap<int>, | 
|---|
|  | 130 | typename TR = NagamochiIbarakiDefaultTraits<GR, CM> > | 
|---|
|  | 131 | #endif | 
|---|
|  | 132 | class NagamochiIbaraki { | 
|---|
|  | 133 | public: | 
|---|
|  | 134 |  | 
|---|
|  | 135 | typedef TR Traits; | 
|---|
|  | 136 | /// The type of the underlying graph. | 
|---|
|  | 137 | typedef typename Traits::Graph Graph; | 
|---|
|  | 138 |  | 
|---|
|  | 139 | /// The type of the capacity map. | 
|---|
|  | 140 | typedef typename Traits::CapacityMap CapacityMap; | 
|---|
|  | 141 | /// The value type of the capacity map. | 
|---|
|  | 142 | typedef typename Traits::CapacityMap::Value Value; | 
|---|
|  | 143 |  | 
|---|
|  | 144 | /// The heap type used by the algorithm. | 
|---|
|  | 145 | typedef typename Traits::Heap Heap; | 
|---|
|  | 146 | /// The cross reference type used for the heap. | 
|---|
|  | 147 | typedef typename Traits::HeapCrossRef HeapCrossRef; | 
|---|
|  | 148 |  | 
|---|
|  | 149 | ///\name Named template parameters | 
|---|
|  | 150 |  | 
|---|
|  | 151 | ///@{ | 
|---|
|  | 152 |  | 
|---|
|  | 153 | struct SetUnitCapacityTraits : public Traits { | 
|---|
|  | 154 | typedef ConstMap<typename Graph::Edge, Const<int, 1> > CapacityMap; | 
|---|
|  | 155 | static CapacityMap *createCapacityMap(const Graph&) { | 
|---|
|  | 156 | return new CapacityMap(); | 
|---|
|  | 157 | } | 
|---|
|  | 158 | }; | 
|---|
|  | 159 |  | 
|---|
|  | 160 | /// \brief \ref named-templ-param "Named parameter" for setting | 
|---|
|  | 161 | /// the capacity map to a constMap<Edge, int, 1>() instance | 
|---|
|  | 162 | /// | 
|---|
|  | 163 | /// \ref named-templ-param "Named parameter" for setting | 
|---|
|  | 164 | /// the capacity map to a constMap<Edge, int, 1>() instance | 
|---|
|  | 165 | struct SetUnitCapacity | 
|---|
|  | 166 | : public NagamochiIbaraki<Graph, CapacityMap, | 
|---|
|  | 167 | SetUnitCapacityTraits> { | 
|---|
|  | 168 | typedef NagamochiIbaraki<Graph, CapacityMap, | 
|---|
|  | 169 | SetUnitCapacityTraits> Create; | 
|---|
|  | 170 | }; | 
|---|
|  | 171 |  | 
|---|
|  | 172 |  | 
|---|
|  | 173 | template <class H, class CR> | 
|---|
|  | 174 | struct SetHeapTraits : public Traits { | 
|---|
|  | 175 | typedef CR HeapCrossRef; | 
|---|
|  | 176 | typedef H Heap; | 
|---|
|  | 177 | static HeapCrossRef *createHeapCrossRef(int num) { | 
|---|
|  | 178 | LEMON_ASSERT(false, "HeapCrossRef is not initialized"); | 
|---|
|  | 179 | return 0; // ignore warnings | 
|---|
|  | 180 | } | 
|---|
|  | 181 | static Heap *createHeap(HeapCrossRef &) { | 
|---|
|  | 182 | LEMON_ASSERT(false, "Heap is not initialized"); | 
|---|
|  | 183 | return 0; // ignore warnings | 
|---|
|  | 184 | } | 
|---|
|  | 185 | }; | 
|---|
|  | 186 |  | 
|---|
|  | 187 | /// \brief \ref named-templ-param "Named parameter" for setting | 
|---|
|  | 188 | /// heap and cross reference type | 
|---|
|  | 189 | /// | 
|---|
|  | 190 | /// \ref named-templ-param "Named parameter" for setting heap and | 
|---|
|  | 191 | /// cross reference type. The heap has to maximize the priorities. | 
|---|
|  | 192 | template <class H, class CR = RangeMap<int> > | 
|---|
|  | 193 | struct SetHeap | 
|---|
|  | 194 | : public NagamochiIbaraki<Graph, CapacityMap, SetHeapTraits<H, CR> > { | 
|---|
|  | 195 | typedef NagamochiIbaraki< Graph, CapacityMap, SetHeapTraits<H, CR> > | 
|---|
|  | 196 | Create; | 
|---|
|  | 197 | }; | 
|---|
|  | 198 |  | 
|---|
|  | 199 | template <class H, class CR> | 
|---|
|  | 200 | struct SetStandardHeapTraits : public Traits { | 
|---|
|  | 201 | typedef CR HeapCrossRef; | 
|---|
|  | 202 | typedef H Heap; | 
|---|
|  | 203 | static HeapCrossRef *createHeapCrossRef(int size) { | 
|---|
|  | 204 | return new HeapCrossRef(size); | 
|---|
|  | 205 | } | 
|---|
|  | 206 | static Heap *createHeap(HeapCrossRef &crossref) { | 
|---|
|  | 207 | return new Heap(crossref); | 
|---|
|  | 208 | } | 
|---|
|  | 209 | }; | 
|---|
|  | 210 |  | 
|---|
|  | 211 | /// \brief \ref named-templ-param "Named parameter" for setting | 
|---|
|  | 212 | /// heap and cross reference type with automatic allocation | 
|---|
|  | 213 | /// | 
|---|
|  | 214 | /// \ref named-templ-param "Named parameter" for setting heap and | 
|---|
|  | 215 | /// cross reference type with automatic allocation. They should | 
|---|
|  | 216 | /// have standard constructor interfaces to be able to | 
|---|
|  | 217 | /// automatically created by the algorithm (i.e. the graph should | 
|---|
|  | 218 | /// be passed to the constructor of the cross reference and the | 
|---|
|  | 219 | /// cross reference should be passed to the constructor of the | 
|---|
|  | 220 | /// heap). However, external heap and cross reference objects | 
|---|
|  | 221 | /// could also be passed to the algorithm using the \ref heap() | 
|---|
|  | 222 | /// function before calling \ref run() or \ref init(). The heap | 
|---|
|  | 223 | /// has to maximize the priorities. | 
|---|
|  | 224 | /// \sa SetHeap | 
|---|
|  | 225 | template <class H, class CR = RangeMap<int> > | 
|---|
|  | 226 | struct SetStandardHeap | 
|---|
|  | 227 | : public NagamochiIbaraki<Graph, CapacityMap, | 
|---|
|  | 228 | SetStandardHeapTraits<H, CR> > { | 
|---|
|  | 229 | typedef NagamochiIbaraki<Graph, CapacityMap, | 
|---|
|  | 230 | SetStandardHeapTraits<H, CR> > Create; | 
|---|
|  | 231 | }; | 
|---|
|  | 232 |  | 
|---|
|  | 233 | ///@} | 
|---|
|  | 234 |  | 
|---|
|  | 235 |  | 
|---|
|  | 236 | private: | 
|---|
|  | 237 |  | 
|---|
|  | 238 | const Graph &_graph; | 
|---|
|  | 239 | const CapacityMap *_capacity; | 
|---|
|  | 240 | bool _local_capacity; // unit capacity | 
|---|
|  | 241 |  | 
|---|
|  | 242 | struct ArcData { | 
|---|
|  | 243 | typename Graph::Node target; | 
|---|
|  | 244 | int prev, next; | 
|---|
|  | 245 | }; | 
|---|
|  | 246 | struct EdgeData { | 
|---|
|  | 247 | Value capacity; | 
|---|
|  | 248 | Value cut; | 
|---|
|  | 249 | }; | 
|---|
|  | 250 |  | 
|---|
|  | 251 | struct NodeData { | 
|---|
|  | 252 | int first_arc; | 
|---|
|  | 253 | typename Graph::Node prev, next; | 
|---|
|  | 254 | int curr_arc; | 
|---|
|  | 255 | typename Graph::Node last_rep; | 
|---|
|  | 256 | Value sum; | 
|---|
|  | 257 | }; | 
|---|
|  | 258 |  | 
|---|
|  | 259 | typename Graph::template NodeMap<NodeData> *_nodes; | 
|---|
|  | 260 | std::vector<ArcData> _arcs; | 
|---|
|  | 261 | std::vector<EdgeData> _edges; | 
|---|
|  | 262 |  | 
|---|
|  | 263 | typename Graph::Node _first_node; | 
|---|
|  | 264 | int _node_num; | 
|---|
|  | 265 |  | 
|---|
|  | 266 | Value _min_cut; | 
|---|
|  | 267 |  | 
|---|
|  | 268 | HeapCrossRef *_heap_cross_ref; | 
|---|
|  | 269 | bool _local_heap_cross_ref; | 
|---|
|  | 270 | Heap *_heap; | 
|---|
|  | 271 | bool _local_heap; | 
|---|
|  | 272 |  | 
|---|
|  | 273 | typedef typename Graph::template NodeMap<typename Graph::Node> NodeList; | 
|---|
|  | 274 | NodeList *_next_rep; | 
|---|
|  | 275 |  | 
|---|
|  | 276 | typedef typename Graph::template NodeMap<bool> MinCutMap; | 
|---|
|  | 277 | MinCutMap *_cut_map; | 
|---|
|  | 278 |  | 
|---|
|  | 279 | void createStructures() { | 
|---|
|  | 280 | if (!_nodes) { | 
|---|
|  | 281 | _nodes = new (typename Graph::template NodeMap<NodeData>)(_graph); | 
|---|
|  | 282 | } | 
|---|
|  | 283 | if (!_capacity) { | 
|---|
|  | 284 | _local_capacity = true; | 
|---|
|  | 285 | _capacity = Traits::createCapacityMap(_graph); | 
|---|
|  | 286 | } | 
|---|
|  | 287 | if (!_heap_cross_ref) { | 
|---|
|  | 288 | _local_heap_cross_ref = true; | 
|---|
|  | 289 | _heap_cross_ref = Traits::createHeapCrossRef(_graph); | 
|---|
|  | 290 | } | 
|---|
|  | 291 | if (!_heap) { | 
|---|
|  | 292 | _local_heap = true; | 
|---|
|  | 293 | _heap = Traits::createHeap(*_heap_cross_ref); | 
|---|
|  | 294 | } | 
|---|
|  | 295 | if (!_next_rep) { | 
|---|
|  | 296 | _next_rep = new NodeList(_graph); | 
|---|
|  | 297 | } | 
|---|
|  | 298 | if (!_cut_map) { | 
|---|
|  | 299 | _cut_map = new MinCutMap(_graph); | 
|---|
|  | 300 | } | 
|---|
|  | 301 | } | 
|---|
|  | 302 |  | 
|---|
| [978] | 303 | protected: | 
|---|
|  | 304 | //This is here to avoid a gcc-3.3 compilation error. | 
|---|
|  | 305 | //It should never be called. | 
|---|
|  | 306 | NagamochiIbaraki() {} | 
|---|
|  | 307 |  | 
|---|
|  | 308 | public: | 
|---|
| [913] | 309 |  | 
|---|
|  | 310 | typedef NagamochiIbaraki Create; | 
|---|
|  | 311 |  | 
|---|
|  | 312 |  | 
|---|
|  | 313 | /// \brief Constructor. | 
|---|
|  | 314 | /// | 
|---|
|  | 315 | /// \param graph The graph the algorithm runs on. | 
|---|
|  | 316 | /// \param capacity The capacity map used by the algorithm. | 
|---|
|  | 317 | NagamochiIbaraki(const Graph& graph, const CapacityMap& capacity) | 
|---|
|  | 318 | : _graph(graph), _capacity(&capacity), _local_capacity(false), | 
|---|
|  | 319 | _nodes(0), _arcs(), _edges(), _min_cut(), | 
|---|
|  | 320 | _heap_cross_ref(0), _local_heap_cross_ref(false), | 
|---|
|  | 321 | _heap(0), _local_heap(false), | 
|---|
|  | 322 | _next_rep(0), _cut_map(0) {} | 
|---|
|  | 323 |  | 
|---|
|  | 324 | /// \brief Constructor. | 
|---|
|  | 325 | /// | 
|---|
|  | 326 | /// This constructor can be used only when the Traits class | 
|---|
|  | 327 | /// defines how can the local capacity map be instantiated. | 
|---|
|  | 328 | /// If the SetUnitCapacity used the algorithm automatically | 
|---|
|  | 329 | /// constructs the capacity map. | 
|---|
|  | 330 | /// | 
|---|
|  | 331 | ///\param graph The graph the algorithm runs on. | 
|---|
|  | 332 | NagamochiIbaraki(const Graph& graph) | 
|---|
|  | 333 | : _graph(graph), _capacity(0), _local_capacity(false), | 
|---|
|  | 334 | _nodes(0), _arcs(), _edges(), _min_cut(), | 
|---|
|  | 335 | _heap_cross_ref(0), _local_heap_cross_ref(false), | 
|---|
|  | 336 | _heap(0), _local_heap(false), | 
|---|
|  | 337 | _next_rep(0), _cut_map(0) {} | 
|---|
|  | 338 |  | 
|---|
|  | 339 | /// \brief Destructor. | 
|---|
|  | 340 | /// | 
|---|
|  | 341 | /// Destructor. | 
|---|
|  | 342 | ~NagamochiIbaraki() { | 
|---|
|  | 343 | if (_local_capacity) delete _capacity; | 
|---|
|  | 344 | if (_nodes) delete _nodes; | 
|---|
|  | 345 | if (_local_heap) delete _heap; | 
|---|
|  | 346 | if (_local_heap_cross_ref) delete _heap_cross_ref; | 
|---|
|  | 347 | if (_next_rep) delete _next_rep; | 
|---|
|  | 348 | if (_cut_map) delete _cut_map; | 
|---|
|  | 349 | } | 
|---|
|  | 350 |  | 
|---|
|  | 351 | /// \brief Sets the heap and the cross reference used by algorithm. | 
|---|
|  | 352 | /// | 
|---|
|  | 353 | /// Sets the heap and the cross reference used by algorithm. | 
|---|
|  | 354 | /// If you don't use this function before calling \ref run(), | 
|---|
|  | 355 | /// it will allocate one. The destuctor deallocates this | 
|---|
|  | 356 | /// automatically allocated heap and cross reference, of course. | 
|---|
|  | 357 | /// \return <tt> (*this) </tt> | 
|---|
|  | 358 | NagamochiIbaraki &heap(Heap& hp, HeapCrossRef &cr) | 
|---|
|  | 359 | { | 
|---|
|  | 360 | if (_local_heap_cross_ref) { | 
|---|
|  | 361 | delete _heap_cross_ref; | 
|---|
|  | 362 | _local_heap_cross_ref = false; | 
|---|
|  | 363 | } | 
|---|
|  | 364 | _heap_cross_ref = &cr; | 
|---|
|  | 365 | if (_local_heap) { | 
|---|
|  | 366 | delete _heap; | 
|---|
|  | 367 | _local_heap = false; | 
|---|
|  | 368 | } | 
|---|
|  | 369 | _heap = &hp; | 
|---|
|  | 370 | return *this; | 
|---|
|  | 371 | } | 
|---|
|  | 372 |  | 
|---|
|  | 373 | /// \name Execution control | 
|---|
|  | 374 | /// The simplest way to execute the algorithm is to use | 
|---|
|  | 375 | /// one of the member functions called \c run(). | 
|---|
|  | 376 | /// \n | 
|---|
|  | 377 | /// If you need more control on the execution, | 
|---|
|  | 378 | /// first you must call \ref init() and then call the start() | 
|---|
|  | 379 | /// or proper times the processNextPhase() member functions. | 
|---|
|  | 380 |  | 
|---|
|  | 381 | ///@{ | 
|---|
|  | 382 |  | 
|---|
|  | 383 | /// \brief Initializes the internal data structures. | 
|---|
|  | 384 | /// | 
|---|
|  | 385 | /// Initializes the internal data structures. | 
|---|
|  | 386 | void init() { | 
|---|
|  | 387 | createStructures(); | 
|---|
|  | 388 |  | 
|---|
|  | 389 | int edge_num = countEdges(_graph); | 
|---|
|  | 390 | _edges.resize(edge_num); | 
|---|
|  | 391 | _arcs.resize(2 * edge_num); | 
|---|
|  | 392 |  | 
|---|
|  | 393 | typename Graph::Node prev = INVALID; | 
|---|
|  | 394 | _node_num = 0; | 
|---|
|  | 395 | for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { | 
|---|
|  | 396 | (*_cut_map)[n] = false; | 
|---|
|  | 397 | (*_next_rep)[n] = INVALID; | 
|---|
|  | 398 | (*_nodes)[n].last_rep = n; | 
|---|
|  | 399 | (*_nodes)[n].first_arc = -1; | 
|---|
|  | 400 | (*_nodes)[n].curr_arc = -1; | 
|---|
|  | 401 | (*_nodes)[n].prev = prev; | 
|---|
|  | 402 | if (prev != INVALID) { | 
|---|
|  | 403 | (*_nodes)[prev].next = n; | 
|---|
|  | 404 | } | 
|---|
|  | 405 | (*_nodes)[n].next = INVALID; | 
|---|
|  | 406 | (*_nodes)[n].sum = 0; | 
|---|
|  | 407 | prev = n; | 
|---|
|  | 408 | ++_node_num; | 
|---|
|  | 409 | } | 
|---|
|  | 410 |  | 
|---|
|  | 411 | _first_node = typename Graph::NodeIt(_graph); | 
|---|
|  | 412 |  | 
|---|
|  | 413 | int index = 0; | 
|---|
|  | 414 | for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { | 
|---|
|  | 415 | for (typename Graph::OutArcIt a(_graph, n); a != INVALID; ++a) { | 
|---|
|  | 416 | typename Graph::Node m = _graph.target(a); | 
|---|
|  | 417 |  | 
|---|
|  | 418 | if (!(n < m)) continue; | 
|---|
|  | 419 |  | 
|---|
|  | 420 | (*_nodes)[n].sum += (*_capacity)[a]; | 
|---|
|  | 421 | (*_nodes)[m].sum += (*_capacity)[a]; | 
|---|
|  | 422 |  | 
|---|
|  | 423 | int c = (*_nodes)[m].curr_arc; | 
|---|
|  | 424 | if (c != -1 && _arcs[c ^ 1].target == n) { | 
|---|
|  | 425 | _edges[c >> 1].capacity += (*_capacity)[a]; | 
|---|
|  | 426 | } else { | 
|---|
|  | 427 | _edges[index].capacity = (*_capacity)[a]; | 
|---|
|  | 428 |  | 
|---|
|  | 429 | _arcs[index << 1].prev = -1; | 
|---|
|  | 430 | if ((*_nodes)[n].first_arc != -1) { | 
|---|
|  | 431 | _arcs[(*_nodes)[n].first_arc].prev = (index << 1); | 
|---|
|  | 432 | } | 
|---|
|  | 433 | _arcs[index << 1].next = (*_nodes)[n].first_arc; | 
|---|
|  | 434 | (*_nodes)[n].first_arc = (index << 1); | 
|---|
|  | 435 | _arcs[index << 1].target = m; | 
|---|
|  | 436 |  | 
|---|
|  | 437 | (*_nodes)[m].curr_arc = (index << 1); | 
|---|
|  | 438 |  | 
|---|
|  | 439 | _arcs[(index << 1) | 1].prev = -1; | 
|---|
|  | 440 | if ((*_nodes)[m].first_arc != -1) { | 
|---|
|  | 441 | _arcs[(*_nodes)[m].first_arc].prev = ((index << 1) | 1); | 
|---|
|  | 442 | } | 
|---|
|  | 443 | _arcs[(index << 1) | 1].next = (*_nodes)[m].first_arc; | 
|---|
|  | 444 | (*_nodes)[m].first_arc = ((index << 1) | 1); | 
|---|
|  | 445 | _arcs[(index << 1) | 1].target = n; | 
|---|
|  | 446 |  | 
|---|
|  | 447 | ++index; | 
|---|
|  | 448 | } | 
|---|
|  | 449 | } | 
|---|
|  | 450 | } | 
|---|
|  | 451 |  | 
|---|
|  | 452 | typename Graph::Node cut_node = INVALID; | 
|---|
|  | 453 | _min_cut = std::numeric_limits<Value>::max(); | 
|---|
|  | 454 |  | 
|---|
|  | 455 | for (typename Graph::Node n = _first_node; | 
|---|
|  | 456 | n != INVALID; n = (*_nodes)[n].next) { | 
|---|
|  | 457 | if ((*_nodes)[n].sum < _min_cut) { | 
|---|
|  | 458 | cut_node = n; | 
|---|
|  | 459 | _min_cut = (*_nodes)[n].sum; | 
|---|
|  | 460 | } | 
|---|
|  | 461 | } | 
|---|
|  | 462 | (*_cut_map)[cut_node] = true; | 
|---|
|  | 463 | if (_min_cut == 0) { | 
|---|
|  | 464 | _first_node = INVALID; | 
|---|
|  | 465 | } | 
|---|
|  | 466 | } | 
|---|
|  | 467 |  | 
|---|
|  | 468 | public: | 
|---|
|  | 469 |  | 
|---|
|  | 470 | /// \brief Processes the next phase | 
|---|
|  | 471 | /// | 
|---|
|  | 472 | /// Processes the next phase in the algorithm. It must be called | 
|---|
|  | 473 | /// at most one less the number of the nodes in the graph. | 
|---|
|  | 474 | /// | 
|---|
|  | 475 | ///\return %True when the algorithm finished. | 
|---|
|  | 476 | bool processNextPhase() { | 
|---|
|  | 477 | if (_first_node == INVALID) return true; | 
|---|
|  | 478 |  | 
|---|
|  | 479 | _heap->clear(); | 
|---|
|  | 480 | for (typename Graph::Node n = _first_node; | 
|---|
|  | 481 | n != INVALID; n = (*_nodes)[n].next) { | 
|---|
|  | 482 | (*_heap_cross_ref)[n] = Heap::PRE_HEAP; | 
|---|
|  | 483 | } | 
|---|
|  | 484 |  | 
|---|
|  | 485 | std::vector<typename Graph::Node> order; | 
|---|
|  | 486 | order.reserve(_node_num); | 
|---|
|  | 487 | int sep = 0; | 
|---|
|  | 488 |  | 
|---|
|  | 489 | Value alpha = 0; | 
|---|
|  | 490 | Value pmc = std::numeric_limits<Value>::max(); | 
|---|
|  | 491 |  | 
|---|
|  | 492 | _heap->push(_first_node, static_cast<Value>(0)); | 
|---|
|  | 493 | while (!_heap->empty()) { | 
|---|
|  | 494 | typename Graph::Node n = _heap->top(); | 
|---|
|  | 495 | Value v = _heap->prio(); | 
|---|
|  | 496 |  | 
|---|
|  | 497 | _heap->pop(); | 
|---|
|  | 498 | for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) { | 
|---|
|  | 499 | switch (_heap->state(_arcs[a].target)) { | 
|---|
|  | 500 | case Heap::PRE_HEAP: | 
|---|
|  | 501 | { | 
|---|
|  | 502 | Value nv = _edges[a >> 1].capacity; | 
|---|
|  | 503 | _heap->push(_arcs[a].target, nv); | 
|---|
|  | 504 | _edges[a >> 1].cut = nv; | 
|---|
|  | 505 | } break; | 
|---|
|  | 506 | case Heap::IN_HEAP: | 
|---|
|  | 507 | { | 
|---|
|  | 508 | Value nv = _edges[a >> 1].capacity + (*_heap)[_arcs[a].target]; | 
|---|
|  | 509 | _heap->decrease(_arcs[a].target, nv); | 
|---|
|  | 510 | _edges[a >> 1].cut = nv; | 
|---|
|  | 511 | } break; | 
|---|
|  | 512 | case Heap::POST_HEAP: | 
|---|
|  | 513 | break; | 
|---|
|  | 514 | } | 
|---|
|  | 515 | } | 
|---|
|  | 516 |  | 
|---|
|  | 517 | alpha += (*_nodes)[n].sum; | 
|---|
|  | 518 | alpha -= 2 * v; | 
|---|
|  | 519 |  | 
|---|
|  | 520 | order.push_back(n); | 
|---|
|  | 521 | if (!_heap->empty()) { | 
|---|
|  | 522 | if (alpha < pmc) { | 
|---|
|  | 523 | pmc = alpha; | 
|---|
|  | 524 | sep = order.size(); | 
|---|
|  | 525 | } | 
|---|
|  | 526 | } | 
|---|
|  | 527 | } | 
|---|
|  | 528 |  | 
|---|
|  | 529 | if (static_cast<int>(order.size()) < _node_num) { | 
|---|
|  | 530 | _first_node = INVALID; | 
|---|
|  | 531 | for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { | 
|---|
|  | 532 | (*_cut_map)[n] = false; | 
|---|
|  | 533 | } | 
|---|
|  | 534 | for (int i = 0; i < static_cast<int>(order.size()); ++i) { | 
|---|
|  | 535 | typename Graph::Node n = order[i]; | 
|---|
|  | 536 | while (n != INVALID) { | 
|---|
|  | 537 | (*_cut_map)[n] = true; | 
|---|
|  | 538 | n = (*_next_rep)[n]; | 
|---|
|  | 539 | } | 
|---|
|  | 540 | } | 
|---|
|  | 541 | _min_cut = 0; | 
|---|
|  | 542 | return true; | 
|---|
|  | 543 | } | 
|---|
|  | 544 |  | 
|---|
|  | 545 | if (pmc < _min_cut) { | 
|---|
|  | 546 | for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { | 
|---|
|  | 547 | (*_cut_map)[n] = false; | 
|---|
|  | 548 | } | 
|---|
|  | 549 | for (int i = 0; i < sep; ++i) { | 
|---|
|  | 550 | typename Graph::Node n = order[i]; | 
|---|
|  | 551 | while (n != INVALID) { | 
|---|
|  | 552 | (*_cut_map)[n] = true; | 
|---|
|  | 553 | n = (*_next_rep)[n]; | 
|---|
|  | 554 | } | 
|---|
|  | 555 | } | 
|---|
|  | 556 | _min_cut = pmc; | 
|---|
|  | 557 | } | 
|---|
|  | 558 |  | 
|---|
|  | 559 | for (typename Graph::Node n = _first_node; | 
|---|
|  | 560 | n != INVALID; n = (*_nodes)[n].next) { | 
|---|
|  | 561 | bool merged = false; | 
|---|
|  | 562 | for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) { | 
|---|
|  | 563 | if (!(_edges[a >> 1].cut < pmc)) { | 
|---|
|  | 564 | if (!merged) { | 
|---|
|  | 565 | for (int b = (*_nodes)[n].first_arc; b != -1; b = _arcs[b].next) { | 
|---|
|  | 566 | (*_nodes)[_arcs[b].target].curr_arc = b; | 
|---|
|  | 567 | } | 
|---|
|  | 568 | merged = true; | 
|---|
|  | 569 | } | 
|---|
|  | 570 | typename Graph::Node m = _arcs[a].target; | 
|---|
|  | 571 | int nb = 0; | 
|---|
|  | 572 | for (int b = (*_nodes)[m].first_arc; b != -1; b = nb) { | 
|---|
|  | 573 | nb = _arcs[b].next; | 
|---|
|  | 574 | if ((b ^ a) == 1) continue; | 
|---|
|  | 575 | typename Graph::Node o = _arcs[b].target; | 
|---|
|  | 576 | int c = (*_nodes)[o].curr_arc; | 
|---|
|  | 577 | if (c != -1 && _arcs[c ^ 1].target == n) { | 
|---|
|  | 578 | _edges[c >> 1].capacity += _edges[b >> 1].capacity; | 
|---|
|  | 579 | (*_nodes)[n].sum += _edges[b >> 1].capacity; | 
|---|
|  | 580 | if (_edges[b >> 1].cut < _edges[c >> 1].cut) { | 
|---|
|  | 581 | _edges[b >> 1].cut = _edges[c >> 1].cut; | 
|---|
|  | 582 | } | 
|---|
|  | 583 | if (_arcs[b ^ 1].prev != -1) { | 
|---|
|  | 584 | _arcs[_arcs[b ^ 1].prev].next = _arcs[b ^ 1].next; | 
|---|
|  | 585 | } else { | 
|---|
|  | 586 | (*_nodes)[o].first_arc = _arcs[b ^ 1].next; | 
|---|
|  | 587 | } | 
|---|
|  | 588 | if (_arcs[b ^ 1].next != -1) { | 
|---|
|  | 589 | _arcs[_arcs[b ^ 1].next].prev = _arcs[b ^ 1].prev; | 
|---|
|  | 590 | } | 
|---|
|  | 591 | } else { | 
|---|
|  | 592 | if (_arcs[a].next != -1) { | 
|---|
|  | 593 | _arcs[_arcs[a].next].prev = b; | 
|---|
|  | 594 | } | 
|---|
|  | 595 | _arcs[b].next = _arcs[a].next; | 
|---|
|  | 596 | _arcs[b].prev = a; | 
|---|
|  | 597 | _arcs[a].next = b; | 
|---|
|  | 598 | _arcs[b ^ 1].target = n; | 
|---|
|  | 599 |  | 
|---|
|  | 600 | (*_nodes)[n].sum += _edges[b >> 1].capacity; | 
|---|
|  | 601 | (*_nodes)[o].curr_arc = b; | 
|---|
|  | 602 | } | 
|---|
|  | 603 | } | 
|---|
|  | 604 |  | 
|---|
|  | 605 | if (_arcs[a].prev != -1) { | 
|---|
|  | 606 | _arcs[_arcs[a].prev].next = _arcs[a].next; | 
|---|
|  | 607 | } else { | 
|---|
|  | 608 | (*_nodes)[n].first_arc = _arcs[a].next; | 
|---|
|  | 609 | } | 
|---|
|  | 610 | if (_arcs[a].next != -1) { | 
|---|
|  | 611 | _arcs[_arcs[a].next].prev = _arcs[a].prev; | 
|---|
|  | 612 | } | 
|---|
|  | 613 |  | 
|---|
|  | 614 | (*_nodes)[n].sum -= _edges[a >> 1].capacity; | 
|---|
|  | 615 | (*_next_rep)[(*_nodes)[n].last_rep] = m; | 
|---|
|  | 616 | (*_nodes)[n].last_rep = (*_nodes)[m].last_rep; | 
|---|
|  | 617 |  | 
|---|
|  | 618 | if ((*_nodes)[m].prev != INVALID) { | 
|---|
|  | 619 | (*_nodes)[(*_nodes)[m].prev].next = (*_nodes)[m].next; | 
|---|
|  | 620 | } else{ | 
|---|
|  | 621 | _first_node = (*_nodes)[m].next; | 
|---|
|  | 622 | } | 
|---|
|  | 623 | if ((*_nodes)[m].next != INVALID) { | 
|---|
|  | 624 | (*_nodes)[(*_nodes)[m].next].prev = (*_nodes)[m].prev; | 
|---|
|  | 625 | } | 
|---|
|  | 626 | --_node_num; | 
|---|
|  | 627 | } | 
|---|
|  | 628 | } | 
|---|
|  | 629 | } | 
|---|
|  | 630 |  | 
|---|
|  | 631 | if (_node_num == 1) { | 
|---|
|  | 632 | _first_node = INVALID; | 
|---|
|  | 633 | return true; | 
|---|
|  | 634 | } | 
|---|
|  | 635 |  | 
|---|
|  | 636 | return false; | 
|---|
|  | 637 | } | 
|---|
|  | 638 |  | 
|---|
|  | 639 | /// \brief Executes the algorithm. | 
|---|
|  | 640 | /// | 
|---|
|  | 641 | /// Executes the algorithm. | 
|---|
|  | 642 | /// | 
|---|
|  | 643 | /// \pre init() must be called | 
|---|
|  | 644 | void start() { | 
|---|
|  | 645 | while (!processNextPhase()) {} | 
|---|
|  | 646 | } | 
|---|
|  | 647 |  | 
|---|
|  | 648 |  | 
|---|
|  | 649 | /// \brief Runs %NagamochiIbaraki algorithm. | 
|---|
|  | 650 | /// | 
|---|
|  | 651 | /// This method runs the %Min cut algorithm | 
|---|
|  | 652 | /// | 
|---|
|  | 653 | /// \note mc.run(s) is just a shortcut of the following code. | 
|---|
|  | 654 | ///\code | 
|---|
|  | 655 | ///  mc.init(); | 
|---|
|  | 656 | ///  mc.start(); | 
|---|
|  | 657 | ///\endcode | 
|---|
|  | 658 | void run() { | 
|---|
|  | 659 | init(); | 
|---|
|  | 660 | start(); | 
|---|
|  | 661 | } | 
|---|
|  | 662 |  | 
|---|
|  | 663 | ///@} | 
|---|
|  | 664 |  | 
|---|
|  | 665 | /// \name Query Functions | 
|---|
|  | 666 | /// | 
|---|
|  | 667 | /// The result of the %NagamochiIbaraki | 
|---|
|  | 668 | /// algorithm can be obtained using these functions.\n | 
|---|
|  | 669 | /// Before the use of these functions, either run() or start() | 
|---|
|  | 670 | /// must be called. | 
|---|
|  | 671 |  | 
|---|
|  | 672 | ///@{ | 
|---|
|  | 673 |  | 
|---|
|  | 674 | /// \brief Returns the min cut value. | 
|---|
|  | 675 | /// | 
|---|
|  | 676 | /// Returns the min cut value if the algorithm finished. | 
|---|
|  | 677 | /// After the first processNextPhase() it is a value of a | 
|---|
|  | 678 | /// valid cut in the graph. | 
|---|
|  | 679 | Value minCutValue() const { | 
|---|
|  | 680 | return _min_cut; | 
|---|
|  | 681 | } | 
|---|
|  | 682 |  | 
|---|
|  | 683 | /// \brief Returns a min cut in a NodeMap. | 
|---|
|  | 684 | /// | 
|---|
|  | 685 | /// It sets the nodes of one of the two partitions to true and | 
|---|
|  | 686 | /// the other partition to false. | 
|---|
|  | 687 | /// \param cutMap A \ref concepts::WriteMap "writable" node map with | 
|---|
|  | 688 | /// \c bool (or convertible) value type. | 
|---|
|  | 689 | template <typename CutMap> | 
|---|
|  | 690 | Value minCutMap(CutMap& cutMap) const { | 
|---|
|  | 691 | for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { | 
|---|
|  | 692 | cutMap.set(n, (*_cut_map)[n]); | 
|---|
|  | 693 | } | 
|---|
|  | 694 | return minCutValue(); | 
|---|
|  | 695 | } | 
|---|
|  | 696 |  | 
|---|
|  | 697 | ///@} | 
|---|
|  | 698 |  | 
|---|
|  | 699 | }; | 
|---|
|  | 700 | } | 
|---|
|  | 701 |  | 
|---|
|  | 702 | #endif | 
|---|