| 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- | 
|---|
| 2 |  * | 
|---|
| 3 |  * This file is a part of LEMON, a generic C++ optimization library. | 
|---|
| 4 |  * | 
|---|
| 5 |  * Copyright (C) 2003-2010 | 
|---|
| 6 |  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport | 
|---|
| 7 |  * (Egervary Research Group on Combinatorial Optimization, EGRES). | 
|---|
| 8 |  * | 
|---|
| 9 |  * Permission to use, modify and distribute this software is granted | 
|---|
| 10 |  * provided that this copyright notice appears in all copies. For | 
|---|
| 11 |  * precise terms see the accompanying LICENSE file. | 
|---|
| 12 |  * | 
|---|
| 13 |  * This software is provided "AS IS" with no warranty of any kind, | 
|---|
| 14 |  * express or implied, and with no claim as to its suitability for any | 
|---|
| 15 |  * purpose. | 
|---|
| 16 |  * | 
|---|
| 17 |  */ | 
|---|
| 18 |  | 
|---|
| 19 | #ifndef LEMON_NAGAMOCHI_IBARAKI_H | 
|---|
| 20 | #define LEMON_NAGAMOCHI_IBARAKI_H | 
|---|
| 21 |  | 
|---|
| 22 |  | 
|---|
| 23 | /// \ingroup min_cut | 
|---|
| 24 | /// \file | 
|---|
| 25 | /// \brief Implementation of the Nagamochi-Ibaraki algorithm. | 
|---|
| 26 |  | 
|---|
| 27 | #include <lemon/core.h> | 
|---|
| 28 | #include <lemon/bin_heap.h> | 
|---|
| 29 | #include <lemon/bucket_heap.h> | 
|---|
| 30 | #include <lemon/maps.h> | 
|---|
| 31 | #include <lemon/radix_sort.h> | 
|---|
| 32 | #include <lemon/unionfind.h> | 
|---|
| 33 |  | 
|---|
| 34 | #include <cassert> | 
|---|
| 35 |  | 
|---|
| 36 | namespace lemon { | 
|---|
| 37 |  | 
|---|
| 38 |   /// \brief Default traits class for NagamochiIbaraki class. | 
|---|
| 39 |   /// | 
|---|
| 40 |   /// Default traits class for NagamochiIbaraki class. | 
|---|
| 41 |   /// \param GR The undirected graph type. | 
|---|
| 42 |   /// \param CM Type of capacity map. | 
|---|
| 43 |   template <typename GR, typename CM> | 
|---|
| 44 |   struct NagamochiIbarakiDefaultTraits { | 
|---|
| 45 |     /// The type of the capacity map. | 
|---|
| 46 |     typedef typename CM::Value Value; | 
|---|
| 47 |  | 
|---|
| 48 |     /// The undirected graph type the algorithm runs on. | 
|---|
| 49 |     typedef GR Graph; | 
|---|
| 50 |  | 
|---|
| 51 |     /// \brief The type of the map that stores the edge capacities. | 
|---|
| 52 |     /// | 
|---|
| 53 |     /// The type of the map that stores the edge capacities. | 
|---|
| 54 |     /// It must meet the \ref concepts::ReadMap "ReadMap" concept. | 
|---|
| 55 |     typedef CM CapacityMap; | 
|---|
| 56 |  | 
|---|
| 57 |     /// \brief Instantiates a CapacityMap. | 
|---|
| 58 |     /// | 
|---|
| 59 |     /// This function instantiates a \ref CapacityMap. | 
|---|
| 60 | #ifdef DOXYGEN | 
|---|
| 61 |     static CapacityMap *createCapacityMap(const Graph& graph) | 
|---|
| 62 | #else | 
|---|
| 63 |     static CapacityMap *createCapacityMap(const Graph&) | 
|---|
| 64 | #endif | 
|---|
| 65 |     { | 
|---|
| 66 |         LEMON_ASSERT(false, "CapacityMap is not initialized"); | 
|---|
| 67 |         return 0; // ignore warnings | 
|---|
| 68 |     } | 
|---|
| 69 |  | 
|---|
| 70 |     /// \brief The cross reference type used by heap. | 
|---|
| 71 |     /// | 
|---|
| 72 |     /// The cross reference type used by heap. | 
|---|
| 73 |     /// Usually \c Graph::NodeMap<int>. | 
|---|
| 74 |     typedef typename Graph::template NodeMap<int> HeapCrossRef; | 
|---|
| 75 |  | 
|---|
| 76 |     /// \brief Instantiates a HeapCrossRef. | 
|---|
| 77 |     /// | 
|---|
| 78 |     /// This function instantiates a \ref HeapCrossRef. | 
|---|
| 79 |     /// \param g is the graph, to which we would like to define the | 
|---|
| 80 |     /// \ref HeapCrossRef. | 
|---|
| 81 |     static HeapCrossRef *createHeapCrossRef(const Graph& g) { | 
|---|
| 82 |       return new HeapCrossRef(g); | 
|---|
| 83 |     } | 
|---|
| 84 |  | 
|---|
| 85 |     /// \brief The heap type used by NagamochiIbaraki algorithm. | 
|---|
| 86 |     /// | 
|---|
| 87 |     /// The heap type used by NagamochiIbaraki algorithm. It has to | 
|---|
| 88 |     /// maximize the priorities. | 
|---|
| 89 |     /// | 
|---|
| 90 |     /// \sa BinHeap | 
|---|
| 91 |     /// \sa NagamochiIbaraki | 
|---|
| 92 |     typedef BinHeap<Value, HeapCrossRef, std::greater<Value> > Heap; | 
|---|
| 93 |  | 
|---|
| 94 |     /// \brief Instantiates a Heap. | 
|---|
| 95 |     /// | 
|---|
| 96 |     /// This function instantiates a \ref Heap. | 
|---|
| 97 |     /// \param r is the cross reference of the heap. | 
|---|
| 98 |     static Heap *createHeap(HeapCrossRef& r) { | 
|---|
| 99 |       return new Heap(r); | 
|---|
| 100 |     } | 
|---|
| 101 |   }; | 
|---|
| 102 |  | 
|---|
| 103 |   /// \ingroup min_cut | 
|---|
| 104 |   /// | 
|---|
| 105 |   /// \brief Calculates the minimum cut in an undirected graph. | 
|---|
| 106 |   /// | 
|---|
| 107 |   /// Calculates the minimum cut in an undirected graph with the | 
|---|
| 108 |   /// Nagamochi-Ibaraki algorithm. The algorithm separates the graph's | 
|---|
| 109 |   /// nodes into two partitions with the minimum sum of edge capacities | 
|---|
| 110 |   /// between the two partitions. The algorithm can be used to test | 
|---|
| 111 |   /// the network reliability, especially to test how many links have | 
|---|
| 112 |   /// to be destroyed in the network to split it to at least two | 
|---|
| 113 |   /// distinict subnetworks. | 
|---|
| 114 |   /// | 
|---|
| 115 |   /// The complexity of the algorithm is \f$ O(nm\log(n)) \f$ but with | 
|---|
| 116 |   /// \ref FibHeap "Fibonacci heap" it can be decreased to | 
|---|
| 117 |   /// \f$ O(nm+n^2\log(n)) \f$.  When the edges have unit capacities, | 
|---|
| 118 |   /// \c BucketHeap can be used which yields \f$ O(nm) \f$ time | 
|---|
| 119 |   /// complexity. | 
|---|
| 120 |   /// | 
|---|
| 121 |   /// \warning The value type of the capacity map should be able to | 
|---|
| 122 |   /// hold any cut value of the graph, otherwise the result can | 
|---|
| 123 |   /// overflow. | 
|---|
| 124 |   /// \note This capacity is supposed to be integer type. | 
|---|
| 125 | #ifdef DOXYGEN | 
|---|
| 126 |   template <typename GR, typename CM, typename TR> | 
|---|
| 127 | #else | 
|---|
| 128 |   template <typename GR, | 
|---|
| 129 |             typename CM = typename GR::template EdgeMap<int>, | 
|---|
| 130 |             typename TR = NagamochiIbarakiDefaultTraits<GR, CM> > | 
|---|
| 131 | #endif | 
|---|
| 132 |   class NagamochiIbaraki { | 
|---|
| 133 |   public: | 
|---|
| 134 |  | 
|---|
| 135 |     typedef TR Traits; | 
|---|
| 136 |     /// The type of the underlying graph. | 
|---|
| 137 |     typedef typename Traits::Graph Graph; | 
|---|
| 138 |  | 
|---|
| 139 |     /// The type of the capacity map. | 
|---|
| 140 |     typedef typename Traits::CapacityMap CapacityMap; | 
|---|
| 141 |     /// The value type of the capacity map. | 
|---|
| 142 |     typedef typename Traits::CapacityMap::Value Value; | 
|---|
| 143 |  | 
|---|
| 144 |     /// The heap type used by the algorithm. | 
|---|
| 145 |     typedef typename Traits::Heap Heap; | 
|---|
| 146 |     /// The cross reference type used for the heap. | 
|---|
| 147 |     typedef typename Traits::HeapCrossRef HeapCrossRef; | 
|---|
| 148 |  | 
|---|
| 149 |     ///\name Named template parameters | 
|---|
| 150 |  | 
|---|
| 151 |     ///@{ | 
|---|
| 152 |  | 
|---|
| 153 |     struct SetUnitCapacityTraits : public Traits { | 
|---|
| 154 |       typedef ConstMap<typename Graph::Edge, Const<int, 1> > CapacityMap; | 
|---|
| 155 |       static CapacityMap *createCapacityMap(const Graph&) { | 
|---|
| 156 |         return new CapacityMap(); | 
|---|
| 157 |       } | 
|---|
| 158 |     }; | 
|---|
| 159 |  | 
|---|
| 160 |     /// \brief \ref named-templ-param "Named parameter" for setting | 
|---|
| 161 |     /// the capacity map to a constMap<Edge, int, 1>() instance | 
|---|
| 162 |     /// | 
|---|
| 163 |     /// \ref named-templ-param "Named parameter" for setting | 
|---|
| 164 |     /// the capacity map to a constMap<Edge, int, 1>() instance | 
|---|
| 165 |     struct SetUnitCapacity | 
|---|
| 166 |       : public NagamochiIbaraki<Graph, CapacityMap, | 
|---|
| 167 |                                 SetUnitCapacityTraits> { | 
|---|
| 168 |       typedef NagamochiIbaraki<Graph, CapacityMap, | 
|---|
| 169 |                                SetUnitCapacityTraits> Create; | 
|---|
| 170 |     }; | 
|---|
| 171 |  | 
|---|
| 172 |  | 
|---|
| 173 |     template <class H, class CR> | 
|---|
| 174 |     struct SetHeapTraits : public Traits { | 
|---|
| 175 |       typedef CR HeapCrossRef; | 
|---|
| 176 |       typedef H Heap; | 
|---|
| 177 |       static HeapCrossRef *createHeapCrossRef(int num) { | 
|---|
| 178 |         LEMON_ASSERT(false, "HeapCrossRef is not initialized"); | 
|---|
| 179 |         return 0; // ignore warnings | 
|---|
| 180 |       } | 
|---|
| 181 |       static Heap *createHeap(HeapCrossRef &) { | 
|---|
| 182 |         LEMON_ASSERT(false, "Heap is not initialized"); | 
|---|
| 183 |         return 0; // ignore warnings | 
|---|
| 184 |       } | 
|---|
| 185 |     }; | 
|---|
| 186 |  | 
|---|
| 187 |     /// \brief \ref named-templ-param "Named parameter" for setting | 
|---|
| 188 |     /// heap and cross reference type | 
|---|
| 189 |     /// | 
|---|
| 190 |     /// \ref named-templ-param "Named parameter" for setting heap and | 
|---|
| 191 |     /// cross reference type. The heap has to maximize the priorities. | 
|---|
| 192 |     template <class H, class CR = RangeMap<int> > | 
|---|
| 193 |     struct SetHeap | 
|---|
| 194 |       : public NagamochiIbaraki<Graph, CapacityMap, SetHeapTraits<H, CR> > { | 
|---|
| 195 |       typedef NagamochiIbaraki< Graph, CapacityMap, SetHeapTraits<H, CR> > | 
|---|
| 196 |       Create; | 
|---|
| 197 |     }; | 
|---|
| 198 |  | 
|---|
| 199 |     template <class H, class CR> | 
|---|
| 200 |     struct SetStandardHeapTraits : public Traits { | 
|---|
| 201 |       typedef CR HeapCrossRef; | 
|---|
| 202 |       typedef H Heap; | 
|---|
| 203 |       static HeapCrossRef *createHeapCrossRef(int size) { | 
|---|
| 204 |         return new HeapCrossRef(size); | 
|---|
| 205 |       } | 
|---|
| 206 |       static Heap *createHeap(HeapCrossRef &crossref) { | 
|---|
| 207 |         return new Heap(crossref); | 
|---|
| 208 |       } | 
|---|
| 209 |     }; | 
|---|
| 210 |  | 
|---|
| 211 |     /// \brief \ref named-templ-param "Named parameter" for setting | 
|---|
| 212 |     /// heap and cross reference type with automatic allocation | 
|---|
| 213 |     /// | 
|---|
| 214 |     /// \ref named-templ-param "Named parameter" for setting heap and | 
|---|
| 215 |     /// cross reference type with automatic allocation. They should | 
|---|
| 216 |     /// have standard constructor interfaces to be able to | 
|---|
| 217 |     /// automatically created by the algorithm (i.e. the graph should | 
|---|
| 218 |     /// be passed to the constructor of the cross reference and the | 
|---|
| 219 |     /// cross reference should be passed to the constructor of the | 
|---|
| 220 |     /// heap). However, external heap and cross reference objects | 
|---|
| 221 |     /// could also be passed to the algorithm using the \ref heap() | 
|---|
| 222 |     /// function before calling \ref run() or \ref init(). The heap | 
|---|
| 223 |     /// has to maximize the priorities. | 
|---|
| 224 |     /// \sa SetHeap | 
|---|
| 225 |     template <class H, class CR = RangeMap<int> > | 
|---|
| 226 |     struct SetStandardHeap | 
|---|
| 227 |       : public NagamochiIbaraki<Graph, CapacityMap, | 
|---|
| 228 |                                 SetStandardHeapTraits<H, CR> > { | 
|---|
| 229 |       typedef NagamochiIbaraki<Graph, CapacityMap, | 
|---|
| 230 |                                SetStandardHeapTraits<H, CR> > Create; | 
|---|
| 231 |     }; | 
|---|
| 232 |  | 
|---|
| 233 |     ///@} | 
|---|
| 234 |  | 
|---|
| 235 |  | 
|---|
| 236 |   private: | 
|---|
| 237 |  | 
|---|
| 238 |     const Graph &_graph; | 
|---|
| 239 |     const CapacityMap *_capacity; | 
|---|
| 240 |     bool _local_capacity; // unit capacity | 
|---|
| 241 |  | 
|---|
| 242 |     struct ArcData { | 
|---|
| 243 |       typename Graph::Node target; | 
|---|
| 244 |       int prev, next; | 
|---|
| 245 |     }; | 
|---|
| 246 |     struct EdgeData { | 
|---|
| 247 |       Value capacity; | 
|---|
| 248 |       Value cut; | 
|---|
| 249 |     }; | 
|---|
| 250 |  | 
|---|
| 251 |     struct NodeData { | 
|---|
| 252 |       int first_arc; | 
|---|
| 253 |       typename Graph::Node prev, next; | 
|---|
| 254 |       int curr_arc; | 
|---|
| 255 |       typename Graph::Node last_rep; | 
|---|
| 256 |       Value sum; | 
|---|
| 257 |     }; | 
|---|
| 258 |  | 
|---|
| 259 |     typename Graph::template NodeMap<NodeData> *_nodes; | 
|---|
| 260 |     std::vector<ArcData> _arcs; | 
|---|
| 261 |     std::vector<EdgeData> _edges; | 
|---|
| 262 |  | 
|---|
| 263 |     typename Graph::Node _first_node; | 
|---|
| 264 |     int _node_num; | 
|---|
| 265 |  | 
|---|
| 266 |     Value _min_cut; | 
|---|
| 267 |  | 
|---|
| 268 |     HeapCrossRef *_heap_cross_ref; | 
|---|
| 269 |     bool _local_heap_cross_ref; | 
|---|
| 270 |     Heap *_heap; | 
|---|
| 271 |     bool _local_heap; | 
|---|
| 272 |  | 
|---|
| 273 |     typedef typename Graph::template NodeMap<typename Graph::Node> NodeList; | 
|---|
| 274 |     NodeList *_next_rep; | 
|---|
| 275 |  | 
|---|
| 276 |     typedef typename Graph::template NodeMap<bool> MinCutMap; | 
|---|
| 277 |     MinCutMap *_cut_map; | 
|---|
| 278 |  | 
|---|
| 279 |     void createStructures() { | 
|---|
| 280 |       if (!_nodes) { | 
|---|
| 281 |         _nodes = new (typename Graph::template NodeMap<NodeData>)(_graph); | 
|---|
| 282 |       } | 
|---|
| 283 |       if (!_capacity) { | 
|---|
| 284 |         _local_capacity = true; | 
|---|
| 285 |         _capacity = Traits::createCapacityMap(_graph); | 
|---|
| 286 |       } | 
|---|
| 287 |       if (!_heap_cross_ref) { | 
|---|
| 288 |         _local_heap_cross_ref = true; | 
|---|
| 289 |         _heap_cross_ref = Traits::createHeapCrossRef(_graph); | 
|---|
| 290 |       } | 
|---|
| 291 |       if (!_heap) { | 
|---|
| 292 |         _local_heap = true; | 
|---|
| 293 |         _heap = Traits::createHeap(*_heap_cross_ref); | 
|---|
| 294 |       } | 
|---|
| 295 |       if (!_next_rep) { | 
|---|
| 296 |         _next_rep = new NodeList(_graph); | 
|---|
| 297 |       } | 
|---|
| 298 |       if (!_cut_map) { | 
|---|
| 299 |         _cut_map = new MinCutMap(_graph); | 
|---|
| 300 |       } | 
|---|
| 301 |     } | 
|---|
| 302 |  | 
|---|
| 303 |   protected: | 
|---|
| 304 |     //This is here to avoid a gcc-3.3 compilation error. | 
|---|
| 305 |     //It should never be called. | 
|---|
| 306 |     NagamochiIbaraki() {}  | 
|---|
| 307 |      | 
|---|
| 308 |   public: | 
|---|
| 309 |  | 
|---|
| 310 |     typedef NagamochiIbaraki Create; | 
|---|
| 311 |  | 
|---|
| 312 |  | 
|---|
| 313 |     /// \brief Constructor. | 
|---|
| 314 |     /// | 
|---|
| 315 |     /// \param graph The graph the algorithm runs on. | 
|---|
| 316 |     /// \param capacity The capacity map used by the algorithm. | 
|---|
| 317 |     NagamochiIbaraki(const Graph& graph, const CapacityMap& capacity) | 
|---|
| 318 |       : _graph(graph), _capacity(&capacity), _local_capacity(false), | 
|---|
| 319 |         _nodes(0), _arcs(), _edges(), _min_cut(), | 
|---|
| 320 |         _heap_cross_ref(0), _local_heap_cross_ref(false), | 
|---|
| 321 |         _heap(0), _local_heap(false), | 
|---|
| 322 |         _next_rep(0), _cut_map(0) {} | 
|---|
| 323 |  | 
|---|
| 324 |     /// \brief Constructor. | 
|---|
| 325 |     /// | 
|---|
| 326 |     /// This constructor can be used only when the Traits class | 
|---|
| 327 |     /// defines how can the local capacity map be instantiated. | 
|---|
| 328 |     /// If the SetUnitCapacity used the algorithm automatically | 
|---|
| 329 |     /// constructs the capacity map. | 
|---|
| 330 |     /// | 
|---|
| 331 |     ///\param graph The graph the algorithm runs on. | 
|---|
| 332 |     NagamochiIbaraki(const Graph& graph) | 
|---|
| 333 |       : _graph(graph), _capacity(0), _local_capacity(false), | 
|---|
| 334 |         _nodes(0), _arcs(), _edges(), _min_cut(), | 
|---|
| 335 |         _heap_cross_ref(0), _local_heap_cross_ref(false), | 
|---|
| 336 |         _heap(0), _local_heap(false), | 
|---|
| 337 |         _next_rep(0), _cut_map(0) {} | 
|---|
| 338 |  | 
|---|
| 339 |     /// \brief Destructor. | 
|---|
| 340 |     /// | 
|---|
| 341 |     /// Destructor. | 
|---|
| 342 |     ~NagamochiIbaraki() { | 
|---|
| 343 |       if (_local_capacity) delete _capacity; | 
|---|
| 344 |       if (_nodes) delete _nodes; | 
|---|
| 345 |       if (_local_heap) delete _heap; | 
|---|
| 346 |       if (_local_heap_cross_ref) delete _heap_cross_ref; | 
|---|
| 347 |       if (_next_rep) delete _next_rep; | 
|---|
| 348 |       if (_cut_map) delete _cut_map; | 
|---|
| 349 |     } | 
|---|
| 350 |  | 
|---|
| 351 |     /// \brief Sets the heap and the cross reference used by algorithm. | 
|---|
| 352 |     /// | 
|---|
| 353 |     /// Sets the heap and the cross reference used by algorithm. | 
|---|
| 354 |     /// If you don't use this function before calling \ref run(), | 
|---|
| 355 |     /// it will allocate one. The destuctor deallocates this | 
|---|
| 356 |     /// automatically allocated heap and cross reference, of course. | 
|---|
| 357 |     /// \return <tt> (*this) </tt> | 
|---|
| 358 |     NagamochiIbaraki &heap(Heap& hp, HeapCrossRef &cr) | 
|---|
| 359 |     { | 
|---|
| 360 |       if (_local_heap_cross_ref) { | 
|---|
| 361 |         delete _heap_cross_ref; | 
|---|
| 362 |         _local_heap_cross_ref = false; | 
|---|
| 363 |       } | 
|---|
| 364 |       _heap_cross_ref = &cr; | 
|---|
| 365 |       if (_local_heap) { | 
|---|
| 366 |         delete _heap; | 
|---|
| 367 |         _local_heap = false; | 
|---|
| 368 |       } | 
|---|
| 369 |       _heap = &hp; | 
|---|
| 370 |       return *this; | 
|---|
| 371 |     } | 
|---|
| 372 |  | 
|---|
| 373 |     /// \name Execution control | 
|---|
| 374 |     /// The simplest way to execute the algorithm is to use | 
|---|
| 375 |     /// one of the member functions called \c run(). | 
|---|
| 376 |     /// \n | 
|---|
| 377 |     /// If you need more control on the execution, | 
|---|
| 378 |     /// first you must call \ref init() and then call the start() | 
|---|
| 379 |     /// or proper times the processNextPhase() member functions. | 
|---|
| 380 |  | 
|---|
| 381 |     ///@{ | 
|---|
| 382 |  | 
|---|
| 383 |     /// \brief Initializes the internal data structures. | 
|---|
| 384 |     /// | 
|---|
| 385 |     /// Initializes the internal data structures. | 
|---|
| 386 |     void init() { | 
|---|
| 387 |       createStructures(); | 
|---|
| 388 |  | 
|---|
| 389 |       int edge_num = countEdges(_graph); | 
|---|
| 390 |       _edges.resize(edge_num); | 
|---|
| 391 |       _arcs.resize(2 * edge_num); | 
|---|
| 392 |  | 
|---|
| 393 |       typename Graph::Node prev = INVALID; | 
|---|
| 394 |       _node_num = 0; | 
|---|
| 395 |       for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { | 
|---|
| 396 |         (*_cut_map)[n] = false; | 
|---|
| 397 |         (*_next_rep)[n] = INVALID; | 
|---|
| 398 |         (*_nodes)[n].last_rep = n; | 
|---|
| 399 |         (*_nodes)[n].first_arc = -1; | 
|---|
| 400 |         (*_nodes)[n].curr_arc = -1; | 
|---|
| 401 |         (*_nodes)[n].prev = prev; | 
|---|
| 402 |         if (prev != INVALID) { | 
|---|
| 403 |           (*_nodes)[prev].next = n; | 
|---|
| 404 |         } | 
|---|
| 405 |         (*_nodes)[n].next = INVALID; | 
|---|
| 406 |         (*_nodes)[n].sum = 0; | 
|---|
| 407 |         prev = n; | 
|---|
| 408 |         ++_node_num; | 
|---|
| 409 |       } | 
|---|
| 410 |  | 
|---|
| 411 |       _first_node = typename Graph::NodeIt(_graph); | 
|---|
| 412 |  | 
|---|
| 413 |       int index = 0; | 
|---|
| 414 |       for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { | 
|---|
| 415 |         for (typename Graph::OutArcIt a(_graph, n); a != INVALID; ++a) { | 
|---|
| 416 |           typename Graph::Node m = _graph.target(a); | 
|---|
| 417 |            | 
|---|
| 418 |           if (!(n < m)) continue; | 
|---|
| 419 |  | 
|---|
| 420 |           (*_nodes)[n].sum += (*_capacity)[a]; | 
|---|
| 421 |           (*_nodes)[m].sum += (*_capacity)[a]; | 
|---|
| 422 |            | 
|---|
| 423 |           int c = (*_nodes)[m].curr_arc; | 
|---|
| 424 |           if (c != -1 && _arcs[c ^ 1].target == n) { | 
|---|
| 425 |             _edges[c >> 1].capacity += (*_capacity)[a]; | 
|---|
| 426 |           } else { | 
|---|
| 427 |             _edges[index].capacity = (*_capacity)[a]; | 
|---|
| 428 |              | 
|---|
| 429 |             _arcs[index << 1].prev = -1; | 
|---|
| 430 |             if ((*_nodes)[n].first_arc != -1) { | 
|---|
| 431 |               _arcs[(*_nodes)[n].first_arc].prev = (index << 1); | 
|---|
| 432 |             } | 
|---|
| 433 |             _arcs[index << 1].next = (*_nodes)[n].first_arc; | 
|---|
| 434 |             (*_nodes)[n].first_arc = (index << 1); | 
|---|
| 435 |             _arcs[index << 1].target = m; | 
|---|
| 436 |  | 
|---|
| 437 |             (*_nodes)[m].curr_arc = (index << 1); | 
|---|
| 438 |              | 
|---|
| 439 |             _arcs[(index << 1) | 1].prev = -1; | 
|---|
| 440 |             if ((*_nodes)[m].first_arc != -1) { | 
|---|
| 441 |               _arcs[(*_nodes)[m].first_arc].prev = ((index << 1) | 1); | 
|---|
| 442 |             } | 
|---|
| 443 |             _arcs[(index << 1) | 1].next = (*_nodes)[m].first_arc; | 
|---|
| 444 |             (*_nodes)[m].first_arc = ((index << 1) | 1); | 
|---|
| 445 |             _arcs[(index << 1) | 1].target = n; | 
|---|
| 446 |              | 
|---|
| 447 |             ++index; | 
|---|
| 448 |           } | 
|---|
| 449 |         } | 
|---|
| 450 |       } | 
|---|
| 451 |  | 
|---|
| 452 |       typename Graph::Node cut_node = INVALID; | 
|---|
| 453 |       _min_cut = std::numeric_limits<Value>::max(); | 
|---|
| 454 |  | 
|---|
| 455 |       for (typename Graph::Node n = _first_node;  | 
|---|
| 456 |            n != INVALID; n = (*_nodes)[n].next) { | 
|---|
| 457 |         if ((*_nodes)[n].sum < _min_cut) { | 
|---|
| 458 |           cut_node = n; | 
|---|
| 459 |           _min_cut = (*_nodes)[n].sum; | 
|---|
| 460 |         } | 
|---|
| 461 |       } | 
|---|
| 462 |       (*_cut_map)[cut_node] = true; | 
|---|
| 463 |       if (_min_cut == 0) { | 
|---|
| 464 |         _first_node = INVALID; | 
|---|
| 465 |       } | 
|---|
| 466 |     } | 
|---|
| 467 |  | 
|---|
| 468 |   public: | 
|---|
| 469 |  | 
|---|
| 470 |     /// \brief Processes the next phase | 
|---|
| 471 |     /// | 
|---|
| 472 |     /// Processes the next phase in the algorithm. It must be called | 
|---|
| 473 |     /// at most one less the number of the nodes in the graph. | 
|---|
| 474 |     /// | 
|---|
| 475 |     ///\return %True when the algorithm finished. | 
|---|
| 476 |     bool processNextPhase() { | 
|---|
| 477 |       if (_first_node == INVALID) return true; | 
|---|
| 478 |  | 
|---|
| 479 |       _heap->clear(); | 
|---|
| 480 |       for (typename Graph::Node n = _first_node;  | 
|---|
| 481 |            n != INVALID; n = (*_nodes)[n].next) { | 
|---|
| 482 |         (*_heap_cross_ref)[n] = Heap::PRE_HEAP; | 
|---|
| 483 |       } | 
|---|
| 484 |  | 
|---|
| 485 |       std::vector<typename Graph::Node> order; | 
|---|
| 486 |       order.reserve(_node_num); | 
|---|
| 487 |       int sep = 0; | 
|---|
| 488 |  | 
|---|
| 489 |       Value alpha = 0; | 
|---|
| 490 |       Value pmc = std::numeric_limits<Value>::max(); | 
|---|
| 491 |  | 
|---|
| 492 |       _heap->push(_first_node, static_cast<Value>(0)); | 
|---|
| 493 |       while (!_heap->empty()) { | 
|---|
| 494 |         typename Graph::Node n = _heap->top(); | 
|---|
| 495 |         Value v = _heap->prio(); | 
|---|
| 496 |  | 
|---|
| 497 |         _heap->pop(); | 
|---|
| 498 |         for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) { | 
|---|
| 499 |           switch (_heap->state(_arcs[a].target)) { | 
|---|
| 500 |           case Heap::PRE_HEAP:  | 
|---|
| 501 |             { | 
|---|
| 502 |               Value nv = _edges[a >> 1].capacity; | 
|---|
| 503 |               _heap->push(_arcs[a].target, nv); | 
|---|
| 504 |               _edges[a >> 1].cut = nv; | 
|---|
| 505 |             } break; | 
|---|
| 506 |           case Heap::IN_HEAP: | 
|---|
| 507 |             { | 
|---|
| 508 |               Value nv = _edges[a >> 1].capacity + (*_heap)[_arcs[a].target]; | 
|---|
| 509 |               _heap->decrease(_arcs[a].target, nv); | 
|---|
| 510 |               _edges[a >> 1].cut = nv; | 
|---|
| 511 |             } break; | 
|---|
| 512 |           case Heap::POST_HEAP: | 
|---|
| 513 |             break; | 
|---|
| 514 |           } | 
|---|
| 515 |         } | 
|---|
| 516 |  | 
|---|
| 517 |         alpha += (*_nodes)[n].sum; | 
|---|
| 518 |         alpha -= 2 * v; | 
|---|
| 519 |  | 
|---|
| 520 |         order.push_back(n); | 
|---|
| 521 |         if (!_heap->empty()) { | 
|---|
| 522 |           if (alpha < pmc) { | 
|---|
| 523 |             pmc = alpha; | 
|---|
| 524 |             sep = order.size(); | 
|---|
| 525 |           } | 
|---|
| 526 |         } | 
|---|
| 527 |       } | 
|---|
| 528 |  | 
|---|
| 529 |       if (static_cast<int>(order.size()) < _node_num) { | 
|---|
| 530 |         _first_node = INVALID; | 
|---|
| 531 |         for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { | 
|---|
| 532 |           (*_cut_map)[n] = false; | 
|---|
| 533 |         } | 
|---|
| 534 |         for (int i = 0; i < static_cast<int>(order.size()); ++i) { | 
|---|
| 535 |           typename Graph::Node n = order[i]; | 
|---|
| 536 |           while (n != INVALID) { | 
|---|
| 537 |             (*_cut_map)[n] = true; | 
|---|
| 538 |             n = (*_next_rep)[n]; | 
|---|
| 539 |           } | 
|---|
| 540 |         } | 
|---|
| 541 |         _min_cut = 0; | 
|---|
| 542 |         return true; | 
|---|
| 543 |       } | 
|---|
| 544 |  | 
|---|
| 545 |       if (pmc < _min_cut) { | 
|---|
| 546 |         for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { | 
|---|
| 547 |           (*_cut_map)[n] = false; | 
|---|
| 548 |         } | 
|---|
| 549 |         for (int i = 0; i < sep; ++i) { | 
|---|
| 550 |           typename Graph::Node n = order[i]; | 
|---|
| 551 |           while (n != INVALID) { | 
|---|
| 552 |             (*_cut_map)[n] = true; | 
|---|
| 553 |             n = (*_next_rep)[n]; | 
|---|
| 554 |           } | 
|---|
| 555 |         } | 
|---|
| 556 |         _min_cut = pmc; | 
|---|
| 557 |       } | 
|---|
| 558 |  | 
|---|
| 559 |       for (typename Graph::Node n = _first_node; | 
|---|
| 560 |            n != INVALID; n = (*_nodes)[n].next) { | 
|---|
| 561 |         bool merged = false; | 
|---|
| 562 |         for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) { | 
|---|
| 563 |           if (!(_edges[a >> 1].cut < pmc)) { | 
|---|
| 564 |             if (!merged) { | 
|---|
| 565 |               for (int b = (*_nodes)[n].first_arc; b != -1; b = _arcs[b].next) { | 
|---|
| 566 |                 (*_nodes)[_arcs[b].target].curr_arc = b;           | 
|---|
| 567 |               } | 
|---|
| 568 |               merged = true; | 
|---|
| 569 |             } | 
|---|
| 570 |             typename Graph::Node m = _arcs[a].target; | 
|---|
| 571 |             int nb = 0; | 
|---|
| 572 |             for (int b = (*_nodes)[m].first_arc; b != -1; b = nb) { | 
|---|
| 573 |               nb = _arcs[b].next; | 
|---|
| 574 |               if ((b ^ a) == 1) continue; | 
|---|
| 575 |               typename Graph::Node o = _arcs[b].target; | 
|---|
| 576 |               int c = (*_nodes)[o].curr_arc;  | 
|---|
| 577 |               if (c != -1 && _arcs[c ^ 1].target == n) { | 
|---|
| 578 |                 _edges[c >> 1].capacity += _edges[b >> 1].capacity; | 
|---|
| 579 |                 (*_nodes)[n].sum += _edges[b >> 1].capacity; | 
|---|
| 580 |                 if (_edges[b >> 1].cut < _edges[c >> 1].cut) { | 
|---|
| 581 |                   _edges[b >> 1].cut = _edges[c >> 1].cut; | 
|---|
| 582 |                 } | 
|---|
| 583 |                 if (_arcs[b ^ 1].prev != -1) { | 
|---|
| 584 |                   _arcs[_arcs[b ^ 1].prev].next = _arcs[b ^ 1].next; | 
|---|
| 585 |                 } else { | 
|---|
| 586 |                   (*_nodes)[o].first_arc = _arcs[b ^ 1].next; | 
|---|
| 587 |                 } | 
|---|
| 588 |                 if (_arcs[b ^ 1].next != -1) { | 
|---|
| 589 |                   _arcs[_arcs[b ^ 1].next].prev = _arcs[b ^ 1].prev; | 
|---|
| 590 |                 } | 
|---|
| 591 |               } else { | 
|---|
| 592 |                 if (_arcs[a].next != -1) { | 
|---|
| 593 |                   _arcs[_arcs[a].next].prev = b; | 
|---|
| 594 |                 } | 
|---|
| 595 |                 _arcs[b].next = _arcs[a].next; | 
|---|
| 596 |                 _arcs[b].prev = a; | 
|---|
| 597 |                 _arcs[a].next = b; | 
|---|
| 598 |                 _arcs[b ^ 1].target = n; | 
|---|
| 599 |  | 
|---|
| 600 |                 (*_nodes)[n].sum += _edges[b >> 1].capacity; | 
|---|
| 601 |                 (*_nodes)[o].curr_arc = b; | 
|---|
| 602 |               } | 
|---|
| 603 |             } | 
|---|
| 604 |  | 
|---|
| 605 |             if (_arcs[a].prev != -1) { | 
|---|
| 606 |               _arcs[_arcs[a].prev].next = _arcs[a].next; | 
|---|
| 607 |             } else { | 
|---|
| 608 |               (*_nodes)[n].first_arc = _arcs[a].next; | 
|---|
| 609 |             }             | 
|---|
| 610 |             if (_arcs[a].next != -1) { | 
|---|
| 611 |               _arcs[_arcs[a].next].prev = _arcs[a].prev; | 
|---|
| 612 |             } | 
|---|
| 613 |  | 
|---|
| 614 |             (*_nodes)[n].sum -= _edges[a >> 1].capacity; | 
|---|
| 615 |             (*_next_rep)[(*_nodes)[n].last_rep] = m; | 
|---|
| 616 |             (*_nodes)[n].last_rep = (*_nodes)[m].last_rep; | 
|---|
| 617 |              | 
|---|
| 618 |             if ((*_nodes)[m].prev != INVALID) { | 
|---|
| 619 |               (*_nodes)[(*_nodes)[m].prev].next = (*_nodes)[m].next; | 
|---|
| 620 |             } else{ | 
|---|
| 621 |               _first_node = (*_nodes)[m].next; | 
|---|
| 622 |             } | 
|---|
| 623 |             if ((*_nodes)[m].next != INVALID) { | 
|---|
| 624 |               (*_nodes)[(*_nodes)[m].next].prev = (*_nodes)[m].prev; | 
|---|
| 625 |             } | 
|---|
| 626 |             --_node_num; | 
|---|
| 627 |           } | 
|---|
| 628 |         } | 
|---|
| 629 |       } | 
|---|
| 630 |  | 
|---|
| 631 |       if (_node_num == 1) { | 
|---|
| 632 |         _first_node = INVALID; | 
|---|
| 633 |         return true; | 
|---|
| 634 |       } | 
|---|
| 635 |  | 
|---|
| 636 |       return false; | 
|---|
| 637 |     } | 
|---|
| 638 |  | 
|---|
| 639 |     /// \brief Executes the algorithm. | 
|---|
| 640 |     /// | 
|---|
| 641 |     /// Executes the algorithm. | 
|---|
| 642 |     /// | 
|---|
| 643 |     /// \pre init() must be called | 
|---|
| 644 |     void start() { | 
|---|
| 645 |       while (!processNextPhase()) {} | 
|---|
| 646 |     } | 
|---|
| 647 |  | 
|---|
| 648 |  | 
|---|
| 649 |     /// \brief Runs %NagamochiIbaraki algorithm. | 
|---|
| 650 |     /// | 
|---|
| 651 |     /// This method runs the %Min cut algorithm | 
|---|
| 652 |     /// | 
|---|
| 653 |     /// \note mc.run(s) is just a shortcut of the following code. | 
|---|
| 654 |     ///\code | 
|---|
| 655 |     ///  mc.init(); | 
|---|
| 656 |     ///  mc.start(); | 
|---|
| 657 |     ///\endcode | 
|---|
| 658 |     void run() { | 
|---|
| 659 |       init(); | 
|---|
| 660 |       start(); | 
|---|
| 661 |     } | 
|---|
| 662 |  | 
|---|
| 663 |     ///@} | 
|---|
| 664 |  | 
|---|
| 665 |     /// \name Query Functions | 
|---|
| 666 |     /// | 
|---|
| 667 |     /// The result of the %NagamochiIbaraki | 
|---|
| 668 |     /// algorithm can be obtained using these functions.\n | 
|---|
| 669 |     /// Before the use of these functions, either run() or start() | 
|---|
| 670 |     /// must be called. | 
|---|
| 671 |  | 
|---|
| 672 |     ///@{ | 
|---|
| 673 |  | 
|---|
| 674 |     /// \brief Returns the min cut value. | 
|---|
| 675 |     /// | 
|---|
| 676 |     /// Returns the min cut value if the algorithm finished. | 
|---|
| 677 |     /// After the first processNextPhase() it is a value of a | 
|---|
| 678 |     /// valid cut in the graph. | 
|---|
| 679 |     Value minCutValue() const { | 
|---|
| 680 |       return _min_cut; | 
|---|
| 681 |     } | 
|---|
| 682 |  | 
|---|
| 683 |     /// \brief Returns a min cut in a NodeMap. | 
|---|
| 684 |     /// | 
|---|
| 685 |     /// It sets the nodes of one of the two partitions to true and | 
|---|
| 686 |     /// the other partition to false. | 
|---|
| 687 |     /// \param cutMap A \ref concepts::WriteMap "writable" node map with | 
|---|
| 688 |     /// \c bool (or convertible) value type. | 
|---|
| 689 |     template <typename CutMap> | 
|---|
| 690 |     Value minCutMap(CutMap& cutMap) const { | 
|---|
| 691 |       for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { | 
|---|
| 692 |         cutMap.set(n, (*_cut_map)[n]); | 
|---|
| 693 |       } | 
|---|
| 694 |       return minCutValue(); | 
|---|
| 695 |     } | 
|---|
| 696 |  | 
|---|
| 697 |     ///@} | 
|---|
| 698 |  | 
|---|
| 699 |   }; | 
|---|
| 700 | } | 
|---|
| 701 |  | 
|---|
| 702 | #endif | 
|---|