1 | %* gmpl.tex *% |
---|
2 | |
---|
3 | %*********************************************************************** |
---|
4 | % This code is part of GLPK (GNU Linear Programming Kit). |
---|
5 | % |
---|
6 | % Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
7 | % 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
8 | % Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
9 | % E-mail: <mao@gnu.org>. |
---|
10 | % |
---|
11 | % GLPK is free software: you can redistribute it and/or modify it |
---|
12 | % under the terms of the GNU General Public License as published by |
---|
13 | % the Free Software Foundation, either version 3 of the License, or |
---|
14 | % (at your option) any later version. |
---|
15 | % |
---|
16 | % GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
17 | % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
18 | % or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
19 | % License for more details. |
---|
20 | % |
---|
21 | % You should have received a copy of the GNU General Public License |
---|
22 | % along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
23 | %*********************************************************************** |
---|
24 | |
---|
25 | \documentclass[10pt]{article} |
---|
26 | \usepackage[dvipdfm,linktocpage,colorlinks,linkcolor=blue]{hyperref} |
---|
27 | |
---|
28 | \begin{document} |
---|
29 | |
---|
30 | \thispagestyle{empty} |
---|
31 | |
---|
32 | \begin{center} |
---|
33 | |
---|
34 | \vspace*{1in} |
---|
35 | |
---|
36 | \begin{huge} |
---|
37 | \sf\bfseries Modeling Language GNU MathProg |
---|
38 | \end{huge} |
---|
39 | |
---|
40 | \vspace{0.5in} |
---|
41 | |
---|
42 | \begin{LARGE} |
---|
43 | \sf Language Reference |
---|
44 | \end{LARGE} |
---|
45 | |
---|
46 | \vspace{0.5in} |
---|
47 | |
---|
48 | \begin{LARGE} |
---|
49 | \sf for GLPK Version 4.45 |
---|
50 | \end{LARGE} |
---|
51 | |
---|
52 | \vspace{0.5in} |
---|
53 | \begin{Large} |
---|
54 | \sf (DRAFT, December 2010) |
---|
55 | \end{Large} |
---|
56 | |
---|
57 | \end{center} |
---|
58 | |
---|
59 | \newpage |
---|
60 | |
---|
61 | \vspace*{1in} |
---|
62 | |
---|
63 | \vfill |
---|
64 | |
---|
65 | \noindent |
---|
66 | The GLPK package is part of the GNU Project released under the aegis of |
---|
67 | GNU. |
---|
68 | |
---|
69 | \medskip\noindent |
---|
70 | Copyright \copyright{} 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, |
---|
71 | 2008, 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
72 | Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
73 | |
---|
74 | \medskip\noindent |
---|
75 | Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, |
---|
76 | MA 02110-1301, USA. |
---|
77 | |
---|
78 | \medskip\noindent |
---|
79 | Permission is granted to make and distribute verbatim copies of this |
---|
80 | manual provided the copyright notice and this permission notice are |
---|
81 | preserved on all copies. |
---|
82 | |
---|
83 | \medskip\noindent |
---|
84 | Permission is granted to copy and distribute modified versions of this |
---|
85 | manual under the conditions for verbatim copying, provided also that |
---|
86 | the entire resulting derived work is distributed under the terms of |
---|
87 | a permission notice identical to this one. |
---|
88 | |
---|
89 | \medskip\noindent |
---|
90 | Permission is granted to copy and distribute translations of this |
---|
91 | manual into another language, under the above conditions for modified |
---|
92 | versions. |
---|
93 | |
---|
94 | \newpage |
---|
95 | |
---|
96 | \tableofcontents |
---|
97 | |
---|
98 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
99 | |
---|
100 | \newpage |
---|
101 | |
---|
102 | \section{Introduction} |
---|
103 | |
---|
104 | {\it GNU MathProg} is a modeling language intended for describing |
---|
105 | linear mathematical programming models.\footnote{The GNU MathProg |
---|
106 | language is a subset of the AMPL language. Its GLPK implementation is |
---|
107 | mainly based on the paper: {\it Robert Fourer}, {\it David M. Gay}, and |
---|
108 | {\it Brian W. Kernighan}, ``A Modeling Language for Mathematical |
---|
109 | Programming.'' {\it Management Science} 36 (1990)\linebreak pp. 519-54.} |
---|
110 | |
---|
111 | Model descriptions written in the GNU MathProg language consist of |
---|
112 | a set of statements and data blocks constructed by the user from the |
---|
113 | language elements described in this document. |
---|
114 | |
---|
115 | In a process called {\it translation}, a program called the {\it model |
---|
116 | translator} analyzes the model description and translates it into |
---|
117 | internal data structures, which may be then used either for generating |
---|
118 | mathematical programming problem instance or directly by a program |
---|
119 | called the {\it solver} to obtain numeric solution of the problem. |
---|
120 | |
---|
121 | \subsection{Linear programming problem} |
---|
122 | \label{problem} |
---|
123 | |
---|
124 | In MathProg the linear programming (LP) problem is stated as follows: |
---|
125 | |
---|
126 | \medskip |
---|
127 | |
---|
128 | \noindent\hspace{.7in}minimize (or maximize) |
---|
129 | $$z=c_1x_1+c_2x_2+\dots+c_nx_n+c_0\eqno(1.1)$$ |
---|
130 | \noindent\hspace{.7in}subject to linear constraints |
---|
131 | $$ |
---|
132 | \begin{array}{l@{\ }c@{\ }r@{\ }c@{\ }r@{\ }c@{\ }r@{\ }c@{\ }l} |
---|
133 | L_1&\leq&a_{11}x_1&+&a_{12}x_2&+\dots+&a_{1n}x_n&\leq&U_1\\ |
---|
134 | L_2&\leq&a_{21}x_1&+&a_{22}x_2&+\dots+&a_{2n}x_n&\leq&U_2\\ |
---|
135 | \multicolumn{9}{c}{.\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .}\\ |
---|
136 | L_m&\leq&a_{m1}x_1&+&a_{m2}x_2&+\dots+&a_{mn}x_n&\leq&U_m\\ |
---|
137 | \end{array}\eqno(1.2) |
---|
138 | $$ |
---|
139 | \noindent\hspace{.7in}and bounds of variables |
---|
140 | $$ |
---|
141 | \begin{array}{l@{\ }c@{\ }c@{\ }c@{\ }l} |
---|
142 | l_1&\leq&x_1&\leq&u_1\\ |
---|
143 | l_2&\leq&x_2&\leq&u_2\\ |
---|
144 | \multicolumn{5}{c}{.\ \ .\ \ .\ \ .\ \ .}\\ |
---|
145 | l_n&\leq&x_n&\leq&u_n\\ |
---|
146 | \end{array}\eqno(1.3) |
---|
147 | $$ |
---|
148 | where $x_1$, $x_2$, \dots, $x_n$ are variables; $z$ is the objective |
---|
149 | function; $c_1$, $c_2$, \dots, $c_n$ are objective coefficients; $c_0$ |
---|
150 | is the constant term (``shift'') of the objective function; $a_{11}$, |
---|
151 | $a_{12}$, \dots, $a_{mn}$ are constraint coefficients; $L_1$, $L_2$, |
---|
152 | \dots, $L_m$ are lower constraint bounds; $U_1$, $U_2$, \dots, $U_m$ |
---|
153 | are upper constraint bounds; $l_1$, $l_2$, \dots, $l_n$ are lower |
---|
154 | bounds of variables; $u_1$, $u_2$, \dots, $u_n$ are upper bounds of |
---|
155 | variables. |
---|
156 | |
---|
157 | Bounds of variables and constraint bounds can be finite as well as |
---|
158 | infinite. Besides, lower bounds can be equal to corresponding upper |
---|
159 | bounds. Thus, the following types of variables and constraints are |
---|
160 | allowed: |
---|
161 | |
---|
162 | \newpage |
---|
163 | |
---|
164 | \begin{tabular}{@{}r@{\ }c@{\ }c@{\ }c@{\ }l@{\hspace*{38pt}}l} |
---|
165 | $-\infty$&$<$&$x$&$<$&$+\infty$&Free (unbounded) variable\\ |
---|
166 | $l$&$\leq$&$x$&$<$&$+\infty$&Variable with lower bound\\ |
---|
167 | $-\infty$&$<$&$x$&$\leq$&$u$&Variable with upper bound\\ |
---|
168 | $l$&$\leq$&$x$&$\leq$&$u$&Double-bounded variable\\ |
---|
169 | $l$&$=$&$x$&=&$u$&Fixed variable\\ |
---|
170 | \end{tabular} |
---|
171 | |
---|
172 | \bigskip |
---|
173 | |
---|
174 | \begin{tabular}{@{}r@{\ }c@{\ }c@{\ }c@{\ }ll} |
---|
175 | $-\infty$&$<$&$\sum a_jx_j$&$<$&$+\infty$&Free (unbounded) linear |
---|
176 | form\\ |
---|
177 | $L$&$\leq$&$\sum a_jx_j$&$<$&$+\infty$&Inequality constraint ``greater |
---|
178 | than or equal to''\\ |
---|
179 | $-\infty$&$<$&$\sum a_jx_j$&$\leq$&$U$&Inequality constraint ``less |
---|
180 | than or equal to''\\ |
---|
181 | $L$&$\leq$&$\sum a_jx_j$&$\leq$&$U$&Double-bounded inequality |
---|
182 | constraint\\ |
---|
183 | $L$&$=$&$\sum a_jx_j$&=&$U$&Equality constraint\\ |
---|
184 | \end{tabular} |
---|
185 | |
---|
186 | \bigskip |
---|
187 | |
---|
188 | In addition to pure LP problems MathProg also allows mixed integer |
---|
189 | linear programming (MIP) problems, where some or all variables are |
---|
190 | restricted to be integer or binary. |
---|
191 | |
---|
192 | \subsection{Model objects} |
---|
193 | |
---|
194 | In MathProg the model is described in terms of sets, parameters, |
---|
195 | variables, constraints, and objectives, which are called {\it model |
---|
196 | objects}. |
---|
197 | |
---|
198 | The user introduces particular model objects using the language |
---|
199 | statements. Each model object is provided with a symbolic name that |
---|
200 | uniquely identifies the object and is intended for referencing purposes. |
---|
201 | |
---|
202 | Model objects, including sets, can be multidimensional arrays built |
---|
203 | over indexing sets. Formally, $n$-dimensional array $A$ is the mapping: |
---|
204 | $$A:\Delta\rightarrow\Xi,\eqno(1.4)$$ |
---|
205 | where $\Delta\subseteq S_1\times\dots\times S_n$ is a subset of the |
---|
206 | Cartesian product of indexing sets,\linebreak $\Xi$ is a set of array members. |
---|
207 | In MathProg the set $\Delta$ is called the {\it subscript domain}. Its |
---|
208 | members are $n$-tuples $(i_1,\dots,i_n)$, where $i_1\in S_1$, \dots, |
---|
209 | $i_n\in S_n$. |
---|
210 | |
---|
211 | If $n=0$, the Cartesian product above has exactly one member (namely, |
---|
212 | \linebreak 0-tuple), so it is convenient to think scalar objects as |
---|
213 | 0-dimensional arrays having one member. |
---|
214 | |
---|
215 | The type of array members is determined by the type of corresponding |
---|
216 | model object as follows: |
---|
217 | |
---|
218 | \medskip |
---|
219 | |
---|
220 | \noindent\hfil |
---|
221 | \begin{tabular}{@{}ll@{}} |
---|
222 | Model object&Array member\\ |
---|
223 | \hline |
---|
224 | Set&Elemental plain set\\ |
---|
225 | Parameter&Number or symbol\\ |
---|
226 | Variable&Elemental variable\\ |
---|
227 | Constraint&Elemental constraint\\ |
---|
228 | Objective&Elemental objective\\ |
---|
229 | \end{tabular} |
---|
230 | |
---|
231 | \medskip |
---|
232 | |
---|
233 | In order to refer to a particular object member the object should be |
---|
234 | provided with {\it subscripts}. For example, if $a$ is a 2-dimensional |
---|
235 | parameter defined over $I\times J$, a reference to its particular |
---|
236 | member can be written as $a[i,j]$, where $i\in I$ and $j\in J$. It is |
---|
237 | understood that scalar objects being 0-dimensional need no subscripts. |
---|
238 | |
---|
239 | \subsection{Structure of model description} |
---|
240 | |
---|
241 | It is sometimes desirable to write a model which, at various points, |
---|
242 | may require different data for each problem instance to be solved using |
---|
243 | that model. For this reason in MathProg the model description consists |
---|
244 | of two parts: the {\it model section} and the {\it data section}. |
---|
245 | |
---|
246 | The model section is a main part of the model description that contains |
---|
247 | declarations of model objects and is common for all problems based on |
---|
248 | the corresponding model. |
---|
249 | |
---|
250 | The data section is an optional part of the model description that |
---|
251 | contains data specific for a particular problem instance. |
---|
252 | |
---|
253 | Depending on what is more convenient the model and data sections can be |
---|
254 | placed either in one file or in two separate files. The latter feature |
---|
255 | allows having arbitrary number of different data sections to be used |
---|
256 | with the same model section. |
---|
257 | |
---|
258 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
259 | |
---|
260 | \newpage |
---|
261 | |
---|
262 | \section{Coding model description} |
---|
263 | \label{coding} |
---|
264 | |
---|
265 | The model description is coded in plain text format using ASCII |
---|
266 | character set. Characters valid in the model description are the |
---|
267 | following: |
---|
268 | |
---|
269 | \begin{itemize} |
---|
270 | \item alphabetic characters:\\ |
---|
271 | \verb|A B C D E F G H I J K L M N O P Q R S T U V W X Y Z|\\ |
---|
272 | \verb|a b c d e f g h i j k l m n o p q r s t u v w x y z _| |
---|
273 | \item numeric characters:\\ |
---|
274 | \verb|0 1 2 3 4 5 6 7 8 9| |
---|
275 | \item special characters:\\ |
---|
276 | \verb?! " # & ' ( ) * + , - . / : ; < = > [ ] ^ { | }? |
---|
277 | \item white-space characters:\\ |
---|
278 | \verb|SP HT CR NL VT FF| |
---|
279 | \end{itemize} |
---|
280 | |
---|
281 | Within string literals and comments any ASCII characters (except |
---|
282 | control characters) are valid. |
---|
283 | |
---|
284 | White-space characters are non-significant. They can be used freely |
---|
285 | between lexical units to improve readability of the model description. |
---|
286 | They are also used to separate lexical units from each other if there |
---|
287 | is no other way to do that. |
---|
288 | |
---|
289 | Syntactically model description is a sequence of lexical units in the |
---|
290 | following categories: |
---|
291 | |
---|
292 | \begin{itemize} |
---|
293 | \item symbolic names; |
---|
294 | \item numeric literals; |
---|
295 | \item string literals; |
---|
296 | \item keywords; |
---|
297 | \item delimiters; |
---|
298 | \item comments. |
---|
299 | \end{itemize} |
---|
300 | |
---|
301 | The lexical units of the language are discussed below. |
---|
302 | |
---|
303 | \subsection{Symbolic names} |
---|
304 | |
---|
305 | A {\it symbolic name} consists of alphabetic and numeric characters, |
---|
306 | the first of which must be alphabetic. All symbolic names are distinct |
---|
307 | (case sensitive). |
---|
308 | |
---|
309 | \medskip |
---|
310 | |
---|
311 | \noindent{\bf Examples} |
---|
312 | |
---|
313 | \medskip |
---|
314 | |
---|
315 | \noindent\verb|alpha123| |
---|
316 | |
---|
317 | \noindent\verb|This_is_a_name| |
---|
318 | |
---|
319 | \noindent\verb|_P123_abc_321| |
---|
320 | |
---|
321 | \newpage |
---|
322 | |
---|
323 | Symbolic names are used to identify model objects (sets, parameters, |
---|
324 | variables, constraints, objectives) and dummy indices. |
---|
325 | |
---|
326 | All symbolic names (except names of dummy indices) must be unique, i.e. |
---|
327 | the model description must have no objects with identical names. |
---|
328 | Symbolic names of dummy indices must be unique within the scope, where |
---|
329 | they are valid. |
---|
330 | |
---|
331 | \subsection{Numeric literals} |
---|
332 | |
---|
333 | A {\it numeric literal} has the form {\it xx}{\tt E}{\it syy}, where |
---|
334 | {\it xx} is a number with optional decimal point, {\it s} is the sign |
---|
335 | {\tt+} or {\tt-}, {\it yy} is a decimal exponent. The letter {\tt E} is |
---|
336 | case insensitive and can be coded as {\tt e}. |
---|
337 | |
---|
338 | \medskip |
---|
339 | |
---|
340 | \noindent{\bf Examples} |
---|
341 | |
---|
342 | \medskip |
---|
343 | |
---|
344 | \noindent\verb|123| |
---|
345 | |
---|
346 | \noindent\verb|3.14159| |
---|
347 | |
---|
348 | \noindent\verb|56.E+5| |
---|
349 | |
---|
350 | \noindent\verb|.78| |
---|
351 | |
---|
352 | \noindent\verb|123.456e-7| |
---|
353 | |
---|
354 | \medskip |
---|
355 | |
---|
356 | Numeric literals are used to represent numeric quantities. They have |
---|
357 | obvious fixed meaning. |
---|
358 | |
---|
359 | \subsection{String literals} |
---|
360 | |
---|
361 | A {\it string literal} is a sequence of arbitrary characters enclosed |
---|
362 | either in single quotes or in double quotes. Both these forms are |
---|
363 | equivalent. |
---|
364 | |
---|
365 | If the single quote is part of a string literal enclosed in single |
---|
366 | quotes, it must be coded twice. Analogously, if the double quote is |
---|
367 | part of a string literal enclosed in double quotes, it must be coded |
---|
368 | twice. |
---|
369 | |
---|
370 | \medskip |
---|
371 | |
---|
372 | \noindent{\bf Examples} |
---|
373 | |
---|
374 | \medskip |
---|
375 | |
---|
376 | \noindent\verb|'This is a string'| |
---|
377 | |
---|
378 | \noindent\verb|"This is another string"| |
---|
379 | |
---|
380 | \noindent\verb|'1 + 2 = 3'| |
---|
381 | |
---|
382 | \noindent\verb|'That''s all'| |
---|
383 | |
---|
384 | \noindent\verb|"She said: ""No"""| |
---|
385 | |
---|
386 | \medskip |
---|
387 | |
---|
388 | String literals are used to represent symbolic quantities. |
---|
389 | |
---|
390 | \subsection{Keywords} |
---|
391 | |
---|
392 | A {\it keyword} is a sequence of alphabetic characters and possibly |
---|
393 | some special characters. |
---|
394 | |
---|
395 | All keywords fall into two categories: {\it reserved keywords}, which |
---|
396 | cannot be used as symbolic names, and {\it non-reserved keywords}, |
---|
397 | which being recognized by context can be used as symbolic names. |
---|
398 | |
---|
399 | \newpage |
---|
400 | |
---|
401 | The reserved keywords are the following: |
---|
402 | |
---|
403 | \medskip |
---|
404 | |
---|
405 | \noindent\hfil |
---|
406 | \begin{tabular}{@{}p{.7in}p{.7in}p{.7in}p{.7in}@{}} |
---|
407 | {\tt and}&{\tt else}&{\tt mod}&{\tt union}\\ |
---|
408 | {\tt by}&{\tt if}&{\tt not}&{\tt within}\\ |
---|
409 | {\tt cross}&{\tt in}&{\tt or}\\ |
---|
410 | {\tt diff}&{\tt inter}&{\tt symdiff}\\ |
---|
411 | {\tt div}&{\tt less}&{\tt then}\\ |
---|
412 | \end{tabular} |
---|
413 | |
---|
414 | \medskip |
---|
415 | |
---|
416 | Non-reserved keywords are described in following sections. |
---|
417 | |
---|
418 | All the keywords have fixed meaning, which will be explained on |
---|
419 | discussion of corresponding syntactic constructions, where the keywords |
---|
420 | are used. |
---|
421 | |
---|
422 | \subsection{Delimiters} |
---|
423 | |
---|
424 | A {\it delimiter} is either a single special character or a sequence of |
---|
425 | two special characters as follows: |
---|
426 | |
---|
427 | \medskip |
---|
428 | |
---|
429 | \noindent\hfil |
---|
430 | \begin{tabular}{@{}p{.3in}p{.3in}p{.3in}p{.3in}p{.3in}p{.3in}@{}} |
---|
431 | {\tt+}&{\tt\textasciicircum}&{\tt==}&{\tt!}&{\tt:}&{\tt)}\\ |
---|
432 | {\tt-}&{\tt\&}&{\tt>=}&{\tt\&\&}&{\tt;}&{\tt[}\\ |
---|
433 | {\tt*}&{\tt<}&{\tt>}&{\tt||}&{\tt:=}&{\tt|}\\ |
---|
434 | {\tt/}&{\tt<=}&{\tt<>}&{\tt.}&{\tt..}&{\tt\{}\\ |
---|
435 | {\tt**}&{\tt=}&{\tt!=}&{\tt,}&{\tt(}&{\tt\}}\\ |
---|
436 | \end{tabular} |
---|
437 | |
---|
438 | \medskip |
---|
439 | |
---|
440 | If the delimiter consists of two characters, there must be no spaces |
---|
441 | between the characters. |
---|
442 | |
---|
443 | All the delimiters have fixed meaning, which will be explained on |
---|
444 | discussion corresponding syntactic constructions, where the delimiters |
---|
445 | are used. |
---|
446 | |
---|
447 | \subsection{Comments} |
---|
448 | |
---|
449 | For documenting purposes the model description can be provided with |
---|
450 | {\it comments}, which may have two different forms. The first form is |
---|
451 | a {\it single-line comment}, which begins with the character {\tt\#} |
---|
452 | and extends until end of line. The second form is a {\it comment |
---|
453 | sequence}, which is a sequence of any characters enclosed within |
---|
454 | {\tt/*} and {\tt*/}. |
---|
455 | |
---|
456 | \medskip |
---|
457 | |
---|
458 | \noindent{\bf Examples} |
---|
459 | |
---|
460 | \medskip |
---|
461 | |
---|
462 | \noindent\verb|param n := 10; # This is a comment| |
---|
463 | |
---|
464 | \noindent\verb|/* This is another comment */| |
---|
465 | |
---|
466 | \medskip |
---|
467 | |
---|
468 | Comments are ignored by the model translator and can appear anywhere in |
---|
469 | the model description, where white-space characters are allowed. |
---|
470 | |
---|
471 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
472 | |
---|
473 | \newpage |
---|
474 | |
---|
475 | \section{Expressions} |
---|
476 | |
---|
477 | An {\it expression} is a rule for computing a value. In model |
---|
478 | description expressions are used as constituents of certain statements. |
---|
479 | |
---|
480 | In general case expressions consist of operands and operators. |
---|
481 | |
---|
482 | Depending on the type of the resultant value all expressions fall into |
---|
483 | the following categories: |
---|
484 | |
---|
485 | \begin{itemize} |
---|
486 | \item numeric expressions; |
---|
487 | \item symbolic expressions; |
---|
488 | \item indexing expressions; |
---|
489 | \item set expressions; |
---|
490 | \item logical expressions; |
---|
491 | \item linear expressions. |
---|
492 | \end{itemize} |
---|
493 | |
---|
494 | \subsection{Numeric expressions} |
---|
495 | |
---|
496 | A {\it numeric expression} is a rule for computing a single numeric |
---|
497 | value represented as a floating-point number. |
---|
498 | |
---|
499 | The primary numeric expression may be a numeric literal, dummy index, |
---|
500 | unsubscripted parameter, subscripted parameter, built-in function |
---|
501 | reference, iterated numeric expression, conditional numeric expression, |
---|
502 | or another numeric expression enclosed in parentheses. |
---|
503 | |
---|
504 | \medskip |
---|
505 | |
---|
506 | \noindent{\bf Examples} |
---|
507 | |
---|
508 | \medskip |
---|
509 | |
---|
510 | \noindent |
---|
511 | \begin{tabular}{@{}ll@{}} |
---|
512 | \verb|1.23|&(numeric literal)\\ |
---|
513 | \verb|j|&(dummy index)\\ |
---|
514 | \verb|time|&(unsubscripted parameter)\\ |
---|
515 | \verb|a['May 2003',j+1]|&(subscripted parameter)\\ |
---|
516 | \verb|abs(b[i,j])|&(function reference)\\ |
---|
517 | \verb|sum{i in S diff T} alpha[i] * b[i,j]|&(iterated expression)\\ |
---|
518 | \verb|if i in I then 2 * p else q[i+1]|&(conditional expression)\\ |
---|
519 | \verb|(b[i,j] + .5 * c)|&(parenthesized expression)\\ |
---|
520 | \end{tabular} |
---|
521 | |
---|
522 | \medskip |
---|
523 | |
---|
524 | More general numeric expressions containing two or more primary numeric |
---|
525 | expressions may be constructed by using certain arithmetic operators. |
---|
526 | |
---|
527 | \medskip |
---|
528 | |
---|
529 | \noindent{\bf Examples} |
---|
530 | |
---|
531 | \medskip |
---|
532 | |
---|
533 | \noindent\verb|j+1| |
---|
534 | |
---|
535 | \noindent\verb|2 * a[i-1,j+1] - b[i,j]| |
---|
536 | |
---|
537 | \noindent\verb|sum{j in J} a[i,j] * x[j] + sum{k in K} b[i,k] * x[k]| |
---|
538 | |
---|
539 | \noindent\verb|(if i in I then 2 * p else q[i+1]) / (a[i,j] + 1.5)| |
---|
540 | |
---|
541 | \subsubsection{Numeric literals} |
---|
542 | |
---|
543 | If the primary numeric expression is a numeric literal, the resultant |
---|
544 | value is obvious. |
---|
545 | |
---|
546 | \subsubsection{Dummy indices} |
---|
547 | |
---|
548 | If the primary numeric expression is a dummy index, the resultant value |
---|
549 | is current value assigned to that dummy index. |
---|
550 | |
---|
551 | \subsubsection{Unsubscripted parameters} |
---|
552 | |
---|
553 | If the primary numeric expression is an unsubscripted parameter (which |
---|
554 | must be 0-dimensional), the resultant value is the value of that |
---|
555 | parameter. |
---|
556 | |
---|
557 | \subsubsection{Subscripted parameters} |
---|
558 | |
---|
559 | The primary numeric expression, which refers to a subscripted parameter, |
---|
560 | has the following syntactic form: |
---|
561 | |
---|
562 | \medskip |
---|
563 | |
---|
564 | \noindent\hfil |
---|
565 | {\it name}{\tt[}$i_1${\tt,} $i_2${\tt,} \dots{\tt,} $i_n${\tt]} |
---|
566 | |
---|
567 | \medskip |
---|
568 | |
---|
569 | \noindent where {\it name} is the symbolic name of the parameter, |
---|
570 | $i_1$, $i_2$, \dots, $i_n$ are subscripts. |
---|
571 | |
---|
572 | Each subscript must be a numeric or symbolic expression. The number of |
---|
573 | subscripts in the subscript list must be the same as the dimension of |
---|
574 | the parameter with which the subscript list is associated. |
---|
575 | |
---|
576 | Actual values of subscript expressions are used to identify |
---|
577 | a particular member of the parameter that determines the resultant |
---|
578 | value of the primary expression. |
---|
579 | |
---|
580 | \subsubsection{Function references} |
---|
581 | |
---|
582 | In MathProg there exist the following built-in functions which may be |
---|
583 | used in numeric expressions: |
---|
584 | |
---|
585 | \medskip |
---|
586 | |
---|
587 | \begin{tabular}{@{}p{96pt}p{222pt}@{}} |
---|
588 | {\tt abs(}$x${\tt)}&$|x|$, absolute value of $x$\\ |
---|
589 | {\tt atan(}$x${\tt)}&$\arctan x$, principal value of the arc tangent of |
---|
590 | $x$ (in radians)\\ |
---|
591 | {\tt atan(}$y${\tt,} $x${\tt)}&$\arctan y/x$, principal value of the |
---|
592 | arc tangent of $y/x$ (in radians). In this case the signs of both |
---|
593 | arguments $y$ and $x$ are used to determine the quadrant of the |
---|
594 | resultant value\\ |
---|
595 | {\tt card(}$X${\tt)}&$|X|$, cardinality (the number of elements) of |
---|
596 | set $X$\\ |
---|
597 | {\tt ceil(}$x${\tt)}&$\lceil x\rceil$, smallest integer not less than |
---|
598 | $x$ (``ceiling of $x$'')\\ |
---|
599 | {\tt cos(}$x${\tt)}&$\cos x$, cosine of $x$ (in radians)\\ |
---|
600 | {\tt exp(}$x${\tt)}&$e^x$, base-$e$ exponential of $x$\\ |
---|
601 | {\tt floor(}$x${\tt)}&$\lfloor x\rfloor$, largest integer not greater |
---|
602 | than $x$ (``floor of $x$'')\\ |
---|
603 | \end{tabular} |
---|
604 | |
---|
605 | \begin{tabular}{@{}p{96pt}p{222pt}@{}} |
---|
606 | {\tt gmtime()}&the number of seconds elapsed since 00:00:00~Jan~1, 1970, |
---|
607 | Coordinated Universal Time (for details see Subsection \ref{gmtime}, |
---|
608 | page \pageref{gmtime})\\ |
---|
609 | {\tt length(}$s${\tt)}&$|s|$, length of character string $s$\\ |
---|
610 | {\tt log(}$x${\tt)}&$\log x$, natural logarithm of $x$\\ |
---|
611 | {\tt log10(}$x${\tt)}&$\log_{10}x$, common (decimal) logarithm of $x$\\ |
---|
612 | {\tt max(}$x_1${\tt,} $x_2${\tt,} \dots{\tt,} $x_n${\tt)}&the largest |
---|
613 | of values $x_1$, $x_2$, \dots, $x_n$\\ |
---|
614 | {\tt min(}$x_1${\tt,} $x_2${\tt,} \dots{\tt,} $x_n${\tt)}&the smallest |
---|
615 | of values $x_1$, $x_2$, \dots, $x_n$\\ |
---|
616 | {\tt round(}$x${\tt)}&rounding $x$ to nearest integer\\ |
---|
617 | {\tt round(}$x${\tt,} $n${\tt)}&rounding $x$ to $n$ fractional decimal |
---|
618 | digits\\ |
---|
619 | {\tt sin(}$x${\tt)}&$\sin x$, sine of $x$ (in radians)\\ |
---|
620 | {\tt sqrt(}$x${\tt)}&$\sqrt{x}$, non-negative square root of $x$\\ |
---|
621 | {\tt str2time(}$s${\tt,} $f${\tt)}&converting character string $s$ to |
---|
622 | calendar time (for details see Subsection \ref{str2time}, page |
---|
623 | \pageref{str2time})\\ |
---|
624 | {\tt trunc(}$x${\tt)}&truncating $x$ to nearest integer\\ |
---|
625 | {\tt trunc(}$x${\tt,} $n${\tt)}&truncating $x$ to $n$ fractional |
---|
626 | decimal digits\\ |
---|
627 | {\tt Irand224()}&generating pseudo-random integer uniformly distributed |
---|
628 | in $[0,2^{24})$\\ |
---|
629 | {\tt Uniform01()}&generating pseudo-random number uniformly distributed |
---|
630 | in $[0,1)$\\ |
---|
631 | {\tt Uniform(}$a${\tt,} $b${\tt)}&generating pseudo-random number |
---|
632 | uniformly distributed in $[a,b)$\\ |
---|
633 | {\tt Normal01()}&generating Gaussian pseudo-random variate with |
---|
634 | $\mu=0$ and $\sigma=1$\\ |
---|
635 | {\tt Normal(}$\mu${\tt,} $\sigma${\tt)}&generating Gaussian |
---|
636 | pseudo-random variate with given $\mu$ and $\sigma$\\ |
---|
637 | \end{tabular} |
---|
638 | |
---|
639 | \medskip |
---|
640 | |
---|
641 | Arguments of all built-in functions, except {\tt card}, {\tt length}, |
---|
642 | and {\tt str2time}, must be numeric expressions. The argument of |
---|
643 | {\tt card} must be a set expression. The argument of {\tt length} and |
---|
644 | both arguments of {\tt str2time} must be symbolic expressions. |
---|
645 | |
---|
646 | The resultant value of the numeric expression, which is a function |
---|
647 | reference, is the result of applying the function to its argument(s). |
---|
648 | |
---|
649 | Note that each pseudo-random generator function has a latent argument |
---|
650 | (i.e. some internal state), which is changed whenever the function has |
---|
651 | been applied. Thus, if the function is applied repeatedly even to |
---|
652 | identical arguments, due to the side effect different resultant values |
---|
653 | are always produced. |
---|
654 | |
---|
655 | \subsubsection{Iterated expressions} |
---|
656 | \label{itexpr} |
---|
657 | |
---|
658 | An {\it iterated numeric expression} is a primary numeric expression, |
---|
659 | which has the following syntactic form: |
---|
660 | |
---|
661 | \medskip |
---|
662 | |
---|
663 | \noindent\hfil |
---|
664 | {\it iterated-operator indexing-expression integrand} |
---|
665 | |
---|
666 | \medskip |
---|
667 | |
---|
668 | \noindent where {\it iterated-operator} is the symbolic name of the |
---|
669 | iterated operator to be performed (see below), {\it indexing-expression} |
---|
670 | is an indexing expression which introduces dummy indices and controls |
---|
671 | iterating, {\it integrand} is a numeric expression that participates in |
---|
672 | the operation. |
---|
673 | |
---|
674 | In MathProg there exist four iterated operators, which may be used in |
---|
675 | numeric expressions: |
---|
676 | |
---|
677 | \medskip |
---|
678 | |
---|
679 | \noindent\hfil |
---|
680 | \begin{tabular}{@{}lll@{}} |
---|
681 | {\tt sum}&summation&$\displaystyle\sum_{(i_1,\dots,i_n)\in\Delta} |
---|
682 | f(i_1,\dots,i_n)$\\ |
---|
683 | {\tt prod}&production&$\displaystyle\prod_{(i_1,\dots,i_n)\in\Delta} |
---|
684 | f(i_1,\dots,i_n)$\\ |
---|
685 | {\tt min}&minimum&$\displaystyle\min_{(i_1,\dots,i_n)\in\Delta} |
---|
686 | f(i_1,\dots,i_n)$\\ |
---|
687 | {\tt max}&maximum&$\displaystyle\max_{(i_1,\dots,i_n)\in\Delta} |
---|
688 | f(i_1,\dots,i_n)$\\ |
---|
689 | \end{tabular} |
---|
690 | |
---|
691 | \medskip |
---|
692 | |
---|
693 | \noindent where $i_1$, \dots, $i_n$ are dummy indices introduced in |
---|
694 | the indexing expression, $\Delta$ is the domain, a set of $n$-tuples |
---|
695 | specified by the indexing expression which defines particular values |
---|
696 | assigned to the dummy indices on performing the iterated operation, |
---|
697 | $f(i_1,\dots,i_n)$ is the integrand, a numeric expression whose |
---|
698 | resultant value depends on the dummy indices. |
---|
699 | |
---|
700 | The resultant value of an iterated numeric expression is the result of |
---|
701 | applying of the iterated operator to its integrand over all $n$-tuples |
---|
702 | contained in the domain. |
---|
703 | |
---|
704 | \subsubsection{Conditional expressions} |
---|
705 | \label{ifthen} |
---|
706 | |
---|
707 | A {\it conditional numeric expression} is a primary numeric expression, |
---|
708 | which has one of the following two syntactic forms: |
---|
709 | |
---|
710 | \medskip |
---|
711 | |
---|
712 | \noindent\hfil |
---|
713 | {\tt if} $b$ {\tt then} $x$ {\tt else} $y$ |
---|
714 | |
---|
715 | \medskip |
---|
716 | |
---|
717 | \noindent\hspace{126.5pt} |
---|
718 | {\tt if} $b$ {\tt then} $x$ |
---|
719 | |
---|
720 | \medskip |
---|
721 | |
---|
722 | \noindent where $b$ is an logical expression, $x$ and $y$ are numeric |
---|
723 | expressions. |
---|
724 | |
---|
725 | The resultant value of the conditional expression depends on the value |
---|
726 | of the logical expression that follows the keyword {\tt if}. If it |
---|
727 | takes on the value {\it true}, the value of the conditional expression |
---|
728 | is the value of the expression that follows the keyword {\tt then}. |
---|
729 | Otherwise, if the logical expression takes on the value {\it false}, |
---|
730 | the value of the conditional expression is the value of the expression |
---|
731 | that follows the keyword {\it else}. If the second, reduced form of the |
---|
732 | conditional expression is used and the logical expression takes on the |
---|
733 | value {\it false}, the resultant value of the conditional expression is |
---|
734 | zero. |
---|
735 | |
---|
736 | \subsubsection{Parenthesized expressions} |
---|
737 | |
---|
738 | Any numeric expression may be enclosed in parentheses that |
---|
739 | syntactically makes it a primary numeric expression. |
---|
740 | |
---|
741 | Parentheses may be used in numeric expressions, as in algebra, to |
---|
742 | specify the desired order in which operations are to be performed. |
---|
743 | Where parentheses are used, the expression within the parentheses is |
---|
744 | evaluated before the resultant value is used. |
---|
745 | |
---|
746 | The resultant value of the parenthesized expression is the same as the |
---|
747 | value of the expression enclosed within parentheses. |
---|
748 | |
---|
749 | \subsubsection{Arithmetic operators} |
---|
750 | |
---|
751 | In MathProg there exist the following arithmetic operators, which may |
---|
752 | be used in numeric expressions: |
---|
753 | |
---|
754 | \medskip |
---|
755 | |
---|
756 | \begin{tabular}{@{}p{96pt}p{222pt}@{}} |
---|
757 | {\tt +} $x$&unary plus\\ |
---|
758 | {\tt -} $x$&unary minus\\ |
---|
759 | $x$ {\tt +} $y$&addition\\ |
---|
760 | $x$ {\tt -} $y$&subtraction\\ |
---|
761 | $x$ {\tt less} $y$&positive difference (if $x<y$ then 0 else $x-y$)\\ |
---|
762 | $x$ {\tt *} $y$&multiplication\\ |
---|
763 | $x$ {\tt /} $y$&division\\ |
---|
764 | $x$ {\tt div} $y$"ient of exact division\\ |
---|
765 | $x$ {\tt mod} $y$&remainder of exact division\\ |
---|
766 | $x$ {\tt **} $y$, $x$ {\tt\textasciicircum} $y$&exponentiation (raising |
---|
767 | to power)\\ |
---|
768 | \end{tabular} |
---|
769 | |
---|
770 | \medskip |
---|
771 | |
---|
772 | \noindent where $x$ and $y$ are numeric expressions. |
---|
773 | |
---|
774 | If the expression includes more than one arithmetic operator, all |
---|
775 | operators are performed from left to right according to the hierarchy |
---|
776 | of operations (see below) with the only exception that the |
---|
777 | exponentiaion operators are performed from right to left. |
---|
778 | |
---|
779 | The resultant value of the expression, which contains arithmetic |
---|
780 | operators, is the result of applying the operators to their operands. |
---|
781 | |
---|
782 | \subsubsection{Hierarchy of operations} |
---|
783 | \label{hierarchy} |
---|
784 | |
---|
785 | The following list shows the hierarchy of operations in numeric |
---|
786 | expressions: |
---|
787 | |
---|
788 | \medskip |
---|
789 | |
---|
790 | \noindent\hfil |
---|
791 | \begin{tabular}{@{}ll@{}} |
---|
792 | Operation&Hierarchy\\ |
---|
793 | \hline |
---|
794 | Evaluation of functions ({\tt abs}, {\tt ceil}, etc.)&1st\\ |
---|
795 | Exponentiation ({\tt**}, {\tt\textasciicircum})&2nd\\ |
---|
796 | Unary plus and minus ({\tt+}, {\tt-})&3rd\\ |
---|
797 | Multiplication and division ({\tt*}, {\tt/}, {\tt div}, {\tt mod})&4th\\ |
---|
798 | Iterated operations ({\tt sum}, {\tt prod}, {\tt min}, {\tt max})&5th\\ |
---|
799 | Addition and subtraction ({\tt+}, {\tt-}, {\tt less})&6th\\ |
---|
800 | Conditional evaluation ({\tt if} \dots {\tt then} \dots {\tt else})& |
---|
801 | 7th\\ |
---|
802 | \end{tabular} |
---|
803 | |
---|
804 | \medskip |
---|
805 | |
---|
806 | This hierarchy is used to determine which of two consecutive operations |
---|
807 | is performed first. If the first operator is higher than or equal to |
---|
808 | the second, the first operation is performed. If it is not, the second |
---|
809 | operator is compared to the third, etc. When the end of the expression |
---|
810 | is reached, all of the remaining operations are performed in the |
---|
811 | reverse order. |
---|
812 | |
---|
813 | \newpage |
---|
814 | |
---|
815 | \subsection{Symbolic expressions} |
---|
816 | |
---|
817 | A {\it symbolic expression} is a rule for computing a single symbolic |
---|
818 | value represented as a character string. |
---|
819 | |
---|
820 | The primary symbolic expression may be a string literal, dummy index, |
---|
821 | unsubscripted parameter, subscripted parameter, built-in function |
---|
822 | reference, conditional symbolic expression, or another symbolic |
---|
823 | expression enclosed in parentheses. |
---|
824 | |
---|
825 | It is also allowed to use a numeric expression as the primary symbolic |
---|
826 | expression, in which case the resultant value of the numeric expression |
---|
827 | is automatically converted to the symbolic type. |
---|
828 | |
---|
829 | \medskip |
---|
830 | |
---|
831 | \noindent{\bf Examples} |
---|
832 | |
---|
833 | \medskip |
---|
834 | |
---|
835 | \noindent |
---|
836 | \begin{tabular}{@{}ll@{}} |
---|
837 | \verb|'May 2003'|&(string literal)\\ |
---|
838 | \verb|j|&(dummy index)\\ |
---|
839 | \verb|p|&(unsubscripted parameter)\\ |
---|
840 | \verb|s['abc',j+1]|&(subscripted parameter)\\ |
---|
841 | \verb|substr(name[i],k+1,3)|&(function reference)\\ |
---|
842 | \verb|if i in I then s[i,j] else t[i+1]|&(conditional expression)\\ |
---|
843 | \verb|((10 * b[i,j]) & '.bis')|&(parenthesized expression)\\ |
---|
844 | \end{tabular} |
---|
845 | |
---|
846 | \medskip |
---|
847 | |
---|
848 | More general symbolic expressions containing two or more primary |
---|
849 | symbolic expressions may be constructed by using the concatenation |
---|
850 | operator. |
---|
851 | |
---|
852 | \medskip |
---|
853 | |
---|
854 | \noindent{\bf Examples} |
---|
855 | |
---|
856 | \medskip |
---|
857 | |
---|
858 | \noindent\verb|'abc[' & i & ',' & j & ']'| |
---|
859 | |
---|
860 | \noindent\verb|"from " & city[i] & " to " & city[j]| |
---|
861 | |
---|
862 | \medskip |
---|
863 | |
---|
864 | The principles of evaluation of symbolic expressions are completely |
---|
865 | analogous to the ones given for numeric expressions (see above). |
---|
866 | |
---|
867 | \subsubsection{Function references} |
---|
868 | |
---|
869 | In MathProg there exist the following built-in functions which may be |
---|
870 | used in symbolic expressions: |
---|
871 | |
---|
872 | \medskip |
---|
873 | |
---|
874 | \begin{tabular}{@{}p{96pt}p{222pt}@{}} |
---|
875 | {\tt substr(}$s${\tt,} $x${\tt)}&substring of $s$ starting from |
---|
876 | position $x$\\ |
---|
877 | {\tt substr(}$s${\tt,} $x${\tt,} $y${\tt)}&substring of $s$ starting |
---|
878 | from position $x$ and having length $y$\\ |
---|
879 | {\tt time2str(}$t${\tt,} $f${\tt)}&converting calendar time to |
---|
880 | character string (for details see Subsection \ref{time2str}, page |
---|
881 | \pageref{time2str})\\ |
---|
882 | \end{tabular} |
---|
883 | |
---|
884 | \medskip |
---|
885 | |
---|
886 | The first argument of {\tt substr} must be a symbolic expression while |
---|
887 | its second and optional third arguments must be numeric expressions. |
---|
888 | |
---|
889 | The first argument of {\tt time2str} must be a numeric expression, and |
---|
890 | its second argument must be a symbolic expression. |
---|
891 | |
---|
892 | The resultant value of the symbolic expression, which is a function |
---|
893 | reference, is the result of applying the function to its arguments. |
---|
894 | |
---|
895 | \subsubsection{Symbolic operators} |
---|
896 | |
---|
897 | Currently in MathProg there exists the only symbolic operator: |
---|
898 | |
---|
899 | \medskip |
---|
900 | |
---|
901 | \noindent\hfil |
---|
902 | {\tt s \& t} |
---|
903 | |
---|
904 | \medskip |
---|
905 | |
---|
906 | \noindent where $s$ and $t$ are symbolic expressions. This operator |
---|
907 | means concatenation of its two symbolic operands, which are character |
---|
908 | strings. |
---|
909 | |
---|
910 | \subsubsection{Hierarchy of operations} |
---|
911 | |
---|
912 | The following list shows the hierarchy of operations in symbolic |
---|
913 | expressions: |
---|
914 | |
---|
915 | \medskip |
---|
916 | |
---|
917 | \noindent\hfil |
---|
918 | \begin{tabular}{@{}ll@{}} |
---|
919 | Operation&Hierarchy\\ |
---|
920 | \hline |
---|
921 | Evaluation of numeric operations&1st-7th\\ |
---|
922 | Concatenation ({\tt\&})&8th\\ |
---|
923 | Conditional evaluation ({\tt if} \dots {\tt then} \dots {\tt else})& |
---|
924 | 7th\\ |
---|
925 | \end{tabular} |
---|
926 | |
---|
927 | \medskip |
---|
928 | |
---|
929 | This hierarchy has the same meaning as was explained above for numeric |
---|
930 | expressions (see Subsection \ref{hierarchy}, page \pageref{hierarchy}). |
---|
931 | |
---|
932 | \subsection{Indexing expressions and dummy indices} |
---|
933 | \label{indexing} |
---|
934 | |
---|
935 | An {\it indexing expression} is an auxiliary construction, which |
---|
936 | specifies a plain set of $n$-tuples and introduces dummy indices. It |
---|
937 | has two syntactic forms: |
---|
938 | |
---|
939 | \medskip |
---|
940 | |
---|
941 | \noindent\hspace{73.5pt} |
---|
942 | {\tt\{} {\it entry}$_1${\tt,} {\it entry}$_2${\tt,} \dots{\tt,} |
---|
943 | {\it entry}$_m$ {\tt\}} |
---|
944 | |
---|
945 | \medskip |
---|
946 | |
---|
947 | \noindent\hfil |
---|
948 | {\tt\{} {\it entry}$_1${\tt,} {\it entry}$_2${\tt,} \dots{\tt,} |
---|
949 | {\it entry}$_m$ {\tt:} {\it predicate} {\tt\}} |
---|
950 | |
---|
951 | \medskip |
---|
952 | |
---|
953 | \noindent where {\it entry}{$_1$}, {\it entry}{$_2$}, \dots, |
---|
954 | {\it entry}{$_m$} are indexing entries, {\it predicate} is a logical |
---|
955 | expression that specifies an optional predicate (logical condition). |
---|
956 | |
---|
957 | Each {\it indexing entry} in the indexing expression has one of the |
---|
958 | following three forms: |
---|
959 | |
---|
960 | \medskip |
---|
961 | |
---|
962 | \noindent\hspace{123pt} |
---|
963 | $i$ {\tt in} $S$ |
---|
964 | |
---|
965 | \medskip |
---|
966 | |
---|
967 | \noindent\hfil |
---|
968 | {\tt(}$i_1${\tt,} $i_2${\tt,} \dots{\tt,}$i_n${\tt)} {\tt in} $S$ |
---|
969 | |
---|
970 | \medskip |
---|
971 | |
---|
972 | \noindent\hspace{123pt} |
---|
973 | $S$ |
---|
974 | |
---|
975 | \medskip |
---|
976 | |
---|
977 | \noindent where $i_1$, $i_2$, \dots, $i_n$ are indices, $S$ is a set |
---|
978 | expression (discussed in the next section) that specifies the basic set. |
---|
979 | |
---|
980 | The number of indices in the indexing entry must be the same as the |
---|
981 | dimension of the basic set $S$, i.e. if $S$ consists of 1-tuples, the |
---|
982 | first form must be used, and if $S$ consists of $n$-tuples, where |
---|
983 | $n>1$, the second form must be used. |
---|
984 | |
---|
985 | If the first form of the indexing entry is used, the index $i$ can be |
---|
986 | a dummy index only (see below). If the second form is used, the indices |
---|
987 | $i_1$, $i_2$, \dots, $i_n$ can be either dummy indices or some numeric |
---|
988 | or symbolic expressions, where at least one index must be a dummy index. |
---|
989 | The third, reduced form of the indexing entry has the same effect as if |
---|
990 | there were $i$ (if $S$ is 1-dimensional) or $i_1$, $i_2$, \dots, $i_n$ |
---|
991 | (if $S$ is $n$-dimensional) all specified as dummy indices. |
---|
992 | |
---|
993 | A {\it dummy index} is an auxiliary model object, which acts like an |
---|
994 | individual variable. Values assigned to dummy indices are components of |
---|
995 | $n$-tuples from basic sets, i.e. some numeric and symbolic quantities. |
---|
996 | |
---|
997 | For referencing purposes dummy indices can be provided with symbolic |
---|
998 | names. However, unlike other model objects (sets, parameters, etc.) |
---|
999 | dummy indices need not be explicitly declared. Each {\it undeclared} |
---|
1000 | symbolic name being used in the indexing position of an indexing entry |
---|
1001 | is recognized as the symbolic name of corresponding dummy index. |
---|
1002 | |
---|
1003 | Symbolic names of dummy indices are valid only within the scope of the |
---|
1004 | indexing expression, where the dummy indices were introduced. Beyond |
---|
1005 | the scope the dummy indices are completely inaccessible, so the same |
---|
1006 | symbolic names may be used for other purposes, in particular, to |
---|
1007 | represent dummy indices in other indexing expressions. |
---|
1008 | |
---|
1009 | The scope of indexing expression, where implicit declarations of dummy |
---|
1010 | indices are valid, depends on the context, in which the indexing |
---|
1011 | expression is used: |
---|
1012 | |
---|
1013 | \begin{enumerate} |
---|
1014 | \item If the indexing expression is used in iterated operator, its |
---|
1015 | scope extends until the end of the integrand. |
---|
1016 | \item If the indexing expression is used as a primary set expression, |
---|
1017 | its scope extends until the end of that indexing expression. |
---|
1018 | \item If the indexing expression is used to define the subscript domain |
---|
1019 | in declarations of some model objects, its scope extends until the end |
---|
1020 | of the corresponding statement. |
---|
1021 | \end{enumerate} |
---|
1022 | |
---|
1023 | The indexing mechanism implemented by means of indexing expressions is |
---|
1024 | best explained by some examples discussed below. |
---|
1025 | |
---|
1026 | Let there be given three sets: |
---|
1027 | |
---|
1028 | \medskip |
---|
1029 | |
---|
1030 | \noindent\hspace{33.5pt} |
---|
1031 | $A=\{4,7,9\}$, |
---|
1032 | |
---|
1033 | \medskip |
---|
1034 | |
---|
1035 | \noindent\hfil |
---|
1036 | $B=\{(1,Jan),(1,Feb),(2,Mar),(2,Apr),(3,May),(3,Jun)\}$, |
---|
1037 | |
---|
1038 | \medskip |
---|
1039 | |
---|
1040 | \noindent\hspace{33.5pt} |
---|
1041 | $C=\{a,b,c\}$, |
---|
1042 | |
---|
1043 | \medskip |
---|
1044 | |
---|
1045 | \noindent where $A$ and $C$ consist of 1-tuples (singlets), $B$ |
---|
1046 | consists of 2-tuples (doublets). Consider the following indexing |
---|
1047 | expression: |
---|
1048 | |
---|
1049 | \medskip |
---|
1050 | |
---|
1051 | \noindent\hfil |
---|
1052 | {\tt\{i in A, (j,k) in B, l in C\}} |
---|
1053 | |
---|
1054 | \medskip |
---|
1055 | |
---|
1056 | \noindent where {\tt i}, {\tt j}, {\tt k}, and {\tt l} are dummy |
---|
1057 | indices. |
---|
1058 | |
---|
1059 | Although MathProg is not a procedural language, for any indexing |
---|
1060 | expression an equivalent algorithmic description can be given. In |
---|
1061 | particular, the algorithmic description of the indexing expression |
---|
1062 | above could look like follows: |
---|
1063 | |
---|
1064 | \medskip |
---|
1065 | |
---|
1066 | \noindent\hfil |
---|
1067 | \begin{tabular}{@{}l@{}} |
---|
1068 | {\bf for all} $i\in A$ {\bf do}\\ |
---|
1069 | \hspace{12pt}{\bf for all} $(j,k)\in B$ {\bf do}\\ |
---|
1070 | \hspace{24pt}{\bf for all} $l\in C$ {\bf do}\\ |
---|
1071 | \hspace{36pt}{\it action};\\ |
---|
1072 | \end{tabular} |
---|
1073 | |
---|
1074 | \newpage |
---|
1075 | |
---|
1076 | \noindent where the dummy indices $i$, $j$, $k$, $l$ are consecutively |
---|
1077 | assigned corresponding components of $n$-tuples from the basic sets $A$, |
---|
1078 | $B$, $C$, and {\it action} is some action that depends on the context, |
---|
1079 | where the indexing expression is used. For example, if the action were |
---|
1080 | printing current values of dummy indices, the printout would look like |
---|
1081 | follows: |
---|
1082 | |
---|
1083 | \medskip |
---|
1084 | |
---|
1085 | \noindent\hfil |
---|
1086 | \begin{tabular}{@{}llll@{}} |
---|
1087 | $i=4$&$j=1$&$k=Jan$&$l=a$\\ |
---|
1088 | $i=4$&$j=1$&$k=Jan$&$l=b$\\ |
---|
1089 | $i=4$&$j=1$&$k=Jan$&$l=c$\\ |
---|
1090 | $i=4$&$j=1$&$k=Feb$&$l=a$\\ |
---|
1091 | $i=4$&$j=1$&$k=Feb$&$l=b$\\ |
---|
1092 | \multicolumn{4}{c}{.\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .}\\ |
---|
1093 | $i=9$&$j=3$&$k=Jun$&$l=b$\\ |
---|
1094 | $i=9$&$j=3$&$k=Jun$&$l=c$\\ |
---|
1095 | \end{tabular} |
---|
1096 | |
---|
1097 | \medskip |
---|
1098 | |
---|
1099 | Let the example indexing expression be used in the following iterated |
---|
1100 | operation: |
---|
1101 | |
---|
1102 | \medskip |
---|
1103 | |
---|
1104 | \noindent\hfil |
---|
1105 | {\tt sum\{i in A, (j,k) in B, l in C\} p[i,j,k,l]} |
---|
1106 | |
---|
1107 | \medskip |
---|
1108 | |
---|
1109 | \noindent where {\tt p} is a 4-dimensional numeric parameter or some |
---|
1110 | numeric expression whose resultant value depends on {\tt i}, {\tt j}, |
---|
1111 | {\tt k}, and {\tt l}. In this case the action is summation, so the |
---|
1112 | resultant value of the primary numeric expression is: |
---|
1113 | $$\sum_{i\in A,(j,k)\in B,l\in C}(p_{ijkl}).$$ |
---|
1114 | |
---|
1115 | Now let the example indexing expression be used as a primary set |
---|
1116 | expression. In this case the action is gathering all 4-tuples |
---|
1117 | (quadruplets) of the form $(i,j,k,l)$ in one set, so the resultant |
---|
1118 | value of such operation is simply the Cartesian product of the basic |
---|
1119 | sets: |
---|
1120 | $$A\times B\times C=\{(i,j,k,l):i\in A,(j,k)\in B,l\in C\}.$$ |
---|
1121 | Note that in this case the same indexing expression might be written in |
---|
1122 | the reduced form: |
---|
1123 | |
---|
1124 | \medskip |
---|
1125 | |
---|
1126 | \noindent\hfil |
---|
1127 | {\tt\{A, B, C\}} |
---|
1128 | |
---|
1129 | \medskip |
---|
1130 | |
---|
1131 | \noindent because the dummy indices $i$, $j$, $k$, and $l$ are not |
---|
1132 | referenced and therefore their symbolic names need not be specified. |
---|
1133 | |
---|
1134 | Finally, let the example indexing expression be used as the subscript |
---|
1135 | domain in the declaration of a 4-dimensional model object, say, |
---|
1136 | a numeric parameter: |
---|
1137 | |
---|
1138 | \medskip |
---|
1139 | |
---|
1140 | \noindent\hfil |
---|
1141 | {\tt param p\{i in A, (j,k) in B, l in C\}} \dots {\tt;} |
---|
1142 | |
---|
1143 | \medskip |
---|
1144 | |
---|
1145 | \noindent In this case the action is generating the parameter members, |
---|
1146 | where each member has the form $p[i,j,k,l]$. |
---|
1147 | |
---|
1148 | As was said above, some indices in the second form of indexing entries |
---|
1149 | may be numeric or symbolic expressions, not only dummy indices. In this |
---|
1150 | case resultant values of such expressions play role of some logical |
---|
1151 | conditions to select only that $n$-tuples from the Cartesian product of |
---|
1152 | basic sets that satisfy these conditions. |
---|
1153 | |
---|
1154 | Consider, for example, the following indexing expression: |
---|
1155 | |
---|
1156 | \medskip |
---|
1157 | |
---|
1158 | \noindent\hfil |
---|
1159 | {\tt\{i in A, (i-1,k) in B, l in C\}} |
---|
1160 | |
---|
1161 | \medskip |
---|
1162 | |
---|
1163 | \noindent where {\tt i}, {\tt k}, {\tt l} are dummy indices, and |
---|
1164 | {\tt i-1} is a numeric expression. The algorithmic decsription of this |
---|
1165 | indexing expression is the following: |
---|
1166 | |
---|
1167 | \medskip |
---|
1168 | |
---|
1169 | \noindent\hfil |
---|
1170 | \begin{tabular}{@{}l@{}} |
---|
1171 | {\bf for all} $i\in A$ {\bf do}\\ |
---|
1172 | \hspace{12pt}{\bf for all} $(j,k)\in B$ {\bf and} $j=i-1$ {\bf do}\\ |
---|
1173 | \hspace{24pt}{\bf for all} $l\in C$ {\bf do}\\ |
---|
1174 | \hspace{36pt}{\it action};\\ |
---|
1175 | \end{tabular} |
---|
1176 | |
---|
1177 | \medskip |
---|
1178 | |
---|
1179 | \noindent Thus, if this indexing expression were used as a primary set |
---|
1180 | expression, the resultant set would be the following: |
---|
1181 | $$\{(4,May,a),(4,May,b),(4,May,c),(4,Jun,a),(4,Jun,b),(4,Jun,c)\}.$$ |
---|
1182 | Should note that in this case the resultant set consists of 3-tuples, |
---|
1183 | not of 4-tuples, because in the indexing expression there is no dummy |
---|
1184 | index that corresponds to the first component of 2-tuples from the set |
---|
1185 | $B$. |
---|
1186 | |
---|
1187 | The general rule is: the number of components of $n$-tuples defined by |
---|
1188 | an indexing expression is the same as the number of dummy indices in |
---|
1189 | that expression, where the correspondence between dummy indices and |
---|
1190 | components on $n$-tuples in the resultant set is positional, i.e. the |
---|
1191 | first dummy index corresponds to the first component, the second dummy |
---|
1192 | index corresponds to the second component, etc. |
---|
1193 | |
---|
1194 | In some cases it is needed to select a subset from the Cartesian |
---|
1195 | product of some sets. This may be attained by using an optional logical |
---|
1196 | predicate, which is specified in the indexing expression. |
---|
1197 | |
---|
1198 | Consider, for example, the following indexing expression: |
---|
1199 | |
---|
1200 | \medskip |
---|
1201 | |
---|
1202 | \noindent\hfil |
---|
1203 | {\tt\{i in A, (j,k) in B, l in C: i <= 5 and k <> 'Mar'\}} |
---|
1204 | |
---|
1205 | \medskip |
---|
1206 | |
---|
1207 | \noindent where the logical expression following the colon is a |
---|
1208 | predicate. The algorithmic description of this indexing expression is |
---|
1209 | the following: |
---|
1210 | |
---|
1211 | \medskip |
---|
1212 | |
---|
1213 | \noindent\hfil |
---|
1214 | \begin{tabular}{@{}l@{}} |
---|
1215 | {\bf for all} $i\in A$ {\bf do}\\ |
---|
1216 | \hspace{12pt}{\bf for all} $(j,k)\in B$ {\bf do}\\ |
---|
1217 | \hspace{24pt}{\bf for all} $l\in C$ {\bf do}\\ |
---|
1218 | \hspace{36pt}{\bf if} $i\leq 5$ {\bf and} $l\neq`Mar'$ {\bf then}\\ |
---|
1219 | \hspace{48pt}{\it action};\\ |
---|
1220 | \end{tabular} |
---|
1221 | |
---|
1222 | \medskip |
---|
1223 | |
---|
1224 | \noindent Thus, if this indexing expression were used as a primary set |
---|
1225 | expression, the resultant set would be the following: |
---|
1226 | $$\{(4,1,Jan,a),(4,1,Feb,a),(4,2,Apr,a),\dots,(4,3,Jun,c)\}.$$ |
---|
1227 | |
---|
1228 | If no predicate is specified in the indexing expression, one, which |
---|
1229 | takes on the value {\it true}, is assumed. |
---|
1230 | |
---|
1231 | \subsection{Set expressions} |
---|
1232 | |
---|
1233 | A {\it set expression} is a rule for computing an elemental set, i.e. |
---|
1234 | a collection of $n$-tuples, where components of $n$-tuples are numeric |
---|
1235 | and symbolic quantities. |
---|
1236 | |
---|
1237 | The primary set expression may be a literal set, unsubscripted set, |
---|
1238 | subscripted set, ``arithmetic'' set, indexing expression, iterated set |
---|
1239 | expression, conditional set expression, or another set expression |
---|
1240 | enclosed in parentheses. |
---|
1241 | |
---|
1242 | \medskip |
---|
1243 | |
---|
1244 | \noindent{\bf Examples} |
---|
1245 | |
---|
1246 | \medskip |
---|
1247 | |
---|
1248 | \noindent |
---|
1249 | \begin{tabular}{@{}ll@{}} |
---|
1250 | \verb|{(123,'aa'), (i,'bb'), (j-1,'cc')}|&(literal set)\\ |
---|
1251 | \verb|I|&(unsubscripted set)\\ |
---|
1252 | \verb|S[i-1,j+1]|&(subscripted set)\\ |
---|
1253 | \verb|1..t-1 by 2|&(``arithmetic'' set)\\ |
---|
1254 | \verb|{t in 1..T, (t+1,j) in S: (t,j) in F}|&(indexing expression)\\ |
---|
1255 | \verb|setof{i in I, j in J}(i+1,j-1)|&(iterated expression)\\ |
---|
1256 | \verb|if i < j then S[i] else F diff S[j]|&(conditional expression)\\ |
---|
1257 | \verb|(1..10 union 21..30)|&(parenthesized expression)\\ |
---|
1258 | \end{tabular} |
---|
1259 | |
---|
1260 | \medskip |
---|
1261 | |
---|
1262 | More general set expressions containing two or more primary set |
---|
1263 | expressions may be constructed by using certain set operators. |
---|
1264 | |
---|
1265 | \medskip |
---|
1266 | |
---|
1267 | \noindent{\bf Examples} |
---|
1268 | |
---|
1269 | \medskip |
---|
1270 | |
---|
1271 | \noindent\verb|(A union B) inter (I cross J)| |
---|
1272 | |
---|
1273 | \noindent |
---|
1274 | \verb|1..10 cross (if i < j then {'a', 'b', 'c'} else {'d', 'e', 'f'})| |
---|
1275 | |
---|
1276 | \subsubsection{Literal sets} |
---|
1277 | |
---|
1278 | A {\it literal set} is a primary set expression, which has the |
---|
1279 | following two syntactic forms: |
---|
1280 | |
---|
1281 | \medskip |
---|
1282 | |
---|
1283 | \noindent\hspace{39pt} |
---|
1284 | {\tt\{}$e_1${\tt,} $e_2${\tt,} \dots{\tt,} $e_m${\tt\}} |
---|
1285 | |
---|
1286 | \medskip |
---|
1287 | |
---|
1288 | \noindent\hfil |
---|
1289 | {\tt\{(}$e_{11}${\tt,} \dots{\tt,} $e_{1n}${\tt),} |
---|
1290 | {\tt(}$e_{21}${\tt,} \dots{\tt,} $e_{2n}${\tt),} \dots{\tt,} |
---|
1291 | {\tt(}$e_{m1}${\tt,} \dots{\tt,} $e_{mn}${\tt)\}} |
---|
1292 | |
---|
1293 | \medskip |
---|
1294 | |
---|
1295 | \noindent where $e_1$, \dots, $e_m$, $e_{11}$, \dots, $e_{mn}$ are |
---|
1296 | numeric or symbolic expressions. |
---|
1297 | |
---|
1298 | If the first form is used, the resultant set consists of 1-tuples |
---|
1299 | (singlets) enumerated within the curly braces. It is allowed to specify |
---|
1300 | an empty set as {\tt\{\ \}}, which has no 1-tuples. If the second form |
---|
1301 | is used, the resultant set consists of $n$-tuples enumerated within the |
---|
1302 | curly braces, where a particular $n$-tuple consists of corresponding |
---|
1303 | components enumerated within the parentheses. All $n$-tuples must have |
---|
1304 | the same number of components. |
---|
1305 | |
---|
1306 | \subsubsection{Unsubscripted sets} |
---|
1307 | |
---|
1308 | If the primary set expression is an unsubscripted set (which must be |
---|
1309 | 0-dimen\-sional), the resultant set is an elemental set associated with |
---|
1310 | the corresponding set object. |
---|
1311 | |
---|
1312 | \newpage |
---|
1313 | |
---|
1314 | \subsubsection{Subscripted sets} |
---|
1315 | |
---|
1316 | The primary set expression, which refers to a subscripted set, has the |
---|
1317 | following syntactic form: |
---|
1318 | |
---|
1319 | \medskip |
---|
1320 | |
---|
1321 | \noindent\hfil |
---|
1322 | {\it name}{\tt[}$i_1${\tt,} $i_2${\tt,} \dots{\tt,} $i_n${\tt]} |
---|
1323 | |
---|
1324 | \medskip |
---|
1325 | |
---|
1326 | \noindent where {\it name} is the symbolic name of the set object, |
---|
1327 | $i_1$, $i_2$, \dots, $i_n$ are subscripts. |
---|
1328 | |
---|
1329 | Each subscript must be a numeric or symbolic expression. The number of |
---|
1330 | subscripts in the subscript list must be the same as the dimension of |
---|
1331 | the set object with which the subscript list is associated. |
---|
1332 | |
---|
1333 | Actual values of subscript expressions are used to identify a |
---|
1334 | particular member of the set object that determines the resultant set. |
---|
1335 | |
---|
1336 | \subsubsection{``Arithmetic'' sets} |
---|
1337 | |
---|
1338 | The primary set expression, which is an ``arithmetic'' set, has the |
---|
1339 | following two syntactic forms: |
---|
1340 | |
---|
1341 | \medskip |
---|
1342 | |
---|
1343 | \noindent\hfil |
---|
1344 | $t_0$ {\tt..} $t_1$ {\tt by} $\delta t$ |
---|
1345 | |
---|
1346 | \medskip |
---|
1347 | |
---|
1348 | \noindent\hspace{138.5pt} |
---|
1349 | $t_0$ {\tt..} $t_1$ |
---|
1350 | |
---|
1351 | \medskip |
---|
1352 | |
---|
1353 | \noindent where $t_0$, $t_1$, and $\delta t$ are numeric expressions |
---|
1354 | (the value of $\delta t$ must not be zero). The second form is |
---|
1355 | equivalent to the first form, where $\delta t=1$. |
---|
1356 | |
---|
1357 | If $\delta t>0$, the resultant set is determined as follows: |
---|
1358 | $$\{t:\exists k\in{\cal Z}(t=t_0+k\delta t,\ t_0\leq t\leq t_1)\}.$$ |
---|
1359 | Otherwise, if $\delta t<0$, the resultant set is determined as follows: |
---|
1360 | $$\{t:\exists k\in{\cal Z}(t=t_0+k\delta t,\ t_1\leq t\leq t_0)\}.$$ |
---|
1361 | |
---|
1362 | \subsubsection{Indexing expressions} |
---|
1363 | |
---|
1364 | If the primary set expression is an indexing expression, the resultant |
---|
1365 | set is determined as described above in Subsection \ref{indexing}, page |
---|
1366 | \pageref{indexing}. |
---|
1367 | |
---|
1368 | \subsubsection{Iterated expressions} |
---|
1369 | |
---|
1370 | An {\it iterated set expression} is a primary set expression, which has |
---|
1371 | the following syntactic form: |
---|
1372 | |
---|
1373 | \medskip |
---|
1374 | |
---|
1375 | \noindent\hfil |
---|
1376 | {\tt setof} {\it indexing-expression} {\it integrand} |
---|
1377 | |
---|
1378 | \medskip |
---|
1379 | |
---|
1380 | \noindent where {\it indexing-expression} is an indexing expression, |
---|
1381 | which introduces dummy indices and controls iterating, {\it integrand} |
---|
1382 | is either a single numeric or symbolic expression or a list of numeric |
---|
1383 | and symbolic expressions separated by commae and enclosed in |
---|
1384 | parentheses. |
---|
1385 | |
---|
1386 | If the integrand is a single numeric or symbolic expression, the |
---|
1387 | resultant set consists of 1-tuples and is determined as follows: |
---|
1388 | $$\{x:(i_1,\dots,i_n)\in\Delta\},$$ |
---|
1389 | \noindent where $x$ is a value of the integrand, $i_1$, \dots, $i_n$ |
---|
1390 | are dummy indices introduced in the indexing expression, $\Delta$ is |
---|
1391 | the domain, a set of $n$-tuples specified by the indexing expression, |
---|
1392 | which defines particular values assigned to the dummy indices on |
---|
1393 | performing the iterated operation. |
---|
1394 | |
---|
1395 | If the integrand is a list containing $m$ numeric and symbolic |
---|
1396 | expressions, the resultant set consists of $m$-tuples and is determined |
---|
1397 | as follows: |
---|
1398 | $$\{(x_1,\dots,x_m):(i_1,\dots,i_n)\in\Delta\},$$ |
---|
1399 | where $x_1$, \dots, $x_m$ are values of the expressions in the |
---|
1400 | integrand list, $i_1$, \dots, $i_n$ and $\Delta$ have the same meaning |
---|
1401 | as above. |
---|
1402 | |
---|
1403 | \subsubsection{Conditional expressions} |
---|
1404 | |
---|
1405 | A {\it conditional set expression} is a primary set expression that has |
---|
1406 | the following syntactic form: |
---|
1407 | |
---|
1408 | \medskip |
---|
1409 | |
---|
1410 | \noindent\hfil |
---|
1411 | {\tt if} $b$ {\tt then} $X$ {\tt else} $Y$ |
---|
1412 | |
---|
1413 | \medskip |
---|
1414 | |
---|
1415 | \noindent where $b$ is an logical expression, $X$ and $Y$ are set |
---|
1416 | expressions, which must define sets of the same dimension. |
---|
1417 | |
---|
1418 | The resultant value of the conditional expression depends on the value |
---|
1419 | of the logical expression that follows the keyword {\tt if}. If it |
---|
1420 | takes on the value {\it true}, the resultant set is the value of the |
---|
1421 | expression that follows the keyword {\tt then}. Otherwise, if the |
---|
1422 | logical expression takes on the value {\it false}, the resultant set is |
---|
1423 | the value of the expression that follows the keyword {\tt else}. |
---|
1424 | |
---|
1425 | \subsubsection{Parenthesized expressions} |
---|
1426 | |
---|
1427 | Any set expression may be enclosed in parentheses that syntactically |
---|
1428 | makes it a primary set expression. |
---|
1429 | |
---|
1430 | Parentheses may be used in set expressions, as in algebra, to specify |
---|
1431 | the desired order in which operations are to be performed. Where |
---|
1432 | parentheses are used, the expression within the parentheses is |
---|
1433 | evaluated before the resultant value is used. |
---|
1434 | |
---|
1435 | The resultant value of the parenthesized expression is the same as the |
---|
1436 | value of the expression enclosed within parentheses. |
---|
1437 | |
---|
1438 | \subsubsection{Set operators} |
---|
1439 | |
---|
1440 | In MathProg there exist the following set operators, which may be used |
---|
1441 | in set expressions: |
---|
1442 | |
---|
1443 | \medskip |
---|
1444 | |
---|
1445 | \begin{tabular}{@{}p{96pt}p{222pt}@{}} |
---|
1446 | $X$ {\tt union} $Y$&union $X\cup Y$\\ |
---|
1447 | $X$ {\tt diff} $Y$&difference $X\backslash Y$\\ |
---|
1448 | $X$ {\tt symdiff} $Y$&symmetric difference $X\oplus Y$\\ |
---|
1449 | $X$ {\tt inter} $Y$&intersection $X\cap Y$\\ |
---|
1450 | $X$ {\tt cross} $Y$&cross (Cartesian) product $X\times Y$\\ |
---|
1451 | \end{tabular} |
---|
1452 | |
---|
1453 | \medskip |
---|
1454 | |
---|
1455 | \noindent where $X$ and Y are set expressions, which must define sets |
---|
1456 | of the identical dimension (except the Cartesian product). |
---|
1457 | |
---|
1458 | If the expression includes more than one set operator, all operators |
---|
1459 | are performed from left to right according to the hierarchy of |
---|
1460 | operations (see below). |
---|
1461 | |
---|
1462 | The resultant value of the expression, which contains set operators, is |
---|
1463 | the result of applying the operators to their operands. |
---|
1464 | |
---|
1465 | The dimension of the resultant set, i.e. the dimension of $n$-tuples, |
---|
1466 | of which the resultant set consists of, is the same as the dimension of |
---|
1467 | the operands, except the Cartesian product, where the dimension of the |
---|
1468 | resultant set is the sum of the dimensions of its operands. |
---|
1469 | |
---|
1470 | \subsubsection{Hierarchy of operations} |
---|
1471 | |
---|
1472 | The following list shows the hierarchy of operations in set |
---|
1473 | expressions: |
---|
1474 | |
---|
1475 | \medskip |
---|
1476 | |
---|
1477 | \noindent\hfil |
---|
1478 | \begin{tabular}{@{}ll@{}} |
---|
1479 | Operation&Hierarchy\\ |
---|
1480 | \hline |
---|
1481 | Evaluation of numeric operations&1st-7th\\ |
---|
1482 | Evaluation of symbolic operations&8th-9th\\ |
---|
1483 | Evaluation of iterated or ``arithmetic'' set ({\tt setof}, {\tt..})& |
---|
1484 | 10th\\ |
---|
1485 | Cartesian product ({\tt cross})&11th\\ |
---|
1486 | Intersection ({\tt inter})&12th\\ |
---|
1487 | Union and difference ({\tt union}, {\tt diff}, {\tt symdiff})&13th\\ |
---|
1488 | Conditional evaluation ({\tt if} \dots {\tt then} \dots {\tt else})& |
---|
1489 | 14th\\ |
---|
1490 | \end{tabular} |
---|
1491 | |
---|
1492 | \medskip |
---|
1493 | |
---|
1494 | This hierarchy has the same meaning as was explained above for numeric |
---|
1495 | expressions (see Subsection \ref{hierarchy}, page \pageref{hierarchy}). |
---|
1496 | |
---|
1497 | \subsection{Logical expressions} |
---|
1498 | |
---|
1499 | A {\it logical expression} is a rule for computing a single logical |
---|
1500 | value, which can be either {\it true} or {\it false}. |
---|
1501 | |
---|
1502 | The primary logical expression may be a numeric expression, relational |
---|
1503 | expression, iterated logical expression, or another logical expression |
---|
1504 | enclosed in parentheses. |
---|
1505 | |
---|
1506 | \medskip |
---|
1507 | |
---|
1508 | \noindent{\bf Examples} |
---|
1509 | |
---|
1510 | \medskip |
---|
1511 | |
---|
1512 | \noindent |
---|
1513 | \begin{tabular}{@{}ll@{}} |
---|
1514 | \verb|i+1|&(numeric expression)\\ |
---|
1515 | \verb|a[i,j] < 1.5|&(relational expression)\\ |
---|
1516 | \verb|s[i+1,j-1] <> 'Mar'|&(relational expression)\\ |
---|
1517 | \verb|(i+1,'Jan') not in I cross J|&(relational expression)\\ |
---|
1518 | \verb|S union T within A[i] inter B[j]|&(relational expression)\\ |
---|
1519 | \verb|forall{i in I, j in J} a[i,j] < .5 * b|&(iterated expression)\\ |
---|
1520 | \verb|(a[i,j] < 1.5 or b[i] >= a[i,j])|&(parenthesized expression)\\ |
---|
1521 | \end{tabular} |
---|
1522 | |
---|
1523 | \medskip |
---|
1524 | |
---|
1525 | More general logical expressions containing two or more primary logical |
---|
1526 | expressions may be constructed by using certain logical operators. |
---|
1527 | |
---|
1528 | \newpage |
---|
1529 | |
---|
1530 | \noindent{\bf Examples} |
---|
1531 | |
---|
1532 | \medskip |
---|
1533 | |
---|
1534 | \noindent\verb|not (a[i,j] < 1.5 or b[i] >= a[i,j]) and (i,j) in S| |
---|
1535 | |
---|
1536 | \noindent\verb|(i,j) in S or (i,j) not in T diff U| |
---|
1537 | |
---|
1538 | \subsubsection{Numeric expressions} |
---|
1539 | |
---|
1540 | The resultant value of the primary logical expression, which is a |
---|
1541 | numeric expression, is {\it true}, if the resultant value of the |
---|
1542 | numeric expression is non-zero. Otherwise the resultant value of the |
---|
1543 | logical expression is {\it false}. |
---|
1544 | |
---|
1545 | \subsubsection{Relational operators} |
---|
1546 | |
---|
1547 | In MathProg there exist the following relational operators, which may |
---|
1548 | be used in logical expressions: |
---|
1549 | |
---|
1550 | \medskip |
---|
1551 | |
---|
1552 | \begin{tabular}{@{}ll@{}} |
---|
1553 | $x$ {\tt<} $y$&test on $x<y$\\ |
---|
1554 | $x$ {\tt<=} $y$&test on $x\leq y$\\ |
---|
1555 | $x$ {\tt=} $y$, $x$ {\tt==} $y$&test on $x=y$\\ |
---|
1556 | $x$ {\tt>=} $y$&test on $x\geq y$\\ |
---|
1557 | $x$ {\tt>} $y$&test on $x>y$\\ |
---|
1558 | $x$ {\tt<>} $y$, $x$ {\tt!=} $y$&test on $x\neq y$\\ |
---|
1559 | $x$ {\tt in} $Y$&test on $x\in Y$\\ |
---|
1560 | {\tt(}$x_1${\tt,}\dots{\tt,}$x_n${\tt)} {\tt in} $Y$&test on |
---|
1561 | $(x_1,\dots,x_n)\in Y$\\ |
---|
1562 | $x$ {\tt not} {\tt in} $Y$, $x$ {\tt!in} $Y$&test on $x\not\in Y$\\ |
---|
1563 | {\tt(}$x_1${\tt,}\dots{\tt,}$x_n${\tt)} {\tt not} {\tt in} $Y$, |
---|
1564 | {\tt(}$x_1${\tt,}\dots{\tt,}$x_n${\tt)} {\tt !in} $Y$&test on |
---|
1565 | $(x_1,\dots,x_n)\not\in Y$\\ |
---|
1566 | $X$ {\tt within} $Y$&test on $X\subseteq Y$\\ |
---|
1567 | $X$ {\tt not} {\tt within} $Y$, $X$ {\tt !within} $Y$&test on |
---|
1568 | $X\not\subseteq Y$\\ |
---|
1569 | \end{tabular} |
---|
1570 | |
---|
1571 | \medskip |
---|
1572 | |
---|
1573 | \noindent where $x$, $x_1$, \dots, $x_n$, $y$ are numeric or symbolic |
---|
1574 | expressions, $X$ and $Y$ are set expression. |
---|
1575 | |
---|
1576 | {\it Notes:} |
---|
1577 | |
---|
1578 | 1. In the operations {\tt in}, {\tt not in}, and {\tt !in} the |
---|
1579 | number of components in the first operands must be the same as the |
---|
1580 | dimension of the second operand. |
---|
1581 | |
---|
1582 | 2. In the operations {\tt within}, {\tt not within}, and {\tt !within} |
---|
1583 | both operands must have identical dimension. |
---|
1584 | |
---|
1585 | All the relational operators listed above have their conventional |
---|
1586 | mathematical meaning. The resultant value is {\it true}, if |
---|
1587 | corresponding relation is satisfied for its operands, otherwise |
---|
1588 | {\it false}. (Note that symbolic values are ordered lexicographically, |
---|
1589 | and any numeric value precedes any symbolic value.) |
---|
1590 | |
---|
1591 | \subsubsection{Iterated expressions} |
---|
1592 | |
---|
1593 | An {\it iterated logical expression} is a primary logical expression, |
---|
1594 | which has the following syntactic form: |
---|
1595 | |
---|
1596 | \medskip |
---|
1597 | |
---|
1598 | \noindent\hfil |
---|
1599 | {\it iterated-operator} {\it indexing-expression} {\it integrand} |
---|
1600 | |
---|
1601 | \medskip |
---|
1602 | |
---|
1603 | \noindent where {\it iterated-operator} is the symbolic name of the |
---|
1604 | iterated operator to be performed (see below), {\it indexing-expression} |
---|
1605 | is an indexing expression which introduces dummy indices and controls |
---|
1606 | iterating, {\it integrand} is a numeric expression that participates in |
---|
1607 | the operation. |
---|
1608 | |
---|
1609 | In MathProg there exist two iterated operators, which may be used in |
---|
1610 | logical expressions: |
---|
1611 | |
---|
1612 | \medskip |
---|
1613 | |
---|
1614 | \noindent\hfil |
---|
1615 | \begin{tabular}{@{}lll@{}} |
---|
1616 | {\tt forall}&$\forall$-quantification&$\displaystyle |
---|
1617 | \forall(i_1,\dots,i_n)\in\Delta[f(i_1,\dots,i_n)],$\\ |
---|
1618 | {\tt exists}&$\exists$-quantification&$\displaystyle |
---|
1619 | \exists(i_1,\dots,i_n)\in\Delta[f(i_1,\dots,i_n)],$\\ |
---|
1620 | \end{tabular} |
---|
1621 | |
---|
1622 | \medskip |
---|
1623 | |
---|
1624 | \noindent where $i_1$, \dots, $i_n$ are dummy indices introduced in |
---|
1625 | the indexing expression, $\Delta$ is the domain, a set of $n$-tuples |
---|
1626 | specified by the indexing expression which defines particular values |
---|
1627 | assigned to the dummy indices on performing the iterated operation, |
---|
1628 | $f(i_1,\dots,i_n)$ is the integrand, a logical expression whose |
---|
1629 | resultant value depends on the dummy indices. |
---|
1630 | |
---|
1631 | For $\forall$-quantification the resultant value of the iterated |
---|
1632 | logical expression is {\it true}, if the value of the integrand is |
---|
1633 | {\it true} for all $n$-tuples contained in the domain, otherwise |
---|
1634 | {\it false}. |
---|
1635 | |
---|
1636 | For $\exists$-quantification the resultant value of the iterated |
---|
1637 | logical expression is {\it false}, if the value of the integrand is |
---|
1638 | {\it false} for all $n$-tuples contained in the domain, otherwise |
---|
1639 | {\it true}. |
---|
1640 | |
---|
1641 | \subsubsection{Parenthesized expressions} |
---|
1642 | |
---|
1643 | Any logical expression may be enclosed in parentheses that |
---|
1644 | syntactically makes it a primary logical expression. |
---|
1645 | |
---|
1646 | Parentheses may be used in logical expressions, as in algebra, to |
---|
1647 | specify the desired order in which operations are to be performed. |
---|
1648 | Where parentheses are used, the expression within the parentheses is |
---|
1649 | evaluated before the resultant value is used. |
---|
1650 | |
---|
1651 | The resultant value of the parenthesized expression is the same as the |
---|
1652 | value of the expression enclosed within parentheses. |
---|
1653 | |
---|
1654 | \subsubsection{Logical operators} |
---|
1655 | |
---|
1656 | In MathProg there exist the following logical operators, which may be |
---|
1657 | used in logical expressions: |
---|
1658 | |
---|
1659 | \medskip |
---|
1660 | |
---|
1661 | \begin{tabular}{@{}p{96pt}p{222pt}@{}} |
---|
1662 | {\tt not} $x$, {\tt!}$x$&negation $\neg\ x$\\ |
---|
1663 | $x$ {\tt and} $y$, $x$ {\tt\&\&} $y$&conjunction (logical ``and'') |
---|
1664 | $x\;\&\;y$\\ |
---|
1665 | $x$ {\tt or} $y$, $x$ {\tt||} $y$&disjunction (logical ``or'') |
---|
1666 | $x\vee y$\\ |
---|
1667 | \end{tabular} |
---|
1668 | |
---|
1669 | \medskip |
---|
1670 | |
---|
1671 | \noindent where $x$ and $y$ are logical expressions. |
---|
1672 | |
---|
1673 | If the expression includes more than one logical operator, all |
---|
1674 | operators are performed from left to right according to the hierarchy |
---|
1675 | of the operations (see below). The resultant value of the expression, |
---|
1676 | which contains logical operators, is the result of applying the |
---|
1677 | operators to their operands. |
---|
1678 | |
---|
1679 | \subsubsection{Hierarchy of operations} |
---|
1680 | |
---|
1681 | The following list shows the hierarchy of operations in logical |
---|
1682 | expressions: |
---|
1683 | |
---|
1684 | \medskip |
---|
1685 | |
---|
1686 | \noindent\hfil |
---|
1687 | \begin{tabular}{@{}ll@{}} |
---|
1688 | Operation&Hierarchy\\ |
---|
1689 | \hline |
---|
1690 | Evaluation of numeric operations&1st-7th\\ |
---|
1691 | Evaluation of symbolic operations&8th-9th\\ |
---|
1692 | Evaluation of set operations&10th-14th\\ |
---|
1693 | Relational operations ({\tt<}, {\tt<=}, etc.)&15th\\ |
---|
1694 | Negation ({\tt not}, {\tt!})&16th\\ |
---|
1695 | Conjunction ({\tt and}, {\tt\&\&})&17th\\ |
---|
1696 | $\forall$- and $\exists$-quantification ({\tt forall}, {\tt exists})& |
---|
1697 | 18th\\ |
---|
1698 | Disjunction ({\tt or}, {\tt||})&19th\\ |
---|
1699 | \end{tabular} |
---|
1700 | |
---|
1701 | \medskip |
---|
1702 | |
---|
1703 | This hierarchy has the same meaning as was explained above for numeric |
---|
1704 | expressions (see Subsection \ref{hierarchy}, page \pageref{hierarchy}). |
---|
1705 | |
---|
1706 | \subsection{Linear expressions} |
---|
1707 | |
---|
1708 | An {\it linear expression} is a rule for computing so called |
---|
1709 | a {\it linear form} or simply a {\it formula}, which is a linear (or |
---|
1710 | affine) function of elemental variables. |
---|
1711 | |
---|
1712 | The primary linear expression may be an unsubscripted variable, |
---|
1713 | subscripted variable, iterated linear expression, conditional linear |
---|
1714 | expression, or another linear expression enclosed in parentheses. |
---|
1715 | |
---|
1716 | It is also allowed to use a numeric expression as the primary linear |
---|
1717 | expression, in which case the resultant value of the numeric expression |
---|
1718 | is automatically converted to a formula that includes the constant term |
---|
1719 | only. |
---|
1720 | |
---|
1721 | \medskip |
---|
1722 | |
---|
1723 | \noindent{\bf Examples} |
---|
1724 | |
---|
1725 | \medskip |
---|
1726 | |
---|
1727 | \noindent |
---|
1728 | \begin{tabular}{@{}ll@{}} |
---|
1729 | \verb|z|&(unsubscripted variable)\\ |
---|
1730 | \verb|x[i,j]|&(subscripted variable)\\ |
---|
1731 | \verb|sum{j in J} (a[i] * x[i,j] + 3 * y)|&(iterated expression)\\ |
---|
1732 | \verb|if i in I then x[i,j] else 1.5 * z + 3|&(conditional expression)\\ |
---|
1733 | \verb|(a[i,j] * x[i,j] + y[i-1] + .1)|&(parenthesized expression)\\ |
---|
1734 | \end{tabular} |
---|
1735 | |
---|
1736 | \medskip |
---|
1737 | |
---|
1738 | More general linear expressions containing two or more primary linear |
---|
1739 | expressions may be constructed by using certain arithmetic operators. |
---|
1740 | |
---|
1741 | \medskip |
---|
1742 | |
---|
1743 | \noindent{\bf Examples} |
---|
1744 | |
---|
1745 | \medskip |
---|
1746 | |
---|
1747 | \noindent\verb|2 * x[i-1,j+1] + 3.5 * y[k] + .5 * z| |
---|
1748 | |
---|
1749 | \noindent\verb|(- x[i,j] + 3.5 * y[k]) / sum{t in T} abs(d[i,j,t])| |
---|
1750 | |
---|
1751 | \subsubsection{Unsubscripted variables} |
---|
1752 | |
---|
1753 | If the primary linear expression is an unsubscripted variable (which |
---|
1754 | must be 0-dimensional), the resultant formula is that unsubscripted |
---|
1755 | variable. |
---|
1756 | |
---|
1757 | \subsubsection{Subscripted variables} |
---|
1758 | |
---|
1759 | The primary linear expression, which refers to a subscripted variable, |
---|
1760 | has the following syntactic form: |
---|
1761 | |
---|
1762 | \medskip |
---|
1763 | |
---|
1764 | \noindent\hfil |
---|
1765 | {\it name}{\tt[}$i_1${\tt,} $i_2${\tt,} \dots{\tt,} $i_n${\tt]} |
---|
1766 | |
---|
1767 | \medskip |
---|
1768 | |
---|
1769 | \noindent where {\it name} is the symbolic name of the model variable, |
---|
1770 | $i_1$, $i_2$, \dots, $i_n$ are subscripts. |
---|
1771 | |
---|
1772 | Each subscript must be a numeric or symbolic expression. The number of |
---|
1773 | subscripts in the subscript list must be the same as the dimension of |
---|
1774 | the model variable with which the subscript list is associated. |
---|
1775 | |
---|
1776 | Actual values of the subscript expressions are used to identify a |
---|
1777 | particular member of the model variable that determines the resultant |
---|
1778 | formula, which is an elemental variable associated with corresponding |
---|
1779 | member. |
---|
1780 | |
---|
1781 | \subsubsection{Iterated expressions} |
---|
1782 | |
---|
1783 | An {\it iterated linear expression} is a primary linear expression, |
---|
1784 | which has the following syntactic form: |
---|
1785 | |
---|
1786 | \medskip |
---|
1787 | |
---|
1788 | \noindent\hfil |
---|
1789 | {\tt sum} {\it indexing-expression} {\it integrand} |
---|
1790 | |
---|
1791 | \medskip |
---|
1792 | |
---|
1793 | \noindent where {\it indexing-expression} is an indexing expression, |
---|
1794 | which introduces dummy indices and controls iterating, {\it integrand} |
---|
1795 | is a linear expression that participates in the operation. |
---|
1796 | |
---|
1797 | The iterated linear expression is evaluated exactly in the same way as |
---|
1798 | the iterated numeric expression (see Subection \ref{itexpr}, page |
---|
1799 | \pageref{itexpr}) with exception that the integrand participated in the |
---|
1800 | summation is a formula, not a numeric value. |
---|
1801 | |
---|
1802 | \subsubsection{Conditional expressions} |
---|
1803 | |
---|
1804 | A {\it conditional linear expression} is a primary linear expression, |
---|
1805 | which has one of the following two syntactic forms: |
---|
1806 | |
---|
1807 | \medskip |
---|
1808 | |
---|
1809 | \noindent\hfil |
---|
1810 | {\tt if} $b$ {\tt then} $f$ {\tt else} $g$ |
---|
1811 | |
---|
1812 | \medskip |
---|
1813 | |
---|
1814 | \noindent\hspace{127pt} |
---|
1815 | {\tt if} $b$ {\tt then} $f$ |
---|
1816 | |
---|
1817 | \medskip |
---|
1818 | |
---|
1819 | \noindent where $b$ is an logical expression, $f$ and $g$ are linear |
---|
1820 | expressions. |
---|
1821 | |
---|
1822 | The conditional linear expression is evaluated exactly in the same way |
---|
1823 | as the conditional numeric expression (see Subsection \ref{ifthen}, |
---|
1824 | page \pageref{ifthen}) with exception that operands participated in the |
---|
1825 | operation are formulae, not numeric values. |
---|
1826 | |
---|
1827 | \subsubsection{Parenthesized expressions} |
---|
1828 | |
---|
1829 | Any linear expression may be enclosed in parentheses that syntactically |
---|
1830 | makes it a primary linear expression. |
---|
1831 | |
---|
1832 | Parentheses may be used in linear expressions, as in algebra, to |
---|
1833 | specify the desired order in which operations are to be performed. |
---|
1834 | Where parentheses are used, the expression within the parentheses is |
---|
1835 | evaluated before the resultant formula is used. |
---|
1836 | |
---|
1837 | The resultant value of the parenthesized expression is the same as the |
---|
1838 | value of the expression enclosed within parentheses. |
---|
1839 | |
---|
1840 | \subsubsection{Arithmetic operators} |
---|
1841 | |
---|
1842 | In MathProg there exists the following arithmetic operators, which may |
---|
1843 | be used in linear expressions: |
---|
1844 | |
---|
1845 | \medskip |
---|
1846 | |
---|
1847 | \begin{tabular}{@{}p{96pt}p{222pt}@{}} |
---|
1848 | {\tt+} $f$&unary plus\\ |
---|
1849 | {\tt-} $f$&unary minus\\ |
---|
1850 | $f$ {\tt+} $g$&addition\\ |
---|
1851 | $f$ {\tt-} $g$&subtraction\\ |
---|
1852 | $x$ {\tt*} $f$, $f$ {\tt*} $x$&multiplication\\ |
---|
1853 | $f$ {\tt/} $x$&division |
---|
1854 | \end{tabular} |
---|
1855 | |
---|
1856 | \medskip |
---|
1857 | |
---|
1858 | \noindent where $f$ and $g$ are linear expressions, $x$ is a numeric |
---|
1859 | expression (more precisely, a linear expression containing only the |
---|
1860 | constant term). |
---|
1861 | |
---|
1862 | If the expression includes more than one arithmetic operator, all |
---|
1863 | operators are performed from left to right according to the hierarchy |
---|
1864 | of operations (see below). The resultant value of the expression, which |
---|
1865 | contains arithmetic operators, is the result of applying the operators |
---|
1866 | to their operands. |
---|
1867 | |
---|
1868 | \subsubsection{Hierarchy of operations} |
---|
1869 | |
---|
1870 | The hierarchy of arithmetic operations used in linear expressions is |
---|
1871 | the same as for numeric expressions (see Subsection \ref{hierarchy}, |
---|
1872 | page \pageref{hierarchy}). |
---|
1873 | |
---|
1874 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
1875 | |
---|
1876 | \newpage |
---|
1877 | |
---|
1878 | \section{Statements} |
---|
1879 | |
---|
1880 | {\it Statements} are basic units of the model description. In MathProg |
---|
1881 | all statements are divided into two categories: declaration statements |
---|
1882 | and functional statements. |
---|
1883 | |
---|
1884 | {\it Declaration statements} (set statement, parameter statement, |
---|
1885 | variable statement, constraint statement, and objective statement) are |
---|
1886 | used to declare model objects of certain kinds and define certain |
---|
1887 | properties of such objects. |
---|
1888 | |
---|
1889 | {\it Functional statements} (solve statement, check statement, display |
---|
1890 | statement, printf statement, loop statement) are intended for |
---|
1891 | performing some specific actions. |
---|
1892 | |
---|
1893 | Note that declaration statements may follow in arbitrary order, which |
---|
1894 | does not affect the result of translation. However, any model object |
---|
1895 | must be declared before it is referenced in other statements. |
---|
1896 | |
---|
1897 | \subsection{Set statement} |
---|
1898 | |
---|
1899 | \medskip |
---|
1900 | |
---|
1901 | \framebox[345pt][l]{ |
---|
1902 | \parbox[c][24pt]{345pt}{ |
---|
1903 | \hspace{6pt} {\tt set} {\it name} {\it alias} {\it domain} {\tt,} |
---|
1904 | {\it attrib} {\tt,} \dots {\tt,} {\it attrib} {\tt;} |
---|
1905 | }} |
---|
1906 | |
---|
1907 | \setlength{\leftmargini}{60pt} |
---|
1908 | |
---|
1909 | \begin{description} |
---|
1910 | \item[{\rm Where:}\hspace*{23pt}] {\it name} is a symbolic name of the |
---|
1911 | set; |
---|
1912 | \item[\hspace*{54pt}] {\it alias} is an optional string literal, which |
---|
1913 | specifies an alias of the set; |
---|
1914 | \item[\hspace*{54pt}] {\it domain} is an optional indexing expression, |
---|
1915 | which specifies a subscript domain of the set; |
---|
1916 | \item[\hspace*{54pt}] {\it attrib}, \dots, {\it attrib} are optional |
---|
1917 | attributes of the set. (Commae preceding attributes may be omitted.) |
---|
1918 | \end{description} |
---|
1919 | |
---|
1920 | \noindent Optional attributes: |
---|
1921 | |
---|
1922 | \begin{description} |
---|
1923 | \item[{\tt dimen} $n$\hspace*{19pt}] specifies the dimension of |
---|
1924 | $n$-tuples, which the set consists of; |
---|
1925 | \item[{\tt within} {\it expression}]\hspace*{0pt}\\ |
---|
1926 | specifies a superset which restricts the set or all its members |
---|
1927 | (elemental sets) to be within that superset; |
---|
1928 | \item[{\tt:=} {\it expression}]\hspace*{0pt}\\ |
---|
1929 | specifies an elemental set assigned to the set or its members; |
---|
1930 | \item[{\tt default} {\it expression}]\hspace*{0pt}\\ |
---|
1931 | specifies an elemental set assigned to the set or its members whenever |
---|
1932 | no appropriate data are available in the data section. |
---|
1933 | \end{description} |
---|
1934 | |
---|
1935 | \newpage |
---|
1936 | |
---|
1937 | \noindent{\bf Examples} |
---|
1938 | |
---|
1939 | \begin{verbatim} |
---|
1940 | set V; |
---|
1941 | set E within V cross V; |
---|
1942 | set step{s in 1..maxiter} dimen 2 := if s = 1 then E else |
---|
1943 | step[s-1] union setof{k in V, (i,k) in step[s-1], (k,j) |
---|
1944 | in step[s-1]}(i,j); |
---|
1945 | set A{i in I, j in J}, within B[i+1] cross C[j-1], within |
---|
1946 | D diff E, default {('abc',123), (321,'cba')}; |
---|
1947 | \end{verbatim} |
---|
1948 | |
---|
1949 | The set statement declares a set. If the subscript domain is not |
---|
1950 | specified, the set is a simple set, otherwise it is an array of |
---|
1951 | elemental sets. |
---|
1952 | |
---|
1953 | The {\tt dimen} attribute specifies the dimension of $n$-tuples, which |
---|
1954 | the set (if it is a simple set) or its members (if the set is an array |
---|
1955 | of elemental sets) consist of, where $n$ must be unsigned integer from |
---|
1956 | 1 to 20. At most one {\tt dimen} attribute can be specified. If the |
---|
1957 | {\tt dimen} attribute is not specified, the dimension of\linebreak |
---|
1958 | $n$-tuples is implicitly determined by other attributes (for example, |
---|
1959 | if there is a set expression that follows {\tt:=} or the keyword |
---|
1960 | {\tt default}, the dimension of $n$-tuples of corresponding elemental |
---|
1961 | set is used). If no dimension information is available, {\tt dimen 1} |
---|
1962 | is assumed. |
---|
1963 | |
---|
1964 | The {\tt within} attribute specifies a set expression whose resultant |
---|
1965 | value is a superset used to restrict the set (if it is a simple set) or |
---|
1966 | its members (if the set is an array of elemental sets) to be within |
---|
1967 | that superset. Arbitrary number of {\tt within} attributes may be |
---|
1968 | specified in the same set statement. |
---|
1969 | |
---|
1970 | The assign ({\tt:=}) attribute specifies a set expression used to |
---|
1971 | evaluate elemental set(s) assigned to the set (if it is a simple set) |
---|
1972 | or its members (if the set is an array of elemental sets). If the |
---|
1973 | assign attribute is specified, the set is {\it computable} and |
---|
1974 | therefore needs no data to be provided in the data section. If the |
---|
1975 | assign attribute is not specified, the set must be provided with data |
---|
1976 | in the data section. At most one assign or default attribute can be |
---|
1977 | specified for the same set. |
---|
1978 | |
---|
1979 | The {\tt default} attribute specifies a set expression used to evaluate |
---|
1980 | elemental set(s) assigned to the set (if it is a simple set) or its |
---|
1981 | members (if the set is an array of elemental sets) whenever |
---|
1982 | no appropriate data are available in the data section. If neither |
---|
1983 | assign nor default attribute is specified, missing data will cause an |
---|
1984 | error. |
---|
1985 | |
---|
1986 | \subsection{Parameter statement} |
---|
1987 | |
---|
1988 | \medskip |
---|
1989 | |
---|
1990 | \framebox[345pt][l]{ |
---|
1991 | \parbox[c][24pt]{345pt}{ |
---|
1992 | \hspace{6pt} {\tt param} {\it name} {\it alias} {\it domain} {\tt,} |
---|
1993 | {\it attrib} {\tt,} \dots {\tt,} {\it attrib} {\tt;} |
---|
1994 | }} |
---|
1995 | |
---|
1996 | \setlength{\leftmargini}{60pt} |
---|
1997 | |
---|
1998 | \begin{description} |
---|
1999 | \item[{\rm Where:}\hspace*{23pt}] {\it name} is a symbolic name of the |
---|
2000 | parameter; |
---|
2001 | \item[\hspace*{54pt}] {\it alias} is an optional string literal, which |
---|
2002 | specifies an alias of the parameter; |
---|
2003 | \item[\hspace*{54pt}] {\it domain} is an optional indexing expression, |
---|
2004 | which specifies a subscript domain of the parameter; |
---|
2005 | \item[\hspace*{54pt}] {\it attrib}, \dots, {\it attrib} are optional |
---|
2006 | attributes of the parameter. (Commae preceding attributes may be |
---|
2007 | omitted.) |
---|
2008 | \end{description} |
---|
2009 | |
---|
2010 | \noindent Optional attributes: |
---|
2011 | |
---|
2012 | \begin{description} |
---|
2013 | \item[{\tt integer}\hspace*{18.5pt}] specifies that the parameter is |
---|
2014 | integer; |
---|
2015 | \item[{\tt binary}\hspace*{24pt}] specifies that the parameter is |
---|
2016 | binary; |
---|
2017 | \item[{\tt symbolic}\hspace*{13.5pt}] specifies that the parameter is |
---|
2018 | symbolic; |
---|
2019 | \item[{\it relation expression}]\hspace*{0pt}\\ |
---|
2020 | (where {\it relation} is one of: {\tt<}, {\tt<=}, {\tt=}, {\tt==}, |
---|
2021 | {\tt>=}, {\tt>}, {\tt<>}, {\tt!=})\\ |
---|
2022 | specifies a condition that restricts the parameter or its members to |
---|
2023 | satisfy that condition; |
---|
2024 | \item[{\tt in} {\it expression}]\hspace*{0pt}\\ |
---|
2025 | specifies a superset that restricts the parameter or its members to be |
---|
2026 | in that superset; |
---|
2027 | \item[{\tt:=} {\it expression}]\hspace*{0pt}\\ |
---|
2028 | specifies a value assigned to the parameter or its members; |
---|
2029 | \item[{\tt default} {\it expression}]\hspace*{0pt}\\ |
---|
2030 | specifies a value assigned to the parameter or its members whenever |
---|
2031 | no appropriate data are available in the data section. |
---|
2032 | \end{description} |
---|
2033 | |
---|
2034 | \noindent{\bf Examples} |
---|
2035 | |
---|
2036 | \begin{verbatim} |
---|
2037 | param units{raw, prd} >= 0; |
---|
2038 | param profit{prd, 1..T+1}; |
---|
2039 | param N := 20, integer, >= 0, <= 100; |
---|
2040 | param comb 'n choose k' {n in 0..N, k in 0..n} := |
---|
2041 | if k = 0 or k = n then 1 else comb[n-1,k-1] + comb[n-1,k]; |
---|
2042 | param p{i in I, j in J}, integer, >= 0, <= i+j, |
---|
2043 | in A[i] symdiff B[j], in C[i,j], default 0.5 * (i + j); |
---|
2044 | param month symbolic default 'May' in {'Mar', 'Apr', 'May'}; |
---|
2045 | \end{verbatim} |
---|
2046 | |
---|
2047 | The parameter statement declares a parameter. If a subscript domain is |
---|
2048 | not specified, the parameter is a simple (scalar) parameter, otherwise |
---|
2049 | it is a $n$-dimensional array. |
---|
2050 | |
---|
2051 | The type attributes {\tt integer}, {\tt binary}, and {\tt symbolic} |
---|
2052 | qualify the type of values that can be assigned to the parameter as |
---|
2053 | shown below: |
---|
2054 | |
---|
2055 | \medskip |
---|
2056 | |
---|
2057 | \noindent\hfil |
---|
2058 | \begin{tabular}{@{}ll@{}} |
---|
2059 | Type attribute&Assigned values\\ |
---|
2060 | \hline |
---|
2061 | (not specified)&Any numeric values\\ |
---|
2062 | {\tt integer}&Only integer numeric values\\ |
---|
2063 | {\tt binary}&Either 0 or 1\\ |
---|
2064 | {\tt symbolic}&Any numeric and symbolic values\\ |
---|
2065 | \end{tabular} |
---|
2066 | |
---|
2067 | \newpage |
---|
2068 | |
---|
2069 | The {\tt symbolic} attribute cannot be specified along with other type |
---|
2070 | attributes. Being specified it must precede all other attributes. |
---|
2071 | |
---|
2072 | The condition attribute specifies an optional condition that restricts |
---|
2073 | values assigned to the parameter to satisfy that condition. This |
---|
2074 | attribute has the following syntactic forms: |
---|
2075 | |
---|
2076 | \medskip |
---|
2077 | |
---|
2078 | \begin{tabular}{@{}ll@{}} |
---|
2079 | {\tt<} $v$&check for $x<v$\\ |
---|
2080 | {\tt<=} $v$&check for $x\leq v$\\ |
---|
2081 | {\tt=} $v$, {\tt==} $v$&check for $x=v$\\ |
---|
2082 | {\tt>=} $v$&check for $x\geq v$\\ |
---|
2083 | {\tt>} $v$&check for $x\geq v$\\ |
---|
2084 | {\tt<>} $v$, {\tt!=} $v$&check for $x\neq v$\\ |
---|
2085 | \end{tabular} |
---|
2086 | |
---|
2087 | \medskip |
---|
2088 | |
---|
2089 | \noindent where $x$ is a value assigned to the parameter, $v$ is the |
---|
2090 | resultant value of a numeric or symbolic expression specified in the |
---|
2091 | condition attribute. Arbitrary number of condition attributes can be |
---|
2092 | specified for the same parameter. If a value being assigned to the |
---|
2093 | parameter during model evaluation violates at least one of specified |
---|
2094 | conditions, an error is raised. (Note that symbolic values are ordered |
---|
2095 | lexicographically, and any numeric value precedes any symbolic value.) |
---|
2096 | |
---|
2097 | The {\tt in} attribute is similar to the condition attribute and |
---|
2098 | specifies a set expression whose resultant value is a superset used to |
---|
2099 | restrict numeric or symbolic values assigned to the parameter to be in |
---|
2100 | that superset. Arbitrary number of the {\tt in} attributes can be |
---|
2101 | specified for the same parameter. If a value being assigned to the |
---|
2102 | parameter during model evaluation is not in at least one of specified |
---|
2103 | supersets, an error is raised. |
---|
2104 | |
---|
2105 | The assign ({\tt:=}) attribute specifies a numeric or symbolic |
---|
2106 | expression used to compute a value assigned to the parameter (if it is |
---|
2107 | a simple parameter) or its member (if the parameter is an array). If |
---|
2108 | the assign attribute is specified, the parameter is {\it computable} |
---|
2109 | and therefore needs no data to be provided in the data section. If the |
---|
2110 | assign attribute is not specified, the parameter must be provided with |
---|
2111 | data in the data section. At most one assign or {\tt default} attribute |
---|
2112 | can be specified for the same parameter. |
---|
2113 | |
---|
2114 | The {\tt default} attribute specifies a numeric or symbolic expression |
---|
2115 | used to compute a value assigned to the parameter or its member |
---|
2116 | whenever no appropriate data are available in the data section. If |
---|
2117 | neither assign nor {\tt default} attribute is specified, missing data |
---|
2118 | will cause an error. |
---|
2119 | |
---|
2120 | \subsection{Variable statement} |
---|
2121 | |
---|
2122 | \medskip |
---|
2123 | |
---|
2124 | \framebox[345pt][l]{ |
---|
2125 | \parbox[c][24pt]{345pt}{ |
---|
2126 | \hspace{6pt} {\tt var} {\it name} {\it alias} {\it domain} {\tt,} |
---|
2127 | {\it attrib} {\tt,} \dots {\tt,} {\it attrib} {\tt;} |
---|
2128 | }} |
---|
2129 | |
---|
2130 | \setlength{\leftmargini}{60pt} |
---|
2131 | |
---|
2132 | \begin{description} |
---|
2133 | \item[{\rm Where:}\hspace*{23pt}] {\it name} is a symbolic name of the |
---|
2134 | variable; |
---|
2135 | \item[\hspace*{54pt}] {\it alias} is an optional string literal, which |
---|
2136 | specifies an alias of the variable; |
---|
2137 | \item[\hspace*{54pt}] {\it domain} is an optional indexing expression, |
---|
2138 | which specifies a subscript domain of the variable; |
---|
2139 | \item[\hspace*{54pt}] {\it attrib}, \dots, {\it attrib} are optional |
---|
2140 | attributes of the variable. (Commae preceding attributes may be |
---|
2141 | omitted.) |
---|
2142 | \end{description} |
---|
2143 | |
---|
2144 | \noindent Optional attributes: |
---|
2145 | |
---|
2146 | \begin{description} |
---|
2147 | \item[{\tt integer}\hspace*{18.5pt}] restricts the variable to be |
---|
2148 | integer; |
---|
2149 | \item[{\tt binary}\hspace*{24pt}] restricts the variable to be binary; |
---|
2150 | \item[{\tt>=} {\it expression}]\hspace*{0pt}\\ |
---|
2151 | specifies an lower bound of the variable; |
---|
2152 | \item[{\tt<=} {\it expression}]\hspace*{0pt}\\ |
---|
2153 | specifies an upper bound of the variable; |
---|
2154 | \item[{\tt=} {\it expression}]\hspace*{0pt}\\ |
---|
2155 | specifies a fixed value of the variable; |
---|
2156 | \end{description} |
---|
2157 | |
---|
2158 | \noindent{\bf Examples} |
---|
2159 | |
---|
2160 | \begin{verbatim} |
---|
2161 | var x >= 0; |
---|
2162 | var y{I,J}; |
---|
2163 | var make{p in prd}, integer, >= commit[p], <= market[p]; |
---|
2164 | var store{raw, 1..T+1} >= 0; |
---|
2165 | var z{i in I, j in J} >= i+j; |
---|
2166 | \end{verbatim} |
---|
2167 | |
---|
2168 | The variable statement declares a variable. If a subscript domain is |
---|
2169 | not specified, the variable is a simple (scalar) variable, otherwise it |
---|
2170 | is a $n$-dimensional array of elemental variables. |
---|
2171 | |
---|
2172 | Elemental variable(s) associated with the model variable (if it is a |
---|
2173 | simple variable) or its members (if it is an array) correspond to the |
---|
2174 | variables in the LP/MIP problem formulation (see Subsection |
---|
2175 | \ref{problem}, page \pageref{problem}). Note that only elemental |
---|
2176 | variables actually referenced in some constraints and/or objectives are |
---|
2177 | included in the LP/MIP problem instance to be generated. |
---|
2178 | |
---|
2179 | The type attributes {\tt integer} and {\tt binary} restrict the |
---|
2180 | variable to be integer or binary, respectively. If no type attribute is |
---|
2181 | specified, the variable is continuous. If all variables in the model |
---|
2182 | are continuous, the corresponding problem is of LP class. If there is |
---|
2183 | at least one integer or binary variable, the problem is of MIP class. |
---|
2184 | |
---|
2185 | The lower bound ({\tt>=}) attribute specifies a numeric expression for |
---|
2186 | computing an lower bound of the variable. At most one lower bound can |
---|
2187 | be specified. By default all variables (except binary ones) have no |
---|
2188 | lower bound, so if a variable is required to be non-negative, its zero |
---|
2189 | lower bound should be explicitly specified. |
---|
2190 | |
---|
2191 | The upper bound ({\tt<=}) attribute specifies a numeric expression for |
---|
2192 | computing an upper bound of the variable. At most one upper bound |
---|
2193 | attribute can be specified. |
---|
2194 | |
---|
2195 | The fixed value ({\tt=}) attribute specifies a numeric expression for |
---|
2196 | computing a value, at which the variable is fixed. This attribute |
---|
2197 | cannot be specified along with the bound attributes. |
---|
2198 | |
---|
2199 | \subsection{Constraint statement} |
---|
2200 | |
---|
2201 | \medskip |
---|
2202 | |
---|
2203 | \framebox[345pt][l]{ |
---|
2204 | \parbox[c][96pt]{345pt}{ |
---|
2205 | \hspace{6pt} {\tt s.t.} {\it name} {\it alias} {\it domain} {\tt:} |
---|
2206 | {\it expression} {\tt,} {\tt=} {\it expression} {\tt;} |
---|
2207 | |
---|
2208 | \medskip |
---|
2209 | |
---|
2210 | \hspace{6pt} {\tt s.t.} {\it name} {\it alias} {\it domain} {\tt:} |
---|
2211 | {\it expression} {\tt,} {\tt<=} {\it expression} {\tt;} |
---|
2212 | |
---|
2213 | \medskip |
---|
2214 | |
---|
2215 | \hspace{6pt} {\tt s.t.} {\it name} {\it alias} {\it domain} {\tt:} |
---|
2216 | {\it expression} {\tt,} {\tt>=} {\it expression} {\tt;} |
---|
2217 | |
---|
2218 | \medskip |
---|
2219 | |
---|
2220 | \hspace{6pt} {\tt s.t.} {\it name} {\it alias} {\it domain} {\tt:} |
---|
2221 | {\it expression} {\tt,} {\tt<=} {\it expression} {\tt,} {\tt<=} |
---|
2222 | {\it expression} {\tt;} |
---|
2223 | |
---|
2224 | \medskip |
---|
2225 | |
---|
2226 | \hspace{6pt} {\tt s.t.} {\it name} {\it alias} {\it domain} {\tt:} |
---|
2227 | {\it expression} {\tt,} {\tt>=} {\it expression} {\tt,} {\tt>=} |
---|
2228 | {\it expression} {\tt;} |
---|
2229 | }} |
---|
2230 | |
---|
2231 | \setlength{\leftmargini}{60pt} |
---|
2232 | |
---|
2233 | \begin{description} |
---|
2234 | \item[{\rm Where:}\hspace*{23pt}] {\it name} is a symbolic name of the |
---|
2235 | constraint; |
---|
2236 | \item[\hspace*{54pt}] {\it alias} is an optional string literal, which |
---|
2237 | specifies an alias of the constraint; |
---|
2238 | \item[\hspace*{54pt}] {\it domain} is an optional indexing expression, |
---|
2239 | which specifies a subscript domain of the constraint; |
---|
2240 | \item[\hspace*{54pt}] {\it expression} is a linear expression used to |
---|
2241 | compute a component of the constraint. (Commae following expressions |
---|
2242 | may be omitted.) |
---|
2243 | \end{description} |
---|
2244 | |
---|
2245 | \begin{description} |
---|
2246 | \item[{\rm Note:}\hspace*{31pt}] The keyword {\tt s.t.} may be written |
---|
2247 | as {\tt subject to} or as {\tt subj to}, or may be omitted at all. |
---|
2248 | \end{description} |
---|
2249 | |
---|
2250 | \noindent{\bf Examples} |
---|
2251 | |
---|
2252 | \begin{verbatim} |
---|
2253 | s.t. r: x + y + z, >= 0, <= 1; |
---|
2254 | limit{t in 1..T}: sum{j in prd} make[j,t] <= max_prd; |
---|
2255 | subject to balance{i in raw, t in 1..T}: store[i,t+1] - |
---|
2256 | store[i,t] - sum{j in prd} units[i,j] * make[j,t]; |
---|
2257 | subject to rlim 'regular-time limit' {t in time}: |
---|
2258 | sum{p in prd} pt[p] * rprd[p,t] <= 1.3 * dpp[t] * crews[t]; |
---|
2259 | \end{verbatim} |
---|
2260 | |
---|
2261 | The constraint statement declares a constraint. If a subscript domain |
---|
2262 | is not specified, the constraint is a simple (scalar) constraint, |
---|
2263 | otherwise it is a $n$-dimensional array of elemental constraints. |
---|
2264 | |
---|
2265 | Elemental constraint(s) associated with the model constraint (if it is |
---|
2266 | a simple constraint) or its members (if it is an array) correspond to |
---|
2267 | the linear constraints in the LP/MIP problem formulation (see |
---|
2268 | Subsection \ref{problem}, page \pageref{problem}). |
---|
2269 | |
---|
2270 | If the constraint has the form of equality or single inequality, i.e. |
---|
2271 | includes two expressions, one of which follows the colon and other |
---|
2272 | follows the relation sign {\tt=}, {\tt<=}, or {\tt>=}, both expressions |
---|
2273 | in the statement can be linear expressions. If the constraint has the |
---|
2274 | form of double inequality, i.e. includes three expressions, the middle |
---|
2275 | expression can be a linear expression while the leftmost and rightmost |
---|
2276 | ones can be only numeric expressions. |
---|
2277 | |
---|
2278 | Generating the model is, roughly speaking, generating its constraints, |
---|
2279 | which are always evaluated for the entire subscript domain. Evaluation |
---|
2280 | of the constraints leads, in turn, to evaluation of other model objects |
---|
2281 | such as sets, parameters, and variables. |
---|
2282 | |
---|
2283 | Constructing an actual linear constraint included in the problem |
---|
2284 | instance, which (constraint) corresponds to a particular elemental |
---|
2285 | constraint, is performed as follows. |
---|
2286 | |
---|
2287 | If the constraint has the form of equality or single inequality, |
---|
2288 | evaluation of both linear expressions gives two resultant linear forms: |
---|
2289 | $$\begin{array}{r@{\ }c@{\ }r@{\ }c@{\ }r@{\ }c@{\ }r@{\ }c@{\ }r} |
---|
2290 | f&=&a_1x_1&+&a_2x_2&+\dots+&a_nx_n&+&a_0,\\ |
---|
2291 | g&=&b_1x_1&+&a_2x_2&+\dots+&a_nx_n&+&b_0,\\ |
---|
2292 | \end{array}$$ |
---|
2293 | where $x_1$, $x_2$, \dots, $x_n$ are elemental variables; $a_1$, $a_2$, |
---|
2294 | \dots, $a_n$, $b_1$, $b_2$, \dots, $b_n$ are numeric coefficients; |
---|
2295 | $a_0$ and $b_0$ are constant terms. Then all linear terms of $f$ and |
---|
2296 | $g$ are carried to the left-hand side, and the constant terms are |
---|
2297 | carried to the right-hand side, that gives the final elemental |
---|
2298 | constraint in the standard form: |
---|
2299 | $$(a_1-b_1)x_1+(a_2-b_2)x_2+\dots+(a_n-b_n)x_n\left\{ |
---|
2300 | \begin{array}{@{}c@{}}=\\\leq\\\geq\\\end{array}\right\}b_0-a_0.$$ |
---|
2301 | |
---|
2302 | If the constraint has the form of double inequality, evaluation of the |
---|
2303 | middle linear expression gives the resultant linear form: |
---|
2304 | $$f=a_1x_1+a_2x_2+\dots+a_nx_n+a_0,$$ |
---|
2305 | and evaluation of the leftmost and rightmost numeric expressions gives |
---|
2306 | two numeric values $l$ and $u$, respectively. Then the constant term of |
---|
2307 | the linear form is carried to both left-hand and right-handsides that |
---|
2308 | gives the final elemental constraint in the standard form: |
---|
2309 | $$l-a_0\leq a_1x_1+a_2x_2+\dots+a_nx_n\leq u-a_0.$$ |
---|
2310 | |
---|
2311 | \subsection{Objective statement} |
---|
2312 | |
---|
2313 | \medskip |
---|
2314 | |
---|
2315 | \framebox[345pt][l]{ |
---|
2316 | \parbox[c][44pt]{345pt}{ |
---|
2317 | \hspace{6pt} {\tt minimize} {\it name} {\it alias} {\it domain} {\tt:} |
---|
2318 | {\it expression} {\tt;} |
---|
2319 | |
---|
2320 | \medskip |
---|
2321 | |
---|
2322 | \hspace{6pt} {\tt maximize} {\it name} {\it alias} {\it domain} {\tt:} |
---|
2323 | {\it expression} {\tt;} |
---|
2324 | }} |
---|
2325 | |
---|
2326 | \setlength{\leftmargini}{60pt} |
---|
2327 | |
---|
2328 | \begin{description} |
---|
2329 | \item[{\rm Where:}\hspace*{23pt}] {\it name} is a symbolic name of the |
---|
2330 | objective; |
---|
2331 | \item[\hspace*{54pt}] {\it alias} is an optional string literal, which |
---|
2332 | specifies an alias of the objective; |
---|
2333 | \item[\hspace*{54pt}] {\it domain} is an optional indexing expression, |
---|
2334 | which specifies a subscript domain of the objective; |
---|
2335 | \item[\hspace*{54pt}] {\it expression} is a linear expression used to |
---|
2336 | compute the linear form of the objective. |
---|
2337 | \end{description} |
---|
2338 | |
---|
2339 | \noindent{\bf Examples} |
---|
2340 | |
---|
2341 | \begin{verbatim} |
---|
2342 | minimize obj: x + 1.5 * (y + z); |
---|
2343 | maximize total_profit: sum{p in prd} profit[p] * make[p]; |
---|
2344 | \end{verbatim} |
---|
2345 | |
---|
2346 | The objective statement declares an objective. If a subscript domain is |
---|
2347 | not specified, the objective is a simple (scalar) objective. Otherwise |
---|
2348 | it is a $n$-dimensional array of elemental objectives. |
---|
2349 | |
---|
2350 | Elemental objective(s) associated with the model objective (if it is a |
---|
2351 | simple objective) or its members (if it is an array) correspond to |
---|
2352 | general linear constraints in the LP/MIP problem formulation (see |
---|
2353 | Subsection \ref{problem}, page \pageref{problem}). However, unlike |
---|
2354 | constraints the corresponding linear forms are free (unbounded). |
---|
2355 | |
---|
2356 | Constructing an actual linear constraint included in the problem |
---|
2357 | instance, which (constraint) corresponds to a particular elemental |
---|
2358 | constraint, is performed as follows. The linear expression specified in |
---|
2359 | the objective statement is evaluated that, gives the resultant linear |
---|
2360 | form: |
---|
2361 | $$f=a_1x_1+a_2x_2+\dots+a_nx_n+a_0,$$ |
---|
2362 | where $x_1$, $x_2$, \dots, $x_n$ are elemental variables; $a_1$, $a_2$, |
---|
2363 | \dots, $a_n$ are numeric coefficients; $a_0$ is the constant term. Then |
---|
2364 | the linear form is used to construct the final elemental constraint in |
---|
2365 | the standard form: |
---|
2366 | $$-\infty<a_1x_1+a_2x_2+\dots+a_nx_n+a_0<+\infty.$$ |
---|
2367 | |
---|
2368 | As a rule the model description contains only one objective statement |
---|
2369 | that defines the objective function used in the problem instance. |
---|
2370 | However, it is allowed to declare arbitrary number of objectives, in |
---|
2371 | which case the actual objective function is the first objective |
---|
2372 | encountered in the model description. Other objectives are also |
---|
2373 | included in the problem instance, but they do not affect the objective |
---|
2374 | function. |
---|
2375 | |
---|
2376 | \subsection{Solve statement} |
---|
2377 | |
---|
2378 | \medskip |
---|
2379 | |
---|
2380 | \framebox[345pt][l]{ |
---|
2381 | \parbox[c][24pt]{345pt}{ |
---|
2382 | \hspace{6pt} {\tt solve} {\tt;} |
---|
2383 | }} |
---|
2384 | |
---|
2385 | \setlength{\leftmargini}{60pt} |
---|
2386 | |
---|
2387 | \begin{description} |
---|
2388 | \item[{\rm Note:}\hspace*{31pt}] The solve statement is optional and |
---|
2389 | can be used only once. If no solve statement is used, one is assumed at |
---|
2390 | the end of the model section. |
---|
2391 | \end{description} |
---|
2392 | |
---|
2393 | The solve statement causes the model to be solved, that means computing |
---|
2394 | numeric values of all model variables. This allows using variables in |
---|
2395 | statements below the solve statement in the same way as if they were |
---|
2396 | numeric parameters. |
---|
2397 | |
---|
2398 | Note that the variable, constraint, and objective statements cannot be |
---|
2399 | used below the solve statement, i.e. all principal components of the |
---|
2400 | model must be declared above the solve statement. |
---|
2401 | |
---|
2402 | \subsection{Check statement} |
---|
2403 | |
---|
2404 | \medskip |
---|
2405 | |
---|
2406 | \framebox[345pt][l]{ |
---|
2407 | \parbox[c][24pt]{345pt}{ |
---|
2408 | \hspace{6pt} {\tt check} {\it domain} {\tt:} {\it expression} {\tt;} |
---|
2409 | }} |
---|
2410 | |
---|
2411 | \setlength{\leftmargini}{60pt} |
---|
2412 | |
---|
2413 | \begin{description} |
---|
2414 | \item[{\rm Where:}\hspace*{23pt}] {\it domain} is an optional indexing |
---|
2415 | expression, which specifies a subscript domain of the check statement; |
---|
2416 | \item[\hspace*{54pt}] {\it expression} is an logical expression which |
---|
2417 | specifies the logical condition to be checked. (The colon preceding |
---|
2418 | {\it expression} may be omitted.) |
---|
2419 | \end{description} |
---|
2420 | |
---|
2421 | \noindent{\bf Examples} |
---|
2422 | |
---|
2423 | \begin{verbatim} |
---|
2424 | check: x + y <= 1 and x >= 0 and y >= 0; |
---|
2425 | check sum{i in ORIG} supply[i] = sum{j in DEST} demand[j]; |
---|
2426 | check{i in I, j in 1..10}: S[i,j] in U[i] union V[j]; |
---|
2427 | \end{verbatim} |
---|
2428 | |
---|
2429 | The check statement allows checking the resultant value of an logical |
---|
2430 | expression specified in the statement. If the value is {\it false}, an |
---|
2431 | error is reported. |
---|
2432 | |
---|
2433 | If the subscript domain is not specified, the check is performed only |
---|
2434 | once. Specifying the subscript domain allows performing multiple checks |
---|
2435 | for every\linebreak $n$-tuple in the domain set. In the latter case the |
---|
2436 | logical expression may include dummy indices introduced in |
---|
2437 | corresponding indexing expression. |
---|
2438 | |
---|
2439 | \subsection{Display statement} |
---|
2440 | |
---|
2441 | \medskip |
---|
2442 | |
---|
2443 | \framebox[345pt][l]{ |
---|
2444 | \parbox[c][24pt]{345pt}{ |
---|
2445 | \hspace{6pt} {\tt display} {\it domain} {\tt:} {\it item} {\tt,} |
---|
2446 | \dots {\tt,} {\it item} {\tt;} |
---|
2447 | }} |
---|
2448 | |
---|
2449 | \setlength{\leftmargini}{60pt} |
---|
2450 | |
---|
2451 | \begin{description} |
---|
2452 | \item[{\rm Where:}\hspace*{23pt}] {\it domain} is an optional indexing |
---|
2453 | expression, which specifies a subscript domain of the check statement; |
---|
2454 | \item[\hspace*{54pt}] {\it item}, \dots, {\it item} are items to be |
---|
2455 | displayed. (The colon preceding the first item may be omitted.) |
---|
2456 | \end{description} |
---|
2457 | |
---|
2458 | \noindent{\bf Examples} |
---|
2459 | |
---|
2460 | \begin{verbatim} |
---|
2461 | display: 'x =', x, 'y =', y, 'z =', z; |
---|
2462 | display sqrt(x ** 2 + y ** 2 + z ** 2); |
---|
2463 | display{i in I, j in J}: i, j, a[i,j], b[i,j]; |
---|
2464 | \end{verbatim} |
---|
2465 | |
---|
2466 | \newpage |
---|
2467 | |
---|
2468 | The display statement evaluates all items specified in the statement |
---|
2469 | and writes their values to the terminal in plain text format. |
---|
2470 | |
---|
2471 | If a subscript domain is not specified, items are evaluated and then |
---|
2472 | displayed only once. Specifying the subscript domain causes items to be |
---|
2473 | evaluated and displayed for every $n$-tuple in the domain set. In the |
---|
2474 | latter case items may include dummy indices introduced in corresponding |
---|
2475 | indexing expression. |
---|
2476 | |
---|
2477 | An item to be displayed can be a model object (set, parameter, variable, |
---|
2478 | constraint, objective) or an expression. |
---|
2479 | |
---|
2480 | If the item is a computable object (i.e. a set or parameter provided |
---|
2481 | with the assign attribute), the object is evaluated over the entire |
---|
2482 | domain and then its content (i.e. the content of the object array) is |
---|
2483 | displayed. Otherwise, if the item is not a computable object, only its |
---|
2484 | current content (i.e. members actually generated during the model |
---|
2485 | evaluation) is displayed. |
---|
2486 | |
---|
2487 | If the item is an expression, the expression is evaluated and its |
---|
2488 | resultant value is displayed. |
---|
2489 | |
---|
2490 | \subsection{Printf statement} |
---|
2491 | |
---|
2492 | \medskip |
---|
2493 | |
---|
2494 | \framebox[345pt][l]{ |
---|
2495 | \parbox[c][60pt]{345pt}{ |
---|
2496 | \hspace{6pt} {\tt printf} {\it domain} {\tt:} {\it format} {\tt,} |
---|
2497 | {\it expression} {\tt,} \dots {\tt,} {\it expression} {\tt;} |
---|
2498 | |
---|
2499 | \medskip |
---|
2500 | |
---|
2501 | \hspace{6pt} {\tt printf} {\it domain} {\tt:} {\it format} {\tt,} |
---|
2502 | {\it expression} {\tt,} \dots {\tt,} {\it expression} {\tt>} |
---|
2503 | {\it filename} {\tt;} |
---|
2504 | |
---|
2505 | \medskip |
---|
2506 | |
---|
2507 | \hspace{6pt} {\tt printf} {\it domain} {\tt:} {\it format} {\tt,} |
---|
2508 | {\it expression} {\tt,} \dots {\tt,} {\it expression} {\tt>>} |
---|
2509 | {\it filename} {\tt;} |
---|
2510 | }} |
---|
2511 | |
---|
2512 | \setlength{\leftmargini}{60pt} |
---|
2513 | |
---|
2514 | \begin{description} |
---|
2515 | \item[{\rm Where:}\hspace*{23pt}] {\it domain} is an optional indexing |
---|
2516 | expression, which specifies a subscript domain of the printf statement; |
---|
2517 | \item[\hspace*{54pt}] {\it format} is a symbolic expression whose value |
---|
2518 | specifies a format control string. (The colon preceding the format |
---|
2519 | expression may be omitted.) |
---|
2520 | \item[\hspace*{54pt}] {\it expression}, \dots, {\it expression} are |
---|
2521 | zero or more expressions whose values have to be formatted and printed. |
---|
2522 | Each expression must be of numeric, symbolic, or logical type. |
---|
2523 | \item[\hspace*{54pt}] {\it filename} is a symbolic expression whose |
---|
2524 | value specifies a name of a text file, to which the output is |
---|
2525 | redirected. The flag {\tt>} means creating a new empty file while the |
---|
2526 | flag {\tt>>} means appending the output to an existing file. If no file |
---|
2527 | name is specified, the output is written to the terminal. |
---|
2528 | \end{description} |
---|
2529 | |
---|
2530 | \noindent{\bf Examples} |
---|
2531 | |
---|
2532 | \begin{verbatim} |
---|
2533 | printf 'Hello, world!\n'; |
---|
2534 | printf: "x = %.3f; y = %.3f; z = %.3f\n", |
---|
2535 | x, y, z > "result.txt"; |
---|
2536 | printf{i in I, j in J}: "flow from %s to %s is %d\n", |
---|
2537 | i, j, x[i,j] >> result_file & ".txt"; |
---|
2538 | \end{verbatim} |
---|
2539 | |
---|
2540 | \newpage |
---|
2541 | |
---|
2542 | \begin{verbatim} |
---|
2543 | printf{i in I} 'total flow from %s is %g\n', |
---|
2544 | i, sum{j in J} x[i,j]; |
---|
2545 | printf{k in K} "x[%s] = " & (if x[k] < 0 then "?" else "%g"), |
---|
2546 | k, x[k]; |
---|
2547 | \end{verbatim} |
---|
2548 | |
---|
2549 | The printf statement is similar to the display statement, however, it |
---|
2550 | allows formatting data to be written. |
---|
2551 | |
---|
2552 | If a subscript domain is not specified, the printf statement is |
---|
2553 | executed only once. Specifying a subscript domain causes executing the |
---|
2554 | printf statement for every $n$-tuple in the domain set. In the latter |
---|
2555 | case the format and expression may include dummy indices introduced in |
---|
2556 | corresponding indexing expression. |
---|
2557 | |
---|
2558 | The format control string is a value of the symbolic expression |
---|
2559 | {\it format} specified in the printf statement. It is composed of zero |
---|
2560 | or more directives as follows: ordinary characters (not {\tt\%}), which |
---|
2561 | are copied unchanged to the output stream, and conversion |
---|
2562 | specifications, each of which causes evaluating corresponding |
---|
2563 | expression specified in the printf statement, formatting it, and |
---|
2564 | writing its resultant value to the output stream. |
---|
2565 | |
---|
2566 | Conversion specifications that may be used in the format control string |
---|
2567 | are the following: {\tt d}, {\tt i}, {\tt f}, {\tt F}, {\tt e}, {\tt E}, |
---|
2568 | {\tt g}, {\tt G}, and {\tt s}. These specifications have the same |
---|
2569 | syntax and semantics as in the C programming language. |
---|
2570 | |
---|
2571 | \subsection{For statement} |
---|
2572 | |
---|
2573 | \medskip |
---|
2574 | |
---|
2575 | \framebox[345pt][l]{ |
---|
2576 | \parbox[c][44pt]{345pt}{ |
---|
2577 | \hspace{6pt} {\tt for} {\it domain} {\tt:} {\it statement} {\tt;} |
---|
2578 | |
---|
2579 | \medskip |
---|
2580 | |
---|
2581 | \hspace{6pt} {\tt for} {\it domain} {\tt:} {\tt\{} {\it statement} |
---|
2582 | \dots {\it statement} {\tt\}} {\tt;} |
---|
2583 | }} |
---|
2584 | |
---|
2585 | \setlength{\leftmargini}{60pt} |
---|
2586 | |
---|
2587 | \begin{description} |
---|
2588 | \item[{\rm Where:}\hspace*{23pt}] {\it domain} is an indexing |
---|
2589 | expression which specifies a subscript domain of the for statement. |
---|
2590 | (The colon following the indexing expression may be omitted.) |
---|
2591 | \item[\hspace*{54pt}] {\it statement} is a statement, which should be |
---|
2592 | executed under control of the for statement; |
---|
2593 | \item[\hspace*{54pt}] {\it statement}, \dots, {\it statement} is a |
---|
2594 | sequence of statements (enclosed in curly braces), which should be |
---|
2595 | executed under control of the for statement. |
---|
2596 | \end{description} |
---|
2597 | |
---|
2598 | \begin{description} |
---|
2599 | \item[{\rm Note:}\hspace*{31pt}] Only the following statements can be |
---|
2600 | used within the for statement: check, display, printf, and another for. |
---|
2601 | \end{description} |
---|
2602 | |
---|
2603 | \noindent{\bf Examples} |
---|
2604 | |
---|
2605 | \begin{verbatim} |
---|
2606 | for {(i,j) in E: i != j} |
---|
2607 | { printf "flow from %s to %s is %g\n", i, j, x[i,j]; |
---|
2608 | check x[i,j] >= 0; |
---|
2609 | } |
---|
2610 | \end{verbatim} |
---|
2611 | |
---|
2612 | \newpage |
---|
2613 | |
---|
2614 | \begin{verbatim} |
---|
2615 | for {i in 1..n} |
---|
2616 | { for {j in 1..n} printf " %s", if x[i,j] then "Q" else "."; |
---|
2617 | printf("\n"); |
---|
2618 | } |
---|
2619 | for {1..72} printf("*"); |
---|
2620 | \end{verbatim} |
---|
2621 | |
---|
2622 | The for statement causes a statement or a sequence of statements |
---|
2623 | specified as part of the for statement to be executed for every |
---|
2624 | $n$-tuple in the domain set. Thus, statements within the for statement |
---|
2625 | may include dummy indices introduced in corresponding indexing |
---|
2626 | expression. |
---|
2627 | |
---|
2628 | \subsection{Table statement} |
---|
2629 | |
---|
2630 | \medskip |
---|
2631 | |
---|
2632 | \framebox[345pt][l]{ |
---|
2633 | \parbox[c][68pt]{345pt}{ |
---|
2634 | \hspace{6pt} {\tt table} {\it name} {\it alias} {\tt IN} {\it driver} |
---|
2635 | {\it arg} \dots {\it arg} {\tt:} |
---|
2636 | |
---|
2637 | \hspace{6pt} {\tt\ \ \ \ \ } {\it set} {\tt<-} {\tt[} {\it fld} {\tt,} |
---|
2638 | \dots {\tt,} {\it fld} {\tt]} {\tt,} {\it par} {\tt\textasciitilde} |
---|
2639 | {\it fld} {\tt,} \dots {\tt,} {\it par} {\tt\textasciitilde} {\it fld} |
---|
2640 | {\tt;} |
---|
2641 | |
---|
2642 | \medskip |
---|
2643 | |
---|
2644 | \hspace{6pt} {\tt table} {\it name} {\it alias} {\it domain} {\tt OUT} |
---|
2645 | {\it driver} {\it arg} \dots {\it arg} {\tt:} |
---|
2646 | |
---|
2647 | \hspace{6pt} {\tt\ \ \ \ \ } {\it expr} {\tt\textasciitilde} {\it fld} |
---|
2648 | {\tt,} \dots {\tt,} {\it expr} {\tt\textasciitilde} {\it fld} {\tt;} |
---|
2649 | }} |
---|
2650 | |
---|
2651 | \setlength{\leftmargini}{60pt} |
---|
2652 | |
---|
2653 | \begin{description} |
---|
2654 | \item[{\rm Where:}\hspace*{23pt}] {\it name} is a symbolic name of the |
---|
2655 | table; |
---|
2656 | \item[\hspace*{54pt}] {\it alias} is an optional string literal, which |
---|
2657 | specifies an alias of the table; |
---|
2658 | \item[\hspace*{54pt}] {\it domain} is an indexing expression, which |
---|
2659 | specifies a subscript domain of the (output) table; |
---|
2660 | \item[\hspace*{54pt}] {\tt IN} means reading data from the input table; |
---|
2661 | \item[\hspace*{54pt}] {\tt OUT} means writing data to the output table; |
---|
2662 | \item[\hspace*{54pt}] {\it driver} is a symbolic expression, which |
---|
2663 | specifies the driver used to access the table (for details see Section |
---|
2664 | \ref{drivers}, page \pageref{drivers}); |
---|
2665 | \item[\hspace*{54pt}] {\it arg} is an optional symbolic expression, |
---|
2666 | which is an argument pass\-ed to the table driver. This symbolic |
---|
2667 | expression must not include dummy indices specified in the domain; |
---|
2668 | \item[\hspace*{54pt}] {\it set} is the name of an optional simple set |
---|
2669 | called {\it control set}. It can be omitted along with the delimiter |
---|
2670 | {\tt<-}; |
---|
2671 | \item[\hspace*{54pt}] {\it fld} is a field name. Within square brackets |
---|
2672 | at least one field should be specified. The field name following |
---|
2673 | a parameter name or expression is optional and can be omitted along |
---|
2674 | with the delimiter {\tt\textasciitilde}, in which case the name of |
---|
2675 | corresponding model object is used as the field name; |
---|
2676 | \item[\hspace*{54pt}] {\it par} is a symbolic name of a model parameter; |
---|
2677 | \item[\hspace*{54pt}] {\it expr} is a numeric or symbolic expression. |
---|
2678 | \end{description} |
---|
2679 | |
---|
2680 | \newpage |
---|
2681 | |
---|
2682 | \noindent{\bf Examples} |
---|
2683 | |
---|
2684 | \begin{verbatim} |
---|
2685 | table data IN "CSV" "data.csv": |
---|
2686 | S <- [FROM,TO], d~DISTANCE, c~COST; |
---|
2687 | table result{(f,t) in S} OUT "CSV" "result.csv": |
---|
2688 | f~FROM, t~TO, x[f,t]~FLOW; |
---|
2689 | \end{verbatim} |
---|
2690 | |
---|
2691 | The table statement allows reading data from a table into model |
---|
2692 | objects such as sets and (non-scalar) parameters as well as writing |
---|
2693 | data from the model to a table. |
---|
2694 | |
---|
2695 | \subsubsection{Table structure} |
---|
2696 | |
---|
2697 | A {\it data table} is an (unordered) set of {\it records}, where each |
---|
2698 | record consists of the same number of {\it fields}, and each field is |
---|
2699 | provided with a unique symbolic name called the {\it field name}. For |
---|
2700 | example: |
---|
2701 | |
---|
2702 | \bigskip |
---|
2703 | |
---|
2704 | \begin{tabular}{@{\hspace*{38mm}}c@{\hspace*{11mm}}c@{\hspace*{10mm}}c |
---|
2705 | @{\hspace*{9mm}}c} |
---|
2706 | First&Second&&Last\\ |
---|
2707 | field&field&.\ \ .\ \ .&field\\ |
---|
2708 | $\downarrow$&$\downarrow$&&$\downarrow$\\ |
---|
2709 | \end{tabular} |
---|
2710 | |
---|
2711 | \begin{tabular}{ll@{}} |
---|
2712 | Table header&$\rightarrow$\\ |
---|
2713 | First record&$\rightarrow$\\ |
---|
2714 | Second record&$\rightarrow$\\ |
---|
2715 | \\ |
---|
2716 | \hfil .\ \ .\ \ .\\ |
---|
2717 | \\ |
---|
2718 | Last record&$\rightarrow$\\ |
---|
2719 | \end{tabular} |
---|
2720 | \begin{tabular}{|l|l|c|c|} |
---|
2721 | \hline |
---|
2722 | {\tt FROM}&{\tt TO}&{\tt DISTANCE}&{\tt COST}\\ |
---|
2723 | \hline |
---|
2724 | {\tt Seattle} &{\tt New-York}&{\tt 2.5}&{\tt 0.12}\\ |
---|
2725 | {\tt Seattle} &{\tt Chicago} &{\tt 1.7}&{\tt 0.08}\\ |
---|
2726 | {\tt Seattle} &{\tt Topeka} &{\tt 1.8}&{\tt 0.09}\\ |
---|
2727 | {\tt San-Diego}&{\tt New-York}&{\tt 2.5}&{\tt 0.15}\\ |
---|
2728 | {\tt San-Diego}&{\tt Chicago} &{\tt 1.8}&{\tt 0.10}\\ |
---|
2729 | {\tt San-Diego}&{\tt Topeka} &{\tt 1.4}&{\tt 0.07}\\ |
---|
2730 | \hline |
---|
2731 | \end{tabular} |
---|
2732 | |
---|
2733 | \subsubsection{Reading data from input table} |
---|
2734 | |
---|
2735 | The input table statement causes reading data from the specified table |
---|
2736 | record by record. |
---|
2737 | |
---|
2738 | Once a next record has been read, numeric or symbolic values of fields, |
---|
2739 | whose names are enclosed in square brackets in the table statement, are |
---|
2740 | gathered into $n$-tuple, and if the control set is specified in the |
---|
2741 | table statement, this $n$-tuple is added to it. Besides, a numeric or |
---|
2742 | symbolic value of each field associated with a model parameter is |
---|
2743 | assigned to the parameter member identified by subscripts, which are |
---|
2744 | components of the $n$-tuple just read. |
---|
2745 | |
---|
2746 | For example, the following input table statement: |
---|
2747 | |
---|
2748 | \medskip |
---|
2749 | |
---|
2750 | \noindent\hfil |
---|
2751 | \verb|table data IN "...": S <- [FROM,TO], d~DISTANCE, c~COST;| |
---|
2752 | |
---|
2753 | \medskip |
---|
2754 | |
---|
2755 | \noindent |
---|
2756 | causes reading values of four fields named {\tt FROM}, {\tt TO}, |
---|
2757 | {\tt DISTANCE}, and {\tt COST} from each record of the specified table. |
---|
2758 | Values of fields {\tt FROM} and {\tt TO} give a pair $(f,t)$, which is |
---|
2759 | added to the control set {\tt S}. The value of field {\tt DISTANCE} is |
---|
2760 | assigned to parameter member ${\tt d}[f,t]$, and the value of field |
---|
2761 | {\tt COST} is assigned to parameter member ${\tt c}[f,t]$. |
---|
2762 | |
---|
2763 | Note that the input table may contain extra fields whose names are not |
---|
2764 | specified in the table statement, in which case values of these fields |
---|
2765 | on reading the table are ignored. |
---|
2766 | |
---|
2767 | \subsubsection{Writing data to output table} |
---|
2768 | |
---|
2769 | The output table statement causes writing data to the specified table. |
---|
2770 | Note that some drivers (namely, CSV and xBASE) destroy the output table |
---|
2771 | before writing data, i.e. delete all its existing records. |
---|
2772 | |
---|
2773 | Each $n$-tuple in the specified domain set generates one record written |
---|
2774 | to the output table. Values of fields are numeric or symbolic values of |
---|
2775 | corresponding expressions specified in the table statement. These |
---|
2776 | expressions are evaluated for each $n$-tuple in the domain set and, |
---|
2777 | thus, may include dummy indices introduced in the corresponding indexing |
---|
2778 | expression. |
---|
2779 | |
---|
2780 | For example, the following output table statement: |
---|
2781 | |
---|
2782 | \medskip |
---|
2783 | |
---|
2784 | \noindent |
---|
2785 | \verb| table result{(f,t) in S} OUT "...": f~FROM, t~TO, x[f,t]~FLOW;| |
---|
2786 | |
---|
2787 | \medskip |
---|
2788 | |
---|
2789 | \noindent |
---|
2790 | causes writing records, by one record for each pair $(f,t)$ in set |
---|
2791 | {\tt S}, to the output table, where each record consists of three |
---|
2792 | fields named {\tt FROM}, {\tt TO}, and {\tt FLOW}. The values written |
---|
2793 | to fields {\tt FROM} and {\tt TO} are current values of dummy indices |
---|
2794 | {\tt f} and {\tt t}, and the value written to field {\tt FLOW} is |
---|
2795 | a value of member ${\tt x}[f,t]$ of corresponding subscripted parameter |
---|
2796 | or variable. |
---|
2797 | |
---|
2798 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
2799 | |
---|
2800 | \newpage |
---|
2801 | |
---|
2802 | \section{Model data} |
---|
2803 | |
---|
2804 | {\it Model data} include elemental sets, which are ``values'' of model |
---|
2805 | sets, and numeric and symbolic values of model parameters. |
---|
2806 | |
---|
2807 | In MathProg there are two different ways to saturate model sets and |
---|
2808 | parameters with data. One way is simply providing necessary data using |
---|
2809 | the assign attribute. However, in many cases it is more practical to |
---|
2810 | separate the model itself and particular data needed for the model. For |
---|
2811 | the latter reason in MathProg there is another way, when the model |
---|
2812 | description is divided into two parts: model section and data section. |
---|
2813 | |
---|
2814 | A {\it model section} is a main part of the model description that |
---|
2815 | contains declarations of all model objects and is common for all |
---|
2816 | problems based on that model. |
---|
2817 | |
---|
2818 | A {\it data section} is an optional part of the model description that |
---|
2819 | contains model data specific for a particular problem. |
---|
2820 | |
---|
2821 | In MathProg model and data sections can be placed either in one text |
---|
2822 | file or in two separate text files. |
---|
2823 | |
---|
2824 | 1. If both model and data sections are placed in one file, the file is |
---|
2825 | composed as follows: |
---|
2826 | |
---|
2827 | \bigskip |
---|
2828 | |
---|
2829 | \noindent\hfil |
---|
2830 | \framebox{\begin{tabular}{l} |
---|
2831 | {\it statement}{\tt;}\\ |
---|
2832 | {\it statement}{\tt;}\\ |
---|
2833 | \hfil.\ \ .\ \ .\\ |
---|
2834 | {\it statement}{\tt;}\\ |
---|
2835 | {\tt data;}\\ |
---|
2836 | {\it data block}{\tt;}\\ |
---|
2837 | {\it data block}{\tt;}\\ |
---|
2838 | \hfil.\ \ .\ \ .\\ |
---|
2839 | {\it data block}{\tt;}\\ |
---|
2840 | {\tt end;} |
---|
2841 | \end{tabular}} |
---|
2842 | |
---|
2843 | \bigskip |
---|
2844 | |
---|
2845 | 2. If the model and data sections are placed in two separate files, the |
---|
2846 | files are composed as follows: |
---|
2847 | |
---|
2848 | \bigskip |
---|
2849 | |
---|
2850 | \noindent\hfil |
---|
2851 | \begin{tabular}{@{}c@{}} |
---|
2852 | \framebox{\begin{tabular}{l} |
---|
2853 | {\it statement}{\tt;}\\ |
---|
2854 | {\it statement}{\tt;}\\ |
---|
2855 | \hfil.\ \ .\ \ .\\ |
---|
2856 | {\it statement}{\tt;}\\ |
---|
2857 | {\tt end;}\\ |
---|
2858 | \end{tabular}}\\ |
---|
2859 | \\\\Model file\\ |
---|
2860 | \end{tabular} |
---|
2861 | \hspace{32pt} |
---|
2862 | \begin{tabular}{@{}c@{}} |
---|
2863 | \framebox{\begin{tabular}{l} |
---|
2864 | {\tt data;}\\ |
---|
2865 | {\it data block}{\tt;}\\ |
---|
2866 | {\it data block}{\tt;}\\ |
---|
2867 | \hfil.\ \ .\ \ .\\ |
---|
2868 | {\it data block}{\tt;}\\ |
---|
2869 | {\tt end;}\\ |
---|
2870 | \end{tabular}}\\ |
---|
2871 | \\Data file\\ |
---|
2872 | \end{tabular} |
---|
2873 | |
---|
2874 | \bigskip |
---|
2875 | |
---|
2876 | \begin{description} |
---|
2877 | \item[{\rm Note:}\hspace*{31pt}] If the data section is placed in a |
---|
2878 | separate file, the keyword {\tt data} is optional and may be omitted |
---|
2879 | along with the semicolon that follows it. |
---|
2880 | \end{description} |
---|
2881 | |
---|
2882 | \subsection{Coding data section} |
---|
2883 | |
---|
2884 | The {\it data section} is a sequence of data blocks in various formats, |
---|
2885 | which are discussed in following subsections. The order, in which data |
---|
2886 | blocks follow in the data section, may be arbitrary, not necessarily |
---|
2887 | the same, in which corresponding model objects follow in the model |
---|
2888 | section. |
---|
2889 | |
---|
2890 | The rules of coding the data section are commonly the same as the rules |
---|
2891 | of coding the model description (see Subsection \ref{coding}, page |
---|
2892 | \pageref{coding}), i.e. data blocks are composed from basic lexical |
---|
2893 | units such as symbolic names, numeric and string literals, keywords, |
---|
2894 | delimiters, and comments. However, for the sake of convenience and |
---|
2895 | improving readability there is one deviation from the common rule: if |
---|
2896 | a string literal consists of only alphanumeric characters (including |
---|
2897 | the underscore character), the signs {\tt+} and {\tt-}, and/or the |
---|
2898 | decimal point, it may be coded without bordering by (single or double) |
---|
2899 | quotes. |
---|
2900 | |
---|
2901 | All numeric and symbolic material provided in the data section is coded |
---|
2902 | in the form of numbers and symbols, i.e. unlike the model section |
---|
2903 | no expressions are allowed in the data section. Nevertheless, the signs |
---|
2904 | {\tt+} and {\tt-} can precede numeric literals to allow coding signed |
---|
2905 | numeric quantities, in which case there must be no white-space |
---|
2906 | characters between the sign and following numeric literal (if there is |
---|
2907 | at least one white-space, the sign and following numeric literal are |
---|
2908 | recognized as two different lexical units). |
---|
2909 | |
---|
2910 | \subsection{Set data block} |
---|
2911 | |
---|
2912 | \medskip |
---|
2913 | |
---|
2914 | \framebox[345pt][l]{ |
---|
2915 | \parbox[c][44pt]{345pt}{ |
---|
2916 | \hspace{6pt} {\tt set} {\it name} {\tt,} {\it record} {\tt,} \dots |
---|
2917 | {\tt,} {\it record} {\tt;} |
---|
2918 | |
---|
2919 | \medskip |
---|
2920 | |
---|
2921 | \hspace{6pt} {\tt set} {\it name} {\tt[} {\it symbol} {\tt,} \dots |
---|
2922 | {\tt,} {\it symbol} {\tt]} {\tt,} {\it record} {\tt,} \dots {\tt,} |
---|
2923 | {\it record} {\tt;} |
---|
2924 | }} |
---|
2925 | |
---|
2926 | \setlength{\leftmargini}{60pt} |
---|
2927 | |
---|
2928 | \begin{description} |
---|
2929 | \item[{\rm Where:}\hspace*{23pt}] {\it name} is a symbolic name of the |
---|
2930 | set; |
---|
2931 | \item[\hspace*{54pt}] {\it symbol}, \dots, {\it symbol} are subscripts, |
---|
2932 | which specify a particular member of the set (if the set is an array, |
---|
2933 | i.e. a set of sets); |
---|
2934 | \item[\hspace*{54pt}] {\it record}, \dots, {\it record} are data |
---|
2935 | records. |
---|
2936 | \end{description} |
---|
2937 | |
---|
2938 | \begin{description} |
---|
2939 | \item[{\rm Note:}\hspace*{31pt}] Commae preceding data records may be |
---|
2940 | omitted. |
---|
2941 | \end{description} |
---|
2942 | |
---|
2943 | \noindent Data records: |
---|
2944 | |
---|
2945 | \begin{description} |
---|
2946 | \item[{\tt :=}\hspace*{45pt}] is a non-significant data record, which |
---|
2947 | may be used freely to improve readability; |
---|
2948 | \item[{\tt(} {\it slice} {\tt)}\hspace*{18.5pt}] specifies a slice; |
---|
2949 | \item[{\it simple-data}\hspace*{5.5pt}] specifies set data in the |
---|
2950 | simple format; |
---|
2951 | \item[{\tt:} {\it matrix-data}]\hspace*{0pt}\\ |
---|
2952 | specifies set data in the matrix format; |
---|
2953 | \item[{\tt(tr)} {\tt:} {\it matrix-data}]\hspace*{0pt}\\ |
---|
2954 | specifies set data in the transposed matrix format. (In this case the |
---|
2955 | colon following the keyword {\tt(tr)} may be omitted.) |
---|
2956 | \end{description} |
---|
2957 | |
---|
2958 | \noindent{\bf Examples} |
---|
2959 | |
---|
2960 | \begin{verbatim} |
---|
2961 | set month := Jan Feb Mar Apr May Jun; |
---|
2962 | set month "Jan", "Feb", "Mar", "Apr", "May", "Jun"; |
---|
2963 | set A[3,Mar] := (1,2) (2,3) (4,2) (3,1) (2,2) (4,4) (3,4); |
---|
2964 | set A[3,'Mar'] := 1 2 2 3 4 2 3 1 2 2 4 4 2 4; |
---|
2965 | set A[3,'Mar'] : 1 2 3 4 := |
---|
2966 | 1 - + - - |
---|
2967 | 2 - + + - |
---|
2968 | 3 + - - + |
---|
2969 | 4 - + - + ; |
---|
2970 | set B := (1,2,3) (1,3,2) (2,3,1) (2,1,3) (1,2,2) (1,1,1) (2,1,1); |
---|
2971 | set B := (*,*,*) 1 2 3, 1 3 2, 2 3 1, 2 1 3, 1 2 2, 1 1 1, 2 1 1; |
---|
2972 | set B := (1,*,2) 3 2 (2,*,1) 3 1 (1,2,3) (2,1,3) (1,1,1); |
---|
2973 | set B := (1,*,*) : 1 2 3 := |
---|
2974 | 1 + - - |
---|
2975 | 2 - + + |
---|
2976 | 3 - + - |
---|
2977 | (2,*,*) : 1 2 3 := |
---|
2978 | 1 + - + |
---|
2979 | 2 - - - |
---|
2980 | 3 + - - ; |
---|
2981 | \end{verbatim} |
---|
2982 | |
---|
2983 | \noindent(In these examples {\tt month} is a simple set of singlets, |
---|
2984 | {\tt A} is a 2-dimensional array of doublets, and {\tt B} is a simple |
---|
2985 | set of triplets. Data blocks for the same set are equivalent in the |
---|
2986 | sense that they specify the same data in different formats.) |
---|
2987 | |
---|
2988 | \medskip |
---|
2989 | |
---|
2990 | The {\it set data block} is used to specify a complete elemental set, |
---|
2991 | which is assigned to a set (if it is a simple set) or one of its |
---|
2992 | members (if the set is an array of sets).\footnote{There is another way |
---|
2993 | to specify data for a simple set along with data for parameters. This |
---|
2994 | feature is discussed in the next subsection.} |
---|
2995 | |
---|
2996 | Data blocks can be specified only for non-computable sets, i.e. for |
---|
2997 | sets, which have no assign ({\tt:=}) attribute in the corresponding set |
---|
2998 | statements. |
---|
2999 | |
---|
3000 | If the set is a simple set, only its symbolic name should be specified |
---|
3001 | in the header of the data block. Otherwise, if the set is a |
---|
3002 | $n$-dimensional array, its symbolic name should be provided with a |
---|
3003 | complete list of subscripts separated by commae and enclosed in square |
---|
3004 | brackets to specify a particular member of the set array. The number of |
---|
3005 | subscripts must be the same as the dimension of the set array, where |
---|
3006 | each subscript must be a number or symbol. |
---|
3007 | |
---|
3008 | An elemental set defined in the set data block is coded as a sequence |
---|
3009 | of data records described below.\footnote{{\it Data record} is simply a |
---|
3010 | technical term. It does not mean that data records have any special |
---|
3011 | formatting.} |
---|
3012 | |
---|
3013 | \newpage |
---|
3014 | |
---|
3015 | \subsubsection{Assign data record} |
---|
3016 | |
---|
3017 | The {\it assign} ({\tt:=}) {\it data record} is a non-signficant |
---|
3018 | element. It may be used for improving readability of data blocks. |
---|
3019 | |
---|
3020 | \subsubsection{Slice data record} |
---|
3021 | |
---|
3022 | The {\it slice data record} is a control record, which specifies a |
---|
3023 | {\it slice} of the elemental set defined in the data block. It has the |
---|
3024 | following syntactic form: |
---|
3025 | |
---|
3026 | \medskip |
---|
3027 | |
---|
3028 | \noindent\hfil |
---|
3029 | {\tt(} $s_1$ {\tt,} $s_2$ {\tt,} \dots {\tt,} $s_n$ {\tt)} |
---|
3030 | |
---|
3031 | \medskip |
---|
3032 | |
---|
3033 | \noindent where $s_1$, $s_2$, \dots, $s_n$ are components of the slice. |
---|
3034 | |
---|
3035 | Each component of the slice can be a number or symbol or the asterisk |
---|
3036 | ({\tt*}). The number of components in the slice must be the same as the |
---|
3037 | dimension of $n$-tuples in the elemental set to be defined. For |
---|
3038 | instance, if the elemental set contains 4-tuples (quadruplets), the |
---|
3039 | slice must have four components. The number of asterisks in the slice |
---|
3040 | is called the {\it slice dimension}. |
---|
3041 | |
---|
3042 | The effect of using slices is the following. If a $m$-dimensional slice |
---|
3043 | (i.e. a slice having $m$ asterisks) is specified in the data block, all |
---|
3044 | subsequent data records must specify tuples of the dimension $m$. |
---|
3045 | Whenever a $m$-tuple is encountered, each asterisk in the slice is |
---|
3046 | replaced by corresponding components of the $m$-tuple that gives the |
---|
3047 | resultant $n$-tuple, which is included in the elemental set to be |
---|
3048 | defined. For example, if the slice $(a,*,1,2,*)$ is in effect, and |
---|
3049 | 2-tuple $(3,b)$ is encountered in a subsequent data record, the |
---|
3050 | resultant 5-tuple included in the elemental set is $(a,3,1,2,b)$. |
---|
3051 | |
---|
3052 | The slice having no asterisks itself defines a complete $n$-tuple, |
---|
3053 | which is included in the elemental set. |
---|
3054 | |
---|
3055 | Being once specified the slice effects until either a new slice or the |
---|
3056 | end of data block is encountered. Note that if no slice is specified in |
---|
3057 | the data block, one, components of which are all asterisks, is assumed. |
---|
3058 | |
---|
3059 | \subsubsection{Simple data record} |
---|
3060 | |
---|
3061 | The {\it simple data record} defines one $n$-tuple in a simple format |
---|
3062 | and has the following syntactic form: |
---|
3063 | |
---|
3064 | \medskip |
---|
3065 | |
---|
3066 | \noindent\hfil |
---|
3067 | $t_1$ {\tt,} $t_2$ {\tt,} \dots {\tt,} $t_n$ |
---|
3068 | |
---|
3069 | \medskip |
---|
3070 | |
---|
3071 | \noindent where $t_1$, $t_2$, \dots, $t_n$ are components of the |
---|
3072 | $n$-tuple. Each component can be a number or symbol. Commae between |
---|
3073 | components are optional and may be omitted. |
---|
3074 | |
---|
3075 | \subsubsection{Matrix data record} |
---|
3076 | |
---|
3077 | The {\it matrix data record} defines several 2-tuples (doublets) in |
---|
3078 | a matrix format and has the following syntactic form: |
---|
3079 | |
---|
3080 | \newpage |
---|
3081 | |
---|
3082 | $$\begin{array}{cccccc} |
---|
3083 | \mbox{{\tt:}}&c_1&c_2&\dots&c_n&\mbox{{\tt:=}}\\ |
---|
3084 | r_1&a_{11}&a_{12}&\dots&a_{1n}&\\ |
---|
3085 | r_2&a_{21}&a_{22}&\dots&a_{2n}&\\ |
---|
3086 | \multicolumn{5}{c}{.\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .}&\\ |
---|
3087 | r_m&a_{m1}&a_{m2}&\dots&a_{mn}&\\ |
---|
3088 | \end{array}$$ |
---|
3089 | where $r_1$, $r_2$, \dots, $r_m$ are numbers and/or symbols |
---|
3090 | corresponding to rows of the matrix; $c_1$, $c_2$, \dots, $c_n$ are |
---|
3091 | numbers and/or symbols corresponding to columns of the matrix, $a_{11}$, |
---|
3092 | $a_{12}$, \dots, $a_{mn}$ are matrix elements, which can be either |
---|
3093 | {\tt+} or {\tt-}. (In this data record the delimiter {\tt:} preceding |
---|
3094 | the column list and the delimiter {\tt:=} following the column list |
---|
3095 | cannot be omitted.) |
---|
3096 | |
---|
3097 | Each element $a_{ij}$ of the matrix data block (where $1\leq i\leq m$, |
---|
3098 | $1\leq j\leq n$) corresponds to 2-tuple $(r_i,c_j)$. If $a_{ij}$ is the |
---|
3099 | plus sign ({\tt+}), that 2-tuple (or a longer $n$-tuple, if a slice is |
---|
3100 | used) is included in the elemental set. Otherwise, if $a_{ij}$ is the |
---|
3101 | minus sign ({\tt-}), that 2-tuple is not included in the elemental set. |
---|
3102 | |
---|
3103 | Since the matrix data record defines 2-tuples, either the elemental set |
---|
3104 | must consist of 2-tuples or the slice currently used must be |
---|
3105 | 2-dimensional. |
---|
3106 | |
---|
3107 | \subsubsection{Transposed matrix data record} |
---|
3108 | |
---|
3109 | The {\it transposed matrix data record} has the following syntactic |
---|
3110 | form: |
---|
3111 | $$\begin{array}{cccccc} |
---|
3112 | \mbox{{\tt(tr) :}}&c_1&c_2&\dots&c_n&\mbox{{\tt:=}}\\ |
---|
3113 | r_1&a_{11}&a_{12}&\dots&a_{1n}&\\ |
---|
3114 | r_2&a_{21}&a_{22}&\dots&a_{2n}&\\ |
---|
3115 | \multicolumn{5}{c}{.\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .}&\\ |
---|
3116 | r_m&a_{m1}&a_{m2}&\dots&a_{mn}&\\ |
---|
3117 | \end{array}$$ |
---|
3118 | (In this case the delimiter {\tt:} following the keyword {\tt(tr)} is |
---|
3119 | optional and may be omitted.) |
---|
3120 | |
---|
3121 | This data record is completely analogous to the matrix data record (see |
---|
3122 | above) with only exception that in this case each element $a_{ij}$ of |
---|
3123 | the matrix corresponds to 2-tuple $(c_j,r_i)$ rather than $(r_i,c_j)$. |
---|
3124 | |
---|
3125 | Being once specified the {\tt(tr)} indicator affects all subsequent |
---|
3126 | data records until either a slice or the end of data block is |
---|
3127 | encountered. |
---|
3128 | |
---|
3129 | \subsection{Parameter data block} |
---|
3130 | |
---|
3131 | \medskip |
---|
3132 | |
---|
3133 | \framebox[345pt][l]{ |
---|
3134 | \parbox[c][80pt]{345pt}{ |
---|
3135 | \hspace{6pt} {\tt param} {\it name} {\tt,} {\it record} {\tt,} \dots |
---|
3136 | {\tt,} {\it record} {\tt;} |
---|
3137 | |
---|
3138 | \medskip |
---|
3139 | |
---|
3140 | \hspace{6pt} {\tt param} {\it name} {\tt default} {\it value} {\tt,} |
---|
3141 | {\it record} {\tt,} \dots {\tt,} {\it record} {\tt;} |
---|
3142 | |
---|
3143 | \medskip |
---|
3144 | |
---|
3145 | \hspace{6pt} {\tt param} {\tt:} {\it tabbing-data} {\tt;} |
---|
3146 | |
---|
3147 | \medskip |
---|
3148 | |
---|
3149 | \hspace{6pt} {\tt param} {\tt default} {\it value} {\tt:} |
---|
3150 | {\it tabbing-data} {\tt;} |
---|
3151 | }} |
---|
3152 | |
---|
3153 | \newpage |
---|
3154 | |
---|
3155 | \setlength{\leftmargini}{60pt} |
---|
3156 | |
---|
3157 | \begin{description} |
---|
3158 | \item[{\rm Where:}\hspace*{23pt}] {\it name} is a symbolic name of the |
---|
3159 | parameter; |
---|
3160 | \item[\hspace*{54pt}] {\it value} is an optional default value of the |
---|
3161 | parameter; |
---|
3162 | \item[\hspace*{54pt}] {\it record}, \dots, {\it record} are data |
---|
3163 | records; |
---|
3164 | \item[\hspace*{54pt}] {\it tabbing-data} specifies parameter data in |
---|
3165 | the tabbing format. |
---|
3166 | \end{description} |
---|
3167 | |
---|
3168 | \begin{description} |
---|
3169 | \item[{\rm Note:}\hspace*{31pt}] Commae preceding data records may be |
---|
3170 | omitted. |
---|
3171 | \end{description} |
---|
3172 | |
---|
3173 | \noindent Data records: |
---|
3174 | |
---|
3175 | \begin{description} |
---|
3176 | \item[{\tt :=}\hspace*{45pt}] is a non-significant data record, which |
---|
3177 | may be used freely to improve readability; |
---|
3178 | \item[{\tt[} {\it slice} {\tt]}\hspace*{18.5pt}] specifies a slice; |
---|
3179 | \item[{\it plain-data}\hspace*{11pt}] specifies parameter data in the |
---|
3180 | plain format; |
---|
3181 | \item[{\tt:} {\it tabular-data}]\hspace*{0pt}\\ |
---|
3182 | specifies parameter data in the tabular format; |
---|
3183 | \item[{\tt(tr)} {\tt:} {\it tabular-data}]\hspace*{0pt}\\ |
---|
3184 | specifies set data in the transposed tabular format. (In this case the |
---|
3185 | colon following the keyword {\tt(tr)} may be omitted.) |
---|
3186 | \end{description} |
---|
3187 | |
---|
3188 | \noindent{\bf Examples} |
---|
3189 | |
---|
3190 | \begin{verbatim} |
---|
3191 | param T := 4; |
---|
3192 | param month := 1 'Jan' 2 'Feb' 3 'Mar' 4 'Apr' 5 'May'; |
---|
3193 | param month := [1] Jan, [2] Feb, [3] Mar, [4] Apr, [5] May; |
---|
3194 | param day := [Sun] 0, [Mon] 1, [Tue] 2, [Wed] 3, [Thu] 4, |
---|
3195 | [Fri] 5, [Sat] 6; |
---|
3196 | param init_stock := iron 7.32 nickel 35.8; |
---|
3197 | param init_stock [*] iron 7.32, nickel 35.8; |
---|
3198 | param cost [iron] .025 [nickel] .03; |
---|
3199 | param value := iron -.1, nickel .02; |
---|
3200 | param : init_stock cost value := |
---|
3201 | iron 7.32 .025 -.1 |
---|
3202 | nickel 35.8 .03 .02 ; |
---|
3203 | param : raw : init_stock cost value := |
---|
3204 | iron 7.32 .025 -.1 |
---|
3205 | nickel 35.8 .03 .02 ; |
---|
3206 | param demand default 0 (tr) |
---|
3207 | : FRA DET LAN WIN STL FRE LAF := |
---|
3208 | bands 300 . 100 75 . 225 250 |
---|
3209 | coils 500 750 400 250 . 850 500 |
---|
3210 | plate 100 . . 50 200 . 250 ; |
---|
3211 | \end{verbatim} |
---|
3212 | |
---|
3213 | \newpage |
---|
3214 | |
---|
3215 | \begin{verbatim} |
---|
3216 | param trans_cost := |
---|
3217 | [*,*,bands]: FRA DET LAN WIN STL FRE LAF := |
---|
3218 | GARY 30 10 8 10 11 71 6 |
---|
3219 | CLEV 22 7 10 7 21 82 13 |
---|
3220 | PITT 19 11 12 10 25 83 15 |
---|
3221 | [*,*,coils]: FRA DET LAN WIN STL FRE LAF := |
---|
3222 | GARY 39 14 11 14 16 82 8 |
---|
3223 | CLEV 27 9 12 9 26 95 17 |
---|
3224 | PITT 24 14 17 13 28 99 20 |
---|
3225 | [*,*,plate]: FRA DET LAN WIN STL FRE LAF := |
---|
3226 | GARY 41 15 12 16 17 86 8 |
---|
3227 | CLEV 29 9 13 9 28 99 18 |
---|
3228 | PITT 26 14 17 13 31 104 20 ; |
---|
3229 | \end{verbatim} |
---|
3230 | |
---|
3231 | The {\it parameter data block} is used to specify complete data for a |
---|
3232 | parameter (or parameters, if data are specified in the tabbing format). |
---|
3233 | |
---|
3234 | Data blocks can be specified only for non-computable parameters, i.e. |
---|
3235 | for parameters, which have no assign ({\tt:=}) attribute in the |
---|
3236 | corresponding parameter statements. |
---|
3237 | |
---|
3238 | Data defined in the parameter data block are coded as a sequence of |
---|
3239 | data records described below. Additionally the data block can be |
---|
3240 | provided with the optional {\tt default} attribute, which specifies a |
---|
3241 | default numeric or symbolic value of the parameter (parameters). This |
---|
3242 | default value is assigned to the parameter or its members, if |
---|
3243 | no appropriate value is defined in the parameter data block. The |
---|
3244 | {\tt default} attribute cannot be used, if it is already specified in |
---|
3245 | the corresponding parameter statement. |
---|
3246 | |
---|
3247 | \subsubsection{Assign data record} |
---|
3248 | |
---|
3249 | The {\it assign} ({\tt:=}) {\it data record} is a non-signficant |
---|
3250 | element. It may be used for improving readability of data blocks. |
---|
3251 | |
---|
3252 | \subsubsection{Slice data record} |
---|
3253 | |
---|
3254 | The {\it slice data record} is a control record, which specifies a |
---|
3255 | {\it slice} of the parameter array. It has the following syntactic form: |
---|
3256 | |
---|
3257 | \medskip |
---|
3258 | |
---|
3259 | \noindent\hfil |
---|
3260 | {\tt[} $s_1$ {\tt,} $s_2$ {\tt,} \dots {\tt,} $s_n$ {\tt]} |
---|
3261 | |
---|
3262 | \medskip |
---|
3263 | |
---|
3264 | \noindent where $s_1$, $s_2$, \dots, $s_n$ are components of the slice. |
---|
3265 | |
---|
3266 | Each component of the slice can be a number or symbol or the asterisk |
---|
3267 | ({\tt*}). The number of components in the slice must be the same as the |
---|
3268 | dimension of the parameter. For instance, if the parameter is a |
---|
3269 | 4-dimensional array, the slice must have four components. The number of |
---|
3270 | asterisks in the slice is called the {\it slice dimension}. |
---|
3271 | |
---|
3272 | The effect of using slices is the following. If a $m$-dimensional slice |
---|
3273 | (i.e. a slice having $m$ asterisks) is specified in the data block, all |
---|
3274 | subsequent data records must specify subscripts of the parameter |
---|
3275 | members as if the parameter were $m$-dimensional, not $n$-dimensional. |
---|
3276 | |
---|
3277 | Whenever $m$ subscripts are encountered, each asterisk in the slice is |
---|
3278 | replaced by corresponding subscript that gives $n$ subscripts, which |
---|
3279 | define the actual parameter member. For example, if the slice |
---|
3280 | $[a,*,1,2,*]$ is in effect, and subscripts 3 and $b$ are encountered in |
---|
3281 | a subsequent data record, the complete subscript list used to choose a |
---|
3282 | parameter member is $[a,3,1,2,b]$. |
---|
3283 | |
---|
3284 | It is allowed to specify a slice having no asterisks. Such slice itself |
---|
3285 | defines a complete subscript list, in which case the next data record |
---|
3286 | should define only a single value of corresponding parameter member. |
---|
3287 | |
---|
3288 | Being once specified the slice effects until either a new slice or the |
---|
3289 | end of data block is encountered. Note that if no slice is specified in |
---|
3290 | the data block, one, components of which are all asterisks, is assumed. |
---|
3291 | |
---|
3292 | \subsubsection{Plain data record} |
---|
3293 | |
---|
3294 | The {\it plain data record} defines a subscript list and a single value |
---|
3295 | in the plain format. This record has the following syntactic form: |
---|
3296 | |
---|
3297 | \medskip |
---|
3298 | |
---|
3299 | \noindent\hfil |
---|
3300 | $t_1$ {\tt,} $t_2$ {\tt,} \dots {\tt,} $t_n$ {\tt,} $v$ |
---|
3301 | |
---|
3302 | \medskip |
---|
3303 | |
---|
3304 | \noindent where $t_1$, $t_2$, \dots, $t_n$ are subscripts, and $v$ is a |
---|
3305 | value. Each subscript as well as the value can be a number or symbol. |
---|
3306 | Commae following subscripts are optional and may be omitted. |
---|
3307 | |
---|
3308 | In case of 0-dimensional parameter or slice the plain data record has |
---|
3309 | no subscripts and consists of a single value only. |
---|
3310 | |
---|
3311 | \subsubsection{Tabular data record} |
---|
3312 | |
---|
3313 | The {\it tabular data record} defines several values, where each value |
---|
3314 | is provided with two subscripts. This record has the following |
---|
3315 | syntactic form: |
---|
3316 | $$\begin{array}{cccccc} |
---|
3317 | \mbox{{\tt:}}&c_1&c_2&\dots&c_n&\mbox{{\tt:=}}\\ |
---|
3318 | r_1&a_{11}&a_{12}&\dots&a_{1n}&\\ |
---|
3319 | r_2&a_{21}&a_{22}&\dots&a_{2n}&\\ |
---|
3320 | \multicolumn{5}{c}{.\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .}&\\ |
---|
3321 | r_m&a_{m1}&a_{m2}&\dots&a_{mn}&\\ |
---|
3322 | \end{array}$$ |
---|
3323 | where $r_1$, $r_2$, \dots, $r_m$ are numbers and/or symbols |
---|
3324 | corresponding to rows of the table; $c_1$, $c_2$, \dots, $c_n$ are |
---|
3325 | numbers and/or symbols corresponding to columns of the table, $a_{11}$, |
---|
3326 | $a_{12}$, \dots, $a_{mn}$ are table elements. Each element can be a |
---|
3327 | number or symbol or the single decimal point ({\tt.}). (In this data |
---|
3328 | record the delimiter {\tt:} preceding the column list and the delimiter |
---|
3329 | {\tt:=} following the column list cannot be omitted.) |
---|
3330 | |
---|
3331 | Each element $a_{ij}$ of the tabular data block ($1\leq i\leq m$, |
---|
3332 | $1\leq j\leq n$) defines two subscripts, where the first subscript is |
---|
3333 | $r_i$, and the second one is $c_j$. These subscripts are used in |
---|
3334 | conjunction with the current slice to form the complete subscript list |
---|
3335 | that identifies a particular member of the parameter array. If $a_{ij}$ |
---|
3336 | is a number or symbol, this value is assigned to the parameter member. |
---|
3337 | However, if $a_{ij}$ is the single decimal point, the member is |
---|
3338 | assigned a default value specified either in the parameter data block |
---|
3339 | or in the parameter statement, or, if no default value is specified, |
---|
3340 | the member remains undefined. |
---|
3341 | |
---|
3342 | Since the tabular data record provides two subscripts for each value, |
---|
3343 | either the parameter or the slice currently used must be 2-dimensional. |
---|
3344 | |
---|
3345 | \subsubsection{Transposed tabular data record} |
---|
3346 | |
---|
3347 | The {\it transposed tabular data record} has the following syntactic |
---|
3348 | form: |
---|
3349 | $$\begin{array}{cccccc} |
---|
3350 | \mbox{{\tt(tr) :}}&c_1&c_2&\dots&c_n&\mbox{{\tt:=}}\\ |
---|
3351 | r_1&a_{11}&a_{12}&\dots&a_{1n}&\\ |
---|
3352 | r_2&a_{21}&a_{22}&\dots&a_{2n}&\\ |
---|
3353 | \multicolumn{5}{c}{.\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .}&\\ |
---|
3354 | r_m&a_{m1}&a_{m2}&\dots&a_{mn}&\\ |
---|
3355 | \end{array}$$ |
---|
3356 | (In this case the delimiter {\tt:} following the keyword {\tt(tr)} is |
---|
3357 | optional and may be omitted.) |
---|
3358 | |
---|
3359 | This data record is completely analogous to the tabular data record |
---|
3360 | (see above) with only exception that the first subscript defined by |
---|
3361 | element $a_{ij}$ is $c_j$ while the second one is $r_i$. |
---|
3362 | |
---|
3363 | Being once specified the {\tt(tr)} indicator affects all subsequent |
---|
3364 | data records until either a slice or the end of data block is |
---|
3365 | encountered. |
---|
3366 | |
---|
3367 | \subsubsection{Tabbing data format} |
---|
3368 | |
---|
3369 | The parameter data block in the {\it tabbing format} has the following |
---|
3370 | syntactic form: |
---|
3371 | $$\begin{array}{p{12pt}@{\ }l@{\ }c@{\ }l@{\ }c@{\ }l@{\ }r@{\ }l@{\ }c |
---|
3372 | @{\ }l@{\ }c@{\ }l@{\ }l} |
---|
3373 | \multicolumn{7}{@{}c@{}}{\mbox{\tt param}\ \mbox{\tt default}\ \mbox |
---|
3374 | {\it value}\ \mbox{\tt:}\ \mbox{\it s}\ \mbox{\tt:}}& |
---|
3375 | p_1&\mbox{\tt,}&p_2&\mbox{\tt,} \dots \mbox{\tt,}&p_k&\mbox{\tt:=}\\ |
---|
3376 | &t_{11}&\mbox{\tt,}&t_{12}&\mbox{\tt,} \dots \mbox{\tt,}&t_{1n}& |
---|
3377 | \mbox{\tt,}&a_{11}&\mbox{\tt,}&a_{12}&\mbox{\tt,} \dots \mbox{\tt,}& |
---|
3378 | a_{1k}\\ |
---|
3379 | &t_{21}&\mbox{\tt,}&t_{22}&\mbox{\tt,} \dots \mbox{\tt,}&t_{2n}& |
---|
3380 | \mbox{\tt,}&a_{21}&\mbox{\tt,}&a_{22}&\mbox{\tt,} \dots \mbox{\tt,}& |
---|
3381 | a_{2k}\\ |
---|
3382 | \multicolumn{13}{c} |
---|
3383 | {.\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .}\\ |
---|
3384 | &t_{m1}&\mbox{\tt,}&t_{m2}&\mbox{\tt,} \dots \mbox{\tt,}&t_{mn}& |
---|
3385 | \mbox{\tt,}&a_{m1}&\mbox{\tt,}&a_{m2}&\mbox{\tt,} \dots \mbox{\tt,}& |
---|
3386 | a_{mk}&\mbox{\tt;}\\ |
---|
3387 | \end{array}$$ |
---|
3388 | |
---|
3389 | {\it Notes:} |
---|
3390 | |
---|
3391 | 1. The keyword {\tt default} may be omitted along with a value |
---|
3392 | following it. |
---|
3393 | |
---|
3394 | 2. Symbolic name {\tt s} may be omitted along with the colon following |
---|
3395 | it. |
---|
3396 | |
---|
3397 | 3. All comae are optional and may be omitted. |
---|
3398 | |
---|
3399 | \medskip |
---|
3400 | |
---|
3401 | The data block in the tabbing format shown above is exactly equivalent |
---|
3402 | to the following data blocks for $j=1,2,\dots,k$: |
---|
3403 | |
---|
3404 | \medskip |
---|
3405 | |
---|
3406 | {\tt set} {\it s} {\tt:=} |
---|
3407 | {\tt(}$t_{11}${\tt,}$t_{12}${\tt,}\dots{\tt,}$t_{1n}${\tt)} |
---|
3408 | {\tt(}$t_{21}${\tt,}$t_{22}${\tt,}\dots{\tt,}$t_{2n}${\tt)} \dots |
---|
3409 | {\tt(}$t_{m1}${\tt,}$t_{m2}${\tt,}\dots{\tt,}$t_{mn}${\tt)} {\tt;} |
---|
3410 | |
---|
3411 | {\tt param} $p_j$ {\tt default} {\it value} {\tt:=} |
---|
3412 | |
---|
3413 | $\!${\tt[}$t_{11}${\tt,}$t_{12}${\tt,}\dots{\tt,}$t_{1n}${\tt]} |
---|
3414 | $a_{1j}$ |
---|
3415 | {\tt[}$t_{21}${\tt,}$t_{22}${\tt,}\dots{\tt,}$t_{2n}${\tt]} $a_{2j}$ |
---|
3416 | \dots |
---|
3417 | {\tt[}$t_{m1}${\tt,}$t_{m2}${\tt,}\dots{\tt,}$t_{mn}${\tt]} $a_{mj}$ |
---|
3418 | {\tt;} |
---|
3419 | |
---|
3420 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
3421 | |
---|
3422 | \appendix |
---|
3423 | |
---|
3424 | \newpage |
---|
3425 | |
---|
3426 | \section{Using suffixes} |
---|
3427 | |
---|
3428 | Suffixes can be used to retrieve additional values associated with |
---|
3429 | model variables, constraints, and objectives. |
---|
3430 | |
---|
3431 | A {\it suffix} consists of a period ({\tt.}) followed by a non-reserved |
---|
3432 | keyword. For example, if {\tt x} is a two-dimensional variable, |
---|
3433 | {\tt x[i,j].lb} is a numeric value equal to the lower bound of |
---|
3434 | elemental variable {\tt x[i,j]}, which (value) can be used everywhere |
---|
3435 | in expressions like a numeric parameter. |
---|
3436 | |
---|
3437 | For model variables suffixes have the following meaning: |
---|
3438 | |
---|
3439 | \medskip |
---|
3440 | |
---|
3441 | \begin{tabular}{@{}p{96pt}p{222pt}@{}} |
---|
3442 | {\tt.lb}&lower bound\\ |
---|
3443 | {\tt.ub}&upper bound\\ |
---|
3444 | {\tt.status}&status in the solution:\\ |
---|
3445 | &0 --- undefined\\ |
---|
3446 | &1 --- basic\\ |
---|
3447 | &2 --- non-basic on lower bound\\ |
---|
3448 | &3 --- non-basic on upper bound\\ |
---|
3449 | &4 --- non-basic free (unbounded) variable\\ |
---|
3450 | &5 --- non-basic fixed variable\\ |
---|
3451 | {\tt.val}&primal value in the solution\\ |
---|
3452 | {\tt.dual}&dual value (reduced cost) in the solution\\ |
---|
3453 | \end{tabular} |
---|
3454 | |
---|
3455 | \medskip |
---|
3456 | |
---|
3457 | For model constraints and objectives suffixes have the following |
---|
3458 | meaning: |
---|
3459 | |
---|
3460 | \medskip |
---|
3461 | |
---|
3462 | \begin{tabular}{@{}p{96pt}p{222pt}@{}} |
---|
3463 | {\tt.lb}&lower bound of the linear form\\ |
---|
3464 | {\tt.ub}&upper bound of the linear form\\ |
---|
3465 | {\tt.status}&status in the solution:\\ |
---|
3466 | &0 --- undefined\\ |
---|
3467 | &1 --- non-active\\ |
---|
3468 | &2 --- active on lower bound\\ |
---|
3469 | &3 --- active on upper bound\\ |
---|
3470 | &4 --- active free (unbounded) row\\ |
---|
3471 | &5 --- active equality constraint\\ |
---|
3472 | {\tt.val}&primal value of the linear form in the solution\\ |
---|
3473 | {\tt.dual}&dual value (reduced cost) of the linear form in the |
---|
3474 | solution\\ |
---|
3475 | \end{tabular} |
---|
3476 | |
---|
3477 | \medskip |
---|
3478 | |
---|
3479 | Note that suffixes {\tt.status}, {\tt.val}, and {\tt.dual} can be used |
---|
3480 | only below the solve statement. |
---|
3481 | |
---|
3482 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
3483 | |
---|
3484 | \newpage |
---|
3485 | |
---|
3486 | \section{Date and time functions} |
---|
3487 | |
---|
3488 | \noindent\hfil |
---|
3489 | by Andrew Makhorin \verb|<mao@gnu.org>| |
---|
3490 | |
---|
3491 | \noindent\hfil |
---|
3492 | and Heinrich Schuchardt \verb|<heinrich.schuchardt@gmx.de>| |
---|
3493 | |
---|
3494 | \subsection{Obtaining current calendar time} |
---|
3495 | \label{gmtime} |
---|
3496 | |
---|
3497 | To obtain the current calendar time in MathProg there exists the |
---|
3498 | function {\tt gmtime}. It has no arguments and returns the number of |
---|
3499 | seconds elapsed since 00:00:00 on January 1, 1970, Coordinated |
---|
3500 | Universal Time (UTC). For example: |
---|
3501 | |
---|
3502 | \medskip |
---|
3503 | |
---|
3504 | \verb| param utc := gmtime();| |
---|
3505 | |
---|
3506 | \medskip |
---|
3507 | |
---|
3508 | MathProg has no function to convert UTC time returned by the function |
---|
3509 | {\tt gmtime} to {\it local} calendar times. Thus, if you need to |
---|
3510 | determine the current local calendar time, you have to add to the UTC |
---|
3511 | time returned the time offset from UTC expressed in seconds. For |
---|
3512 | example, the time in Berlin during the winter is one hour ahead of UTC |
---|
3513 | that corresponds to the time offset +1 hour = +3600 secs, so the |
---|
3514 | current winter calendar time in Berlin may be determined as follows: |
---|
3515 | |
---|
3516 | \medskip |
---|
3517 | |
---|
3518 | \verb| param now := gmtime() + 3600;| |
---|
3519 | |
---|
3520 | \medskip |
---|
3521 | |
---|
3522 | \noindent Similarly, the summer time in Chicago (Central Daylight Time) |
---|
3523 | is five hours behind UTC, so the corresponding current local calendar |
---|
3524 | time may be determined as follows: |
---|
3525 | |
---|
3526 | \medskip |
---|
3527 | |
---|
3528 | \verb| param now := gmtime() - 5 * 3600;| |
---|
3529 | |
---|
3530 | \medskip |
---|
3531 | |
---|
3532 | Note that the value returned by {\tt gmtime} is volatile, i.e. being |
---|
3533 | called several times this function may return different values. |
---|
3534 | |
---|
3535 | \subsection{Converting character string to calendar time} |
---|
3536 | \label{str2time} |
---|
3537 | |
---|
3538 | The function {\tt str2time(}{\it s}{\tt,} {\it f}{\tt)} converts a |
---|
3539 | character string (timestamp) specified by its first argument {\it s}, |
---|
3540 | which must be a symbolic expression, to the calendar time suitable for |
---|
3541 | arithmetic calculations. The conversion is controlled by the specified |
---|
3542 | format string {\it f} (the second argument), which also must be a |
---|
3543 | symbolic expression. |
---|
3544 | |
---|
3545 | The result of conversion returned by {\tt str2time} has the same |
---|
3546 | meaning as values returned by the function {\tt gmtime} (see Subsection |
---|
3547 | \ref{gmtime}, page \pageref{gmtime}). Note that {\tt str2time} does |
---|
3548 | {\tt not} correct the calendar time returned for the local timezone, |
---|
3549 | i.e. being applied to 00:00:00 on January 1, 1970 it always returns 0. |
---|
3550 | |
---|
3551 | For example, the model statements: |
---|
3552 | |
---|
3553 | \medskip |
---|
3554 | |
---|
3555 | \verb| param s, symbolic, := "07/14/98 13:47";| |
---|
3556 | |
---|
3557 | \verb| param t := str2time(s, "%m/%d/%y %H:%M");| |
---|
3558 | |
---|
3559 | \verb| display t;| |
---|
3560 | |
---|
3561 | \medskip |
---|
3562 | |
---|
3563 | \noindent produce the following printout: |
---|
3564 | |
---|
3565 | \medskip |
---|
3566 | |
---|
3567 | \verb| t = 900424020| |
---|
3568 | |
---|
3569 | \medskip |
---|
3570 | |
---|
3571 | \noindent where the calendar time printed corresponds to 13:47:00 on |
---|
3572 | July 14, 1998. |
---|
3573 | |
---|
3574 | \newpage |
---|
3575 | |
---|
3576 | The format string passed to the function {\tt str2time} consists of |
---|
3577 | conversion specifiers and ordinary characters. Each conversion |
---|
3578 | specifier begins with a percent ({\tt\%}) character followed by a |
---|
3579 | letter. |
---|
3580 | |
---|
3581 | The following conversion specifiers may be used in the format string: |
---|
3582 | |
---|
3583 | \medskip |
---|
3584 | |
---|
3585 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3586 | {\tt\%b}&The abbreviated month name (case insensitive). At least three |
---|
3587 | first letters of the month name must appear in the input string.\\ |
---|
3588 | \end{tabular} |
---|
3589 | |
---|
3590 | \medskip |
---|
3591 | |
---|
3592 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3593 | {\tt\%d}&The day of the month as a decimal number (range 1 to 31). |
---|
3594 | Leading zero is permitted, but not required.\\ |
---|
3595 | \end{tabular} |
---|
3596 | |
---|
3597 | \medskip |
---|
3598 | |
---|
3599 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3600 | {\tt\%h}&The same as {\tt\%b}.\\ |
---|
3601 | \end{tabular} |
---|
3602 | |
---|
3603 | \medskip |
---|
3604 | |
---|
3605 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3606 | {\tt\%H}&The hour as a decimal number, using a 24-hour clock (range 0 |
---|
3607 | to 23). Leading zero is permitted, but not required.\\ |
---|
3608 | \end{tabular} |
---|
3609 | |
---|
3610 | \medskip |
---|
3611 | |
---|
3612 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3613 | {\tt\%m}&The month as a decimal number (range 1 to 12). Leading zero is |
---|
3614 | permitted, but not required.\\ |
---|
3615 | \end{tabular} |
---|
3616 | |
---|
3617 | \medskip |
---|
3618 | |
---|
3619 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3620 | {\tt\%M}&The minute as a decimal number (range 0 to 59). Leading zero |
---|
3621 | is permitted, but not required.\\ |
---|
3622 | \end{tabular} |
---|
3623 | |
---|
3624 | \medskip |
---|
3625 | |
---|
3626 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3627 | {\tt\%S}&The second as a decimal number (range 0 to 60). Leading zero |
---|
3628 | is permitted, but not required.\\ |
---|
3629 | \end{tabular} |
---|
3630 | |
---|
3631 | \medskip |
---|
3632 | |
---|
3633 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3634 | {\tt\%y}&The year without a century as a decimal number (range 0 to 99). |
---|
3635 | Leading zero is permitted, but not required. Input values in the range |
---|
3636 | 0 to 68 are considered as the years 2000 to 2068 while the values 69 to |
---|
3637 | 99 as the years 1969 to 1999.\\ |
---|
3638 | \end{tabular} |
---|
3639 | |
---|
3640 | \medskip |
---|
3641 | |
---|
3642 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3643 | {\tt\%z}&The offset from GMT in ISO 8601 format.\\ |
---|
3644 | \end{tabular} |
---|
3645 | |
---|
3646 | \medskip |
---|
3647 | |
---|
3648 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3649 | {\tt\%\%}&A literal {\tt\%} character.\\ |
---|
3650 | \end{tabular} |
---|
3651 | |
---|
3652 | \medskip |
---|
3653 | |
---|
3654 | All other (ordinary) characters in the format string must have a |
---|
3655 | matching character in the input string to be converted. Exceptions are |
---|
3656 | spaces in the input string which can match zero or more space |
---|
3657 | characters in the format string. |
---|
3658 | |
---|
3659 | If some date and/or time component(s) are missing in the format and, |
---|
3660 | therefore, in the input string, the function {\tt str2time} uses their |
---|
3661 | default values corresponding to 00:00:00 on January 1, 1970, that is, |
---|
3662 | the default value of the year is 1970, the default value of the month |
---|
3663 | is January, etc. |
---|
3664 | |
---|
3665 | The function {\tt str2time} is applicable to all calendar times in the |
---|
3666 | range 00:00:00 on January 1, 0001 to 23:59:59 on December 31, 4000 of |
---|
3667 | the Gregorian calendar. |
---|
3668 | |
---|
3669 | \subsection{Converting calendar time to character string} |
---|
3670 | \label{time2str} |
---|
3671 | |
---|
3672 | The function {\tt time2str(}{\it t}{\tt,} {\it f}{\tt)} converts the |
---|
3673 | calendar time specified by its first argument {\it t}, which must be a |
---|
3674 | numeric expression, to a character string (symbolic value). The |
---|
3675 | conversion is controlled by the specified format string {\it f} (the |
---|
3676 | second argument), which must be a symbolic expression. |
---|
3677 | |
---|
3678 | The calendar time passed to {\tt time2str} has the same meaning as |
---|
3679 | values returned by the function {\tt gmtime} (see Subsection |
---|
3680 | \ref{gmtime}, page \pageref{gmtime}). Note that {\tt time2str} does |
---|
3681 | {\it not} correct the specified calendar time for the local timezone, |
---|
3682 | i.e. the calendar time 0 always corresponds to 00:00:00 on January 1, |
---|
3683 | 1970. |
---|
3684 | |
---|
3685 | For example, the model statements: |
---|
3686 | |
---|
3687 | \medskip |
---|
3688 | |
---|
3689 | \verb| param s, symbolic, := time2str(gmtime(), "%FT%TZ");| |
---|
3690 | |
---|
3691 | \verb| display s;| |
---|
3692 | |
---|
3693 | \medskip |
---|
3694 | |
---|
3695 | \noindent may produce the following printout: |
---|
3696 | |
---|
3697 | \medskip |
---|
3698 | |
---|
3699 | \verb| s = '2008-12-04T00:23:45Z'| |
---|
3700 | |
---|
3701 | \medskip |
---|
3702 | |
---|
3703 | \noindent which is a timestamp in the ISO format. |
---|
3704 | |
---|
3705 | The format string passed to the function {\tt time2str} consists of |
---|
3706 | conversion specifiers and ordinary characters. Each conversion |
---|
3707 | specifier begins with a percent ({\tt\%}) character followed by a |
---|
3708 | letter. |
---|
3709 | |
---|
3710 | The following conversion specifiers may be used in the format string: |
---|
3711 | |
---|
3712 | \medskip |
---|
3713 | |
---|
3714 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3715 | {\tt\%a}&The abbreviated (2-character) weekday name.\\ |
---|
3716 | \end{tabular} |
---|
3717 | |
---|
3718 | \medskip |
---|
3719 | |
---|
3720 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3721 | {\tt\%A}&The full weekday name.\\ |
---|
3722 | \end{tabular} |
---|
3723 | |
---|
3724 | \medskip |
---|
3725 | |
---|
3726 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3727 | {\tt\%b}&The abbreviated (3-character) month name.\\ |
---|
3728 | \end{tabular} |
---|
3729 | |
---|
3730 | \medskip |
---|
3731 | |
---|
3732 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3733 | {\tt\%B}&The full month name.\\ |
---|
3734 | \end{tabular} |
---|
3735 | |
---|
3736 | \medskip |
---|
3737 | |
---|
3738 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3739 | {\tt\%C}&The century of the year, that is the greatest integer not |
---|
3740 | greater than the year divided by 100.\\ |
---|
3741 | \end{tabular} |
---|
3742 | |
---|
3743 | \medskip |
---|
3744 | |
---|
3745 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3746 | {\tt\%d}&The day of the month as a decimal number (range 01 to 31).\\ |
---|
3747 | \end{tabular} |
---|
3748 | |
---|
3749 | \medskip |
---|
3750 | |
---|
3751 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3752 | {\tt\%D}&The date using the format \verb|%m/%d/%y|.\\ |
---|
3753 | \end{tabular} |
---|
3754 | |
---|
3755 | \medskip |
---|
3756 | |
---|
3757 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3758 | {\tt\%e}&The day of the month like with \verb|%d|, but padded with |
---|
3759 | blank rather than zero.\\ |
---|
3760 | \end{tabular} |
---|
3761 | |
---|
3762 | \medskip |
---|
3763 | |
---|
3764 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3765 | {\tt\%F}&The date using the format \verb|%Y-%m-%d|.\\ |
---|
3766 | \end{tabular} |
---|
3767 | |
---|
3768 | \medskip |
---|
3769 | |
---|
3770 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3771 | {\tt\%g}&The year corresponding to the ISO week number, but without the |
---|
3772 | century (range 00 to 99). This has the same format and value as |
---|
3773 | \verb|%y|, except that if the ISO week number (see \verb|%V|) belongs |
---|
3774 | to the previous or next year, that year is used instead.\\ |
---|
3775 | \end{tabular} |
---|
3776 | |
---|
3777 | \medskip |
---|
3778 | |
---|
3779 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3780 | {\tt\%G}&The year corresponding to the ISO week number. This has the |
---|
3781 | same format and value as \verb|%Y|, except that if the ISO week number |
---|
3782 | (see \verb|%V|) belongs to the previous or next year, that year is used |
---|
3783 | instead. |
---|
3784 | \end{tabular} |
---|
3785 | |
---|
3786 | \medskip |
---|
3787 | |
---|
3788 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3789 | {\tt\%h}&The same as \verb|%b|.\\ |
---|
3790 | \end{tabular} |
---|
3791 | |
---|
3792 | \medskip |
---|
3793 | |
---|
3794 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3795 | {\tt\%H}&The hour as a decimal number, using a 24-hour clock (range 00 |
---|
3796 | to 23).\\ |
---|
3797 | \end{tabular} |
---|
3798 | |
---|
3799 | \medskip |
---|
3800 | |
---|
3801 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3802 | {\tt\%I}&The hour as a decimal number, using a 12-hour clock (range 01 |
---|
3803 | to 12).\\ |
---|
3804 | \end{tabular} |
---|
3805 | |
---|
3806 | \medskip |
---|
3807 | |
---|
3808 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3809 | {\tt\%j}&The day of the year as a decimal number (range 001 to 366).\\ |
---|
3810 | \end{tabular} |
---|
3811 | |
---|
3812 | \medskip |
---|
3813 | |
---|
3814 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3815 | {\tt\%k}&The hour as a decimal number, using a 24-hour clock like |
---|
3816 | \verb|%H|, but padded with blank rather than zero.\\ |
---|
3817 | \end{tabular} |
---|
3818 | |
---|
3819 | \medskip |
---|
3820 | |
---|
3821 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3822 | {\tt\%l}&The hour as a decimal number, using a 12-hour clock like |
---|
3823 | \verb|%I|, but padded with blank rather than zero. |
---|
3824 | \end{tabular} |
---|
3825 | |
---|
3826 | \medskip |
---|
3827 | |
---|
3828 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3829 | {\tt\%m}&The month as a decimal number (range 01 to 12).\\ |
---|
3830 | \end{tabular} |
---|
3831 | |
---|
3832 | \medskip |
---|
3833 | |
---|
3834 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3835 | {\tt\%M}&The minute as a decimal number (range 00 to 59).\\ |
---|
3836 | \end{tabular} |
---|
3837 | |
---|
3838 | \medskip |
---|
3839 | |
---|
3840 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3841 | {\tt\%p}&Either {\tt AM} or {\tt PM}, according to the given time value. |
---|
3842 | Midnight is treated as {\tt AM} and noon as {\tt PM}.\\ |
---|
3843 | \end{tabular} |
---|
3844 | |
---|
3845 | \medskip |
---|
3846 | |
---|
3847 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3848 | {\tt\%P}&Either {\tt am} or {\tt pm}, according to the given time value. |
---|
3849 | Midnight is treated as {\tt am} and noon as {\tt pm}.\\ |
---|
3850 | \end{tabular} |
---|
3851 | |
---|
3852 | \medskip |
---|
3853 | |
---|
3854 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3855 | {\tt\%R}&The hour and minute in decimal numbers using the format |
---|
3856 | \verb|%H:%M|.\\ |
---|
3857 | \end{tabular} |
---|
3858 | |
---|
3859 | \medskip |
---|
3860 | |
---|
3861 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3862 | {\tt\%S}&The second as a decimal number (range 00 to 59).\\ |
---|
3863 | \end{tabular} |
---|
3864 | |
---|
3865 | \medskip |
---|
3866 | |
---|
3867 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3868 | {\tt\%T}&The time of day in decimal numbers using the format |
---|
3869 | \verb|%H:%M:%S|.\\ |
---|
3870 | \end{tabular} |
---|
3871 | |
---|
3872 | \medskip |
---|
3873 | |
---|
3874 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3875 | {\tt\%u}&The day of the week as a decimal number (range 1 to 7), Monday |
---|
3876 | being 1.\\ |
---|
3877 | \end{tabular} |
---|
3878 | |
---|
3879 | \medskip |
---|
3880 | |
---|
3881 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3882 | {\tt\%U}&The week number of the current year as a decimal number (range |
---|
3883 | 00 to 53), starting with the first Sunday as the first day of the first |
---|
3884 | week. Days preceding the first Sunday in the year are considered to be |
---|
3885 | in week 00. |
---|
3886 | \end{tabular} |
---|
3887 | |
---|
3888 | \medskip |
---|
3889 | |
---|
3890 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3891 | {\tt\%V}&The ISO week number as a decimal number (range 01 to 53). ISO |
---|
3892 | weeks start with Monday and end with Sunday. Week 01 of a year is the |
---|
3893 | first week which has the majority of its days in that year; this is |
---|
3894 | equivalent to the week containing January 4. Week 01 of a year can |
---|
3895 | contain days from the previous year. The week before week 01 of a year |
---|
3896 | is the last week (52 or 53) of the previous year even if it contains |
---|
3897 | days from the new year. In other word, if 1 January is Monday, Tuesday, |
---|
3898 | Wednesday or Thursday, it is in week 01; if 1 January is Friday, |
---|
3899 | Saturday or Sunday, it is in week 52 or 53 of the previous year.\\ |
---|
3900 | \end{tabular} |
---|
3901 | |
---|
3902 | \medskip |
---|
3903 | |
---|
3904 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3905 | {\tt\%w}&The day of the week as a decimal number (range 0 to 6), Sunday |
---|
3906 | being 0.\\ |
---|
3907 | \end{tabular} |
---|
3908 | |
---|
3909 | \medskip |
---|
3910 | |
---|
3911 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3912 | {\tt\%W}&The week number of the current year as a decimal number (range |
---|
3913 | 00 to 53), starting with the first Monday as the first day of the first |
---|
3914 | week. Days preceding the first Monday in the year are considered to be |
---|
3915 | in week 00.\\ |
---|
3916 | \end{tabular} |
---|
3917 | |
---|
3918 | \medskip |
---|
3919 | |
---|
3920 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3921 | {\tt\%y}&The year without a century as a decimal number (range 00 to |
---|
3922 | 99), that is the year modulo 100.\\ |
---|
3923 | \end{tabular} |
---|
3924 | |
---|
3925 | \medskip |
---|
3926 | |
---|
3927 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3928 | {\tt\%Y}&The year as a decimal number, using the Gregorian calendar.\\ |
---|
3929 | \end{tabular} |
---|
3930 | |
---|
3931 | \medskip |
---|
3932 | |
---|
3933 | \begin{tabular}{@{}p{20pt}p{298pt}@{}} |
---|
3934 | {\tt\%\%}&A literal \verb|%| character.\\ |
---|
3935 | \end{tabular} |
---|
3936 | |
---|
3937 | \medskip |
---|
3938 | |
---|
3939 | All other (ordinary) characters in the format string are simply copied |
---|
3940 | to the resultant string. |
---|
3941 | |
---|
3942 | The first argument (calendar time) passed to the function {\tt time2str} |
---|
3943 | must be in the range from $-62135596800$ to $+64092211199$ that |
---|
3944 | corresponds to the period from 00:00:00 on January 1, 0001 to 23:59:59 |
---|
3945 | on December 31, 4000 of the Gregorian calendar. |
---|
3946 | |
---|
3947 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
3948 | |
---|
3949 | \newpage |
---|
3950 | |
---|
3951 | \section{Table drivers} |
---|
3952 | \label{drivers} |
---|
3953 | |
---|
3954 | \noindent\hfil |
---|
3955 | by Andrew Makhorin \verb|<mao@gnu.org>| |
---|
3956 | |
---|
3957 | \noindent\hfil |
---|
3958 | and Heinrich Schuchardt \verb|<heinrich.schuchardt@gmx.de>| |
---|
3959 | |
---|
3960 | \bigskip\bigskip |
---|
3961 | |
---|
3962 | The {\it table driver} is a program module which provides transmitting |
---|
3963 | data between MathProg model objects and data tables. |
---|
3964 | |
---|
3965 | Currently the GLPK package has four table drivers: |
---|
3966 | |
---|
3967 | \setlength{\leftmargini}{2.5em} |
---|
3968 | |
---|
3969 | \begin{itemize} |
---|
3970 | \item built-in CSV table driver; |
---|
3971 | \item built-in xBASE table driver; |
---|
3972 | \item ODBC table driver; |
---|
3973 | \item MySQL table driver. |
---|
3974 | \end{itemize} |
---|
3975 | |
---|
3976 | \subsection{CSV table driver} |
---|
3977 | |
---|
3978 | The CSV table driver assumes that the data table is represented in the |
---|
3979 | form of a plain text file in the CSV (comma-separated values) file |
---|
3980 | format as described below. |
---|
3981 | |
---|
3982 | To choose the CSV table driver its name in the table statement should |
---|
3983 | be specified as \verb|"CSV"|, and the only argument should specify the |
---|
3984 | name of a plain text file containing the table. For example: |
---|
3985 | |
---|
3986 | \medskip |
---|
3987 | |
---|
3988 | \verb| table data IN "CSV" "data.csv": ... ;| |
---|
3989 | |
---|
3990 | \medskip |
---|
3991 | |
---|
3992 | The filename suffix may be arbitrary, however, it is recommended to use |
---|
3993 | the suffix `\verb|.csv|'. |
---|
3994 | |
---|
3995 | On reading input tables the CSV table driver provides an implicit field |
---|
3996 | named \verb|RECNO|, which contains the current record number. This |
---|
3997 | field can be specified in the input table statement as if there were |
---|
3998 | the actual field having the name \verb|RECNO| in the CSV file. For |
---|
3999 | example: |
---|
4000 | |
---|
4001 | \medskip |
---|
4002 | |
---|
4003 | \verb| table list IN "CSV" "list.csv": num <- [RECNO], ... ;| |
---|
4004 | |
---|
4005 | \subsubsection*{CSV format\footnote{This material is based on the RFC |
---|
4006 | document 4180.}} |
---|
4007 | |
---|
4008 | The CSV (comma-separated values) format is a plain text file format |
---|
4009 | defined as follows. |
---|
4010 | |
---|
4011 | 1. Each record is located on a separate line, delimited by a line |
---|
4012 | break. For example: |
---|
4013 | |
---|
4014 | \medskip |
---|
4015 | |
---|
4016 | \verb| aaa,bbb,ccc\n| |
---|
4017 | |
---|
4018 | \verb| xxx,yyy,zzz\n| |
---|
4019 | |
---|
4020 | \medskip |
---|
4021 | |
---|
4022 | \noindent |
---|
4023 | where \verb|\n| means the control character \verb|LF| ({\tt 0x0A}). |
---|
4024 | |
---|
4025 | \newpage |
---|
4026 | |
---|
4027 | 2. The last record in the file may or may not have an ending line |
---|
4028 | break. For example: |
---|
4029 | |
---|
4030 | \medskip |
---|
4031 | |
---|
4032 | \verb| aaa,bbb,ccc\n| |
---|
4033 | |
---|
4034 | \verb| xxx,yyy,zzz| |
---|
4035 | |
---|
4036 | \medskip |
---|
4037 | |
---|
4038 | 3. There should be a header line appearing as the first line of the |
---|
4039 | file in the same format as normal record lines. This header should |
---|
4040 | contain names corresponding to the fields in the file. The number of |
---|
4041 | field names in the header line should be the same as the number of |
---|
4042 | fields in the records of the file. For example: |
---|
4043 | |
---|
4044 | \medskip |
---|
4045 | |
---|
4046 | \verb| name1,name2,name3\n| |
---|
4047 | |
---|
4048 | \verb| aaa,bbb,ccc\n| |
---|
4049 | |
---|
4050 | \verb| xxx,yyy,zzz\n| |
---|
4051 | |
---|
4052 | \medskip |
---|
4053 | |
---|
4054 | 4. Within the header and each record there may be one or more fields |
---|
4055 | separated by commas. Each line should contain the same number of fields |
---|
4056 | throughout the file. Spaces are considered as part of a field and |
---|
4057 | therefore not ignored. The last field in the record should not be |
---|
4058 | followed by a comma. For example: |
---|
4059 | |
---|
4060 | \medskip |
---|
4061 | |
---|
4062 | \verb| aaa,bbb,ccc\n| |
---|
4063 | |
---|
4064 | \medskip |
---|
4065 | |
---|
4066 | 5. Fields may or may not be enclosed in double quotes. For example: |
---|
4067 | |
---|
4068 | \medskip |
---|
4069 | |
---|
4070 | \verb| "aaa","bbb","ccc"\n| |
---|
4071 | |
---|
4072 | \verb| zzz,yyy,xxx\n| |
---|
4073 | |
---|
4074 | \medskip |
---|
4075 | |
---|
4076 | 6. If a field is enclosed in double quotes, each double quote which is |
---|
4077 | part of the field should be coded twice. For example: |
---|
4078 | |
---|
4079 | \medskip |
---|
4080 | |
---|
4081 | \verb| "aaa","b""bb","ccc"\n| |
---|
4082 | |
---|
4083 | \medskip |
---|
4084 | |
---|
4085 | \noindent{\bf Example} |
---|
4086 | |
---|
4087 | \begin{verbatim} |
---|
4088 | FROM,TO,DISTANCE,COST |
---|
4089 | Seattle,New-York,2.5,0.12 |
---|
4090 | Seattle,Chicago,1.7,0.08 |
---|
4091 | Seattle,Topeka,1.8,0.09 |
---|
4092 | San-Diego,New-York,2.5,0.15 |
---|
4093 | San-Diego,Chicago,1.8,0.10 |
---|
4094 | San-Diego,Topeka,1.4,0.07 |
---|
4095 | \end{verbatim} |
---|
4096 | |
---|
4097 | \subsection{xBASE table driver} |
---|
4098 | |
---|
4099 | The xBASE table driver assumes that the data table is stored in the |
---|
4100 | .dbf file format. |
---|
4101 | |
---|
4102 | To choose the xBASE table driver its name in the table statement should |
---|
4103 | be specified as \verb|"xBASE"|, and the first argument should specify |
---|
4104 | the name of a .dbf file containing the table. For the output table there |
---|
4105 | should be the second argument defining the table format in the form |
---|
4106 | \verb|"FF...F"|, where \verb|F| is either {\tt C({\it n})}, |
---|
4107 | which specifies a character field of length $n$, or |
---|
4108 | {\tt N({\it n}{\rm [},{\it p}{\rm ]})}, which specifies a numeric field |
---|
4109 | of length $n$ and precision $p$ (by default $p$ is 0). |
---|
4110 | |
---|
4111 | The following is a simple example which illustrates creating and |
---|
4112 | reading a .dbf file: |
---|
4113 | |
---|
4114 | \begin{verbatim} |
---|
4115 | table tab1{i in 1..10} OUT "xBASE" "foo.dbf" |
---|
4116 | "N(5)N(10,4)C(1)C(10)": 2*i+1 ~ B, Uniform(-20,+20) ~ A, |
---|
4117 | "?" ~ FOO, "[" & i & "]" ~ C; |
---|
4118 | set S, dimen 4; |
---|
4119 | table tab2 IN "xBASE" "foo.dbf": S <- [B, C, RECNO, A]; |
---|
4120 | display S; |
---|
4121 | end; |
---|
4122 | \end{verbatim} |
---|
4123 | |
---|
4124 | \subsection{ODBC table driver} |
---|
4125 | |
---|
4126 | The ODBC table driver allows connecting to SQL databases using an |
---|
4127 | implementation of the ODBC interface based on the Call Level Interface |
---|
4128 | (CLI).\footnote{The corresponding software standard is defined in |
---|
4129 | ISO/IEC 9075-3:2003.} |
---|
4130 | |
---|
4131 | \paragraph{Debian GNU/Linux.} |
---|
4132 | Under Debian GNU/Linux the ODBC table driver uses the iODBC |
---|
4133 | package,\footnote{See {\tt<http://www.iodbc.org/>}.} which should be |
---|
4134 | installed before building the GLPK package. The installation can be |
---|
4135 | effected with the following command: |
---|
4136 | |
---|
4137 | \begin{verbatim} |
---|
4138 | sudo apt-get install libiodbc2-dev |
---|
4139 | \end{verbatim} |
---|
4140 | |
---|
4141 | Note that on configuring the GLPK package to enable using the iODBC |
---|
4142 | library the option `\verb|--enable-odbc|' should be passed to the |
---|
4143 | configure script. |
---|
4144 | |
---|
4145 | The individual databases must be entered for systemwide usage in |
---|
4146 | \linebreak \verb|/etc/odbc.ini| and \verb|/etc/odbcinst.ini|. Database |
---|
4147 | connections to be used by a single user are specified by files in the |
---|
4148 | home directory (\verb|.odbc.ini| and \verb|.odbcinst.ini|). |
---|
4149 | |
---|
4150 | \paragraph{Microsoft Windows.} |
---|
4151 | Under Microsoft Windows the ODBC table driver uses the Microsoft ODBC |
---|
4152 | library. To enable this feature the symbol: |
---|
4153 | |
---|
4154 | \begin{verbatim} |
---|
4155 | #define ODBC_DLNAME "odbc32.dll" |
---|
4156 | \end{verbatim} |
---|
4157 | |
---|
4158 | \noindent |
---|
4159 | should be defined in the GLPK configuration file `\verb|config.h|'. |
---|
4160 | |
---|
4161 | Data sources can be created via the Administrative Tools from the |
---|
4162 | Control Panel. |
---|
4163 | |
---|
4164 | \bigskip |
---|
4165 | |
---|
4166 | To choose the ODBC table driver its name in the table statement should |
---|
4167 | be specified as \verb|'ODBC'| or \verb|'iODBC'|. |
---|
4168 | |
---|
4169 | The argument list is specified as follows. |
---|
4170 | |
---|
4171 | The first argument is the connection string passed to the ODBC library, |
---|
4172 | for example: |
---|
4173 | |
---|
4174 | \verb|'DSN=glpk;UID=user;PWD=password'|, or |
---|
4175 | |
---|
4176 | \verb|'DRIVER=MySQL;DATABASE=glpkdb;UID=user;PWD=password'|. |
---|
4177 | |
---|
4178 | Different parts of the string are separated by semicolons. Each part |
---|
4179 | consists of a pair {\it fieldname} and {\it value} separated by the |
---|
4180 | equal sign. Allowable fieldnames depend on the ODBC library. Typically |
---|
4181 | the following fieldnames are allowed: |
---|
4182 | |
---|
4183 | \verb|DATABASE | database; |
---|
4184 | |
---|
4185 | \verb|DRIVER | ODBC driver; |
---|
4186 | |
---|
4187 | \verb|DSN | name of a data source; |
---|
4188 | |
---|
4189 | \verb|FILEDSN | name of a file data source; |
---|
4190 | |
---|
4191 | \verb|PWD | user password; |
---|
4192 | |
---|
4193 | \verb|SERVER | database; |
---|
4194 | |
---|
4195 | \verb|UID | user name. |
---|
4196 | |
---|
4197 | The second argument and all following are considered to be SQL |
---|
4198 | statements |
---|
4199 | |
---|
4200 | SQL statements may be spread over multiple arguments. If the last |
---|
4201 | character of an argument is a semicolon this indicates the end of |
---|
4202 | a SQL statement. |
---|
4203 | |
---|
4204 | The arguments of a SQL statement are concatenated separated by space. |
---|
4205 | The eventual trailing semicolon will be removed. |
---|
4206 | |
---|
4207 | All but the last SQL statement will be executed directly. |
---|
4208 | |
---|
4209 | For IN-table the last SQL statement can be a SELECT command starting |
---|
4210 | with the capitalized letters \verb|'SELECT '|. If the string does not |
---|
4211 | start with \verb|'SELECT '| it is considered to be a table name and a |
---|
4212 | SELECT statement is automatically generated. |
---|
4213 | |
---|
4214 | For OUT-table the last SQL statement can contain one or multiple |
---|
4215 | question marks. If it contains a question mark it is considered a |
---|
4216 | template for the write routine. Otherwise the string is considered a |
---|
4217 | table name and an INSERT template is automatically generated. |
---|
4218 | |
---|
4219 | The writing routine uses the template with the question marks and |
---|
4220 | replaces the first question mark by the first output parameter, the |
---|
4221 | second question mark by the second output parameter and so forth. Then |
---|
4222 | the SQL command is issued. |
---|
4223 | |
---|
4224 | The following is an example of the output table statement: |
---|
4225 | |
---|
4226 | \begin{small} |
---|
4227 | \begin{verbatim} |
---|
4228 | table ta { l in LOCATIONS } OUT |
---|
4229 | 'ODBC' |
---|
4230 | 'DSN=glpkdb;UID=glpkuser;PWD=glpkpassword' |
---|
4231 | 'DROP TABLE IF EXISTS result;' |
---|
4232 | 'CREATE TABLE result ( ID INT, LOC VARCHAR(255), QUAN DOUBLE );' |
---|
4233 | 'INSERT INTO result 'VALUES ( 4, ?, ? )' : |
---|
4234 | l ~ LOC, quantity[l] ~ QUAN; |
---|
4235 | \end{verbatim} |
---|
4236 | \end{small} |
---|
4237 | |
---|
4238 | \noindent |
---|
4239 | Alternatively it could be written as follows: |
---|
4240 | |
---|
4241 | \begin{small} |
---|
4242 | \begin{verbatim} |
---|
4243 | table ta { l in LOCATIONS } OUT |
---|
4244 | 'ODBC' |
---|
4245 | 'DSN=glpkdb;UID=glpkuser;PWD=glpkpassword' |
---|
4246 | 'DROP TABLE IF EXISTS result;' |
---|
4247 | 'CREATE TABLE result ( ID INT, LOC VARCHAR(255), QUAN DOUBLE );' |
---|
4248 | 'result' : |
---|
4249 | l ~ LOC, quantity[l] ~ QUAN, 4 ~ ID; |
---|
4250 | \end{verbatim} |
---|
4251 | \end{small} |
---|
4252 | |
---|
4253 | Using templates with `\verb|?|' supports not only INSERT, but also |
---|
4254 | UPDATE, DELETE, etc. For example: |
---|
4255 | |
---|
4256 | \begin{small} |
---|
4257 | \begin{verbatim} |
---|
4258 | table ta { l in LOCATIONS } OUT |
---|
4259 | 'ODBC' |
---|
4260 | 'DSN=glpkdb;UID=glpkuser;PWD=glpkpassword' |
---|
4261 | 'UPDATE result SET DATE = ' & date & ' WHERE ID = 4;' |
---|
4262 | 'UPDATE result SET QUAN = ? WHERE LOC = ? AND ID = 4' : |
---|
4263 | quantity[l], l; |
---|
4264 | \end{verbatim} |
---|
4265 | \end{small} |
---|
4266 | |
---|
4267 | \subsection{MySQL table driver} |
---|
4268 | |
---|
4269 | The MySQL table driver allows connecting to MySQL databases. |
---|
4270 | |
---|
4271 | \paragraph{Debian GNU/Linux.} |
---|
4272 | Under Debian GNU/Linux the MySQL table\linebreak driver uses the MySQL |
---|
4273 | package,\footnote{For download development files see |
---|
4274 | {\tt<http://dev.mysql.com/downloads/mysql/>}.} which should be installed |
---|
4275 | before building the GLPK package. The installation can be effected with |
---|
4276 | the following command: |
---|
4277 | |
---|
4278 | \begin{verbatim} |
---|
4279 | sudo apt-get install libmysqlclient15-dev |
---|
4280 | \end{verbatim} |
---|
4281 | |
---|
4282 | Note that on configuring the GLPK package to enable using the MySQL |
---|
4283 | library the option `\verb|--enable-mysql|' should be passed to the |
---|
4284 | configure script. |
---|
4285 | |
---|
4286 | \paragraph{Microsoft Windows.} |
---|
4287 | Under Microsoft Windows the MySQL table driver also uses the MySQL |
---|
4288 | library. To enable this feature the symbol: |
---|
4289 | |
---|
4290 | \begin{verbatim} |
---|
4291 | #define MYSQL_DLNAME "libmysql.dll" |
---|
4292 | \end{verbatim} |
---|
4293 | |
---|
4294 | \noindent |
---|
4295 | should be defined in the GLPK configuration file `\verb|config.h|'. |
---|
4296 | |
---|
4297 | \bigskip |
---|
4298 | |
---|
4299 | To choose the MySQL table driver its name in the table statement should |
---|
4300 | be specified as \verb|'MySQL'|. |
---|
4301 | |
---|
4302 | The argument list is specified as follows. |
---|
4303 | |
---|
4304 | The first argument specifies how to connect the data base in the DSN |
---|
4305 | style, for example: |
---|
4306 | |
---|
4307 | \verb|'Database=glpk;UID=glpk;PWD=gnu'|. |
---|
4308 | |
---|
4309 | Different parts of the string are separated by semicolons. Each part |
---|
4310 | consists of a pair {\it fieldname} and {\it value} separated by the |
---|
4311 | equal sign. The following fieldnames are allowed: |
---|
4312 | |
---|
4313 | \verb|Server | server running the database (defaulting to localhost); |
---|
4314 | |
---|
4315 | \verb|Database | name of the database; |
---|
4316 | |
---|
4317 | \verb|UID | user name; |
---|
4318 | |
---|
4319 | \verb|PWD | user password; |
---|
4320 | |
---|
4321 | \verb|Port | port used by the server (defaulting to 3306). |
---|
4322 | |
---|
4323 | The second argument and all following are considered to be SQL |
---|
4324 | statements |
---|
4325 | |
---|
4326 | SQL statements may be spread over multiple arguments. If the last |
---|
4327 | character of an argument is a semicolon this indicates the end of |
---|
4328 | a SQL statement. |
---|
4329 | |
---|
4330 | The arguments of a SQL statement are concatenated separated by space. |
---|
4331 | The eventual trailing semicolon will be removed. |
---|
4332 | |
---|
4333 | All but the last SQL statement will be executed directly. |
---|
4334 | |
---|
4335 | For IN-table the last SQL statement can be a SELECT command starting |
---|
4336 | with the capitalized letters \verb|'SELECT '|. If the string does not |
---|
4337 | start with \verb|'SELECT '| it is considered to be a table name and a |
---|
4338 | SELECT statement is automatically generated. |
---|
4339 | |
---|
4340 | For OUT-table the last SQL statement can contain one or multiple |
---|
4341 | question marks. If it contains a question mark it is considered a |
---|
4342 | template for the write routine. Otherwise the string is considered a |
---|
4343 | table name and an INSERT template is automatically generated. |
---|
4344 | |
---|
4345 | The writing routine uses the template with the question marks and |
---|
4346 | replaces the first question mark by the first output parameter, the |
---|
4347 | second question mark by the second output parameter and so forth. Then |
---|
4348 | the SQL command is issued. |
---|
4349 | |
---|
4350 | The following is an example of the output table statement: |
---|
4351 | |
---|
4352 | \begin{small} |
---|
4353 | \begin{verbatim} |
---|
4354 | table ta { l in LOCATIONS } OUT |
---|
4355 | 'MySQL' |
---|
4356 | 'Database=glpkdb;UID=glpkuser;PWD=glpkpassword' |
---|
4357 | 'DROP TABLE IF EXISTS result;' |
---|
4358 | 'CREATE TABLE result ( ID INT, LOC VARCHAR(255), QUAN DOUBLE );' |
---|
4359 | 'INSERT INTO result VALUES ( 4, ?, ? )' : |
---|
4360 | l ~ LOC, quantity[l] ~ QUAN; |
---|
4361 | \end{verbatim} |
---|
4362 | \end{small} |
---|
4363 | |
---|
4364 | \noindent |
---|
4365 | Alternatively it could be written as follows: |
---|
4366 | |
---|
4367 | \begin{small} |
---|
4368 | \begin{verbatim} |
---|
4369 | table ta { l in LOCATIONS } OUT |
---|
4370 | 'MySQL' |
---|
4371 | 'Database=glpkdb;UID=glpkuser;PWD=glpkpassword' |
---|
4372 | 'DROP TABLE IF EXISTS result;' |
---|
4373 | 'CREATE TABLE result ( ID INT, LOC VARCHAR(255), QUAN DOUBLE );' |
---|
4374 | 'result' : |
---|
4375 | l ~ LOC, quantity[l] ~ QUAN, 4 ~ ID; |
---|
4376 | \end{verbatim} |
---|
4377 | \end{small} |
---|
4378 | |
---|
4379 | Using templates with `\verb|?|' supports not only INSERT, but also |
---|
4380 | UPDATE, DELETE, etc. For example: |
---|
4381 | |
---|
4382 | \begin{small} |
---|
4383 | \begin{verbatim} |
---|
4384 | table ta { l in LOCATIONS } OUT |
---|
4385 | 'MySQL' |
---|
4386 | 'Database=glpkdb;UID=glpkuser;PWD=glpkpassword' |
---|
4387 | 'UPDATE result SET DATE = ' & date & ' WHERE ID = 4;' |
---|
4388 | 'UPDATE result SET QUAN = ? WHERE LOC = ? AND ID = 4' : |
---|
4389 | quantity[l], l; |
---|
4390 | \end{verbatim} |
---|
4391 | \end{small} |
---|
4392 | |
---|
4393 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
4394 | |
---|
4395 | \newpage |
---|
4396 | |
---|
4397 | \section{Solving models with glpsol} |
---|
4398 | |
---|
4399 | The GLPK package\footnote{{\tt http://www.gnu.org/software/glpk/}} |
---|
4400 | includes the program {\tt glpsol}, which is a stand-alone LP/MIP solver. |
---|
4401 | This program can be launched from the command line or from the shell to |
---|
4402 | solve models written in the GNU MathProg modeling language. |
---|
4403 | |
---|
4404 | In order to tell the solver that the input file contains a model |
---|
4405 | description, you need to specify the option \verb|--model| in the |
---|
4406 | command line. For example: |
---|
4407 | |
---|
4408 | \medskip |
---|
4409 | |
---|
4410 | \verb| glpsol --model foo.mod| |
---|
4411 | |
---|
4412 | \medskip |
---|
4413 | |
---|
4414 | Sometimes it is necessary to use the data section placed in a separate |
---|
4415 | file, in which case you may use the following command: |
---|
4416 | |
---|
4417 | \medskip |
---|
4418 | |
---|
4419 | \verb| glpsol --model foo.mod --data foo.dat| |
---|
4420 | |
---|
4421 | \medskip |
---|
4422 | |
---|
4423 | \noindent Note that if the model file also contains the data section, |
---|
4424 | that section is ignored. |
---|
4425 | |
---|
4426 | If the model description contains some display and/or printf statements, |
---|
4427 | by default the output is sent to the terminal. In order to redirect the |
---|
4428 | output to a file you may use the following command: |
---|
4429 | |
---|
4430 | \medskip |
---|
4431 | |
---|
4432 | \verb| glpsol --model foo.mod --display foo.out| |
---|
4433 | |
---|
4434 | \medskip |
---|
4435 | |
---|
4436 | If you need to look at the problem, which has been generated by the |
---|
4437 | model translator, you may use the option \verb|--wlp| as follows: |
---|
4438 | |
---|
4439 | \medskip |
---|
4440 | |
---|
4441 | \verb| glpsol --model foo.mod --wlp foo.lp| |
---|
4442 | |
---|
4443 | \medskip |
---|
4444 | |
---|
4445 | \noindent in which case the problem data is written to file |
---|
4446 | \verb|foo.lp| in CPLEX LP format suitable for visual analysis. |
---|
4447 | |
---|
4448 | Sometimes it is needed merely to check the model description not |
---|
4449 | solving the generated problem instance. In this case you may specify |
---|
4450 | the option \verb|--check|, for example: |
---|
4451 | |
---|
4452 | \medskip |
---|
4453 | |
---|
4454 | \verb| glpsol --check --model foo.mod --wlp foo.lp| |
---|
4455 | |
---|
4456 | \medskip |
---|
4457 | |
---|
4458 | In order to write a numeric solution obtained by the solver you may use |
---|
4459 | the following command: |
---|
4460 | |
---|
4461 | \medskip |
---|
4462 | |
---|
4463 | \verb| glpsol --model foo.mod --output foo.sol| |
---|
4464 | |
---|
4465 | \medskip |
---|
4466 | |
---|
4467 | \noindent in which case the solution is written to file \verb|foo.sol| |
---|
4468 | in a plain text format. |
---|
4469 | |
---|
4470 | The complete list of the \verb|glpsol| options can be found in the |
---|
4471 | reference manual included in the GLPK distribution. |
---|
4472 | |
---|
4473 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
4474 | |
---|
4475 | \newpage |
---|
4476 | |
---|
4477 | \section{Example model description} |
---|
4478 | |
---|
4479 | \subsection{Model description written in MathProg} |
---|
4480 | |
---|
4481 | Below here is a complete example of the model description written in |
---|
4482 | the GNU MathProg modeling language. |
---|
4483 | |
---|
4484 | \begin{small} |
---|
4485 | \begin{verbatim} |
---|
4486 | # A TRANSPORTATION PROBLEM |
---|
4487 | # |
---|
4488 | # This problem finds a least cost shipping schedule that meets |
---|
4489 | # requirements at markets and supplies at factories. |
---|
4490 | # |
---|
4491 | # References: |
---|
4492 | # Dantzig G B, "Linear Programming and Extensions." |
---|
4493 | # Princeton University Press, Princeton, New Jersey, 1963, |
---|
4494 | # Chapter 3-3. |
---|
4495 | |
---|
4496 | set I; |
---|
4497 | /* canning plants */ |
---|
4498 | |
---|
4499 | set J; |
---|
4500 | /* markets */ |
---|
4501 | |
---|
4502 | param a{i in I}; |
---|
4503 | /* capacity of plant i in cases */ |
---|
4504 | |
---|
4505 | param b{j in J}; |
---|
4506 | /* demand at market j in cases */ |
---|
4507 | |
---|
4508 | param d{i in I, j in J}; |
---|
4509 | /* distance in thousands of miles */ |
---|
4510 | |
---|
4511 | param f; |
---|
4512 | /* freight in dollars per case per thousand miles */ |
---|
4513 | |
---|
4514 | param c{i in I, j in J} := f * d[i,j] / 1000; |
---|
4515 | /* transport cost in thousands of dollars per case */ |
---|
4516 | |
---|
4517 | var x{i in I, j in J} >= 0; |
---|
4518 | /* shipment quantities in cases */ |
---|
4519 | |
---|
4520 | minimize cost: sum{i in I, j in J} c[i,j] * x[i,j]; |
---|
4521 | /* total transportation costs in thousands of dollars */ |
---|
4522 | |
---|
4523 | s.t. supply{i in I}: sum{j in J} x[i,j] <= a[i]; |
---|
4524 | /* observe supply limit at plant i */ |
---|
4525 | |
---|
4526 | s.t. demand{j in J}: sum{i in I} x[i,j] >= b[j]; |
---|
4527 | /* satisfy demand at market j */ |
---|
4528 | |
---|
4529 | data; |
---|
4530 | |
---|
4531 | set I := Seattle San-Diego; |
---|
4532 | |
---|
4533 | set J := New-York Chicago Topeka; |
---|
4534 | |
---|
4535 | param a := Seattle 350 |
---|
4536 | San-Diego 600; |
---|
4537 | |
---|
4538 | param b := New-York 325 |
---|
4539 | Chicago 300 |
---|
4540 | Topeka 275; |
---|
4541 | |
---|
4542 | param d : New-York Chicago Topeka := |
---|
4543 | Seattle 2.5 1.7 1.8 |
---|
4544 | San-Diego 2.5 1.8 1.4 ; |
---|
4545 | |
---|
4546 | param f := 90; |
---|
4547 | |
---|
4548 | end; |
---|
4549 | \end{verbatim} |
---|
4550 | \end{small} |
---|
4551 | |
---|
4552 | \subsection{Generated LP problem instance} |
---|
4553 | |
---|
4554 | Below here is the result of the translation of the example model |
---|
4555 | produced by the solver \verb|glpsol| and written in CPLEX LP format |
---|
4556 | with the option \verb|--wlp|. |
---|
4557 | |
---|
4558 | \begin{small} |
---|
4559 | \begin{verbatim} |
---|
4560 | \* Problem: transp *\ |
---|
4561 | |
---|
4562 | Minimize |
---|
4563 | cost: + 0.225 x(Seattle,New~York) + 0.153 x(Seattle,Chicago) |
---|
4564 | + 0.162 x(Seattle,Topeka) + 0.225 x(San~Diego,New~York) |
---|
4565 | + 0.162 x(San~Diego,Chicago) + 0.126 x(San~Diego,Topeka) |
---|
4566 | |
---|
4567 | Subject To |
---|
4568 | supply(Seattle): + x(Seattle,New~York) + x(Seattle,Chicago) |
---|
4569 | + x(Seattle,Topeka) <= 350 |
---|
4570 | supply(San~Diego): + x(San~Diego,New~York) + x(San~Diego,Chicago) |
---|
4571 | + x(San~Diego,Topeka) <= 600 |
---|
4572 | demand(New~York): + x(Seattle,New~York) + x(San~Diego,New~York) >= 325 |
---|
4573 | demand(Chicago): + x(Seattle,Chicago) + x(San~Diego,Chicago) >= 300 |
---|
4574 | demand(Topeka): + x(Seattle,Topeka) + x(San~Diego,Topeka) >= 275 |
---|
4575 | |
---|
4576 | End |
---|
4577 | \end{verbatim} |
---|
4578 | \end{small} |
---|
4579 | |
---|
4580 | \subsection{Optimal LP solution} |
---|
4581 | |
---|
4582 | Below here is the optimal solution of the generated LP problem instance |
---|
4583 | found by the solver \verb|glpsol| and written in plain text format |
---|
4584 | with the option \verb|--output|. |
---|
4585 | |
---|
4586 | \newpage |
---|
4587 | |
---|
4588 | \begin{small} |
---|
4589 | \begin{verbatim} |
---|
4590 | Problem: transp |
---|
4591 | Rows: 6 |
---|
4592 | Columns: 6 |
---|
4593 | Non-zeros: 18 |
---|
4594 | Status: OPTIMAL |
---|
4595 | Objective: cost = 153.675 (MINimum) |
---|
4596 | |
---|
4597 | No. Row name St Activity Lower bound Upper bound Marginal |
---|
4598 | --- ------------ -- ------------ ------------ ------------ ------------ |
---|
4599 | 1 cost B 153.675 |
---|
4600 | 2 supply[Seattle] |
---|
4601 | B 300 350 |
---|
4602 | 3 supply[San-Diego] |
---|
4603 | NU 600 600 < eps |
---|
4604 | 4 demand[New-York] |
---|
4605 | NL 325 325 0.225 |
---|
4606 | 5 demand[Chicago] |
---|
4607 | NL 300 300 0.153 |
---|
4608 | 6 demand[Topeka] |
---|
4609 | NL 275 275 0.126 |
---|
4610 | |
---|
4611 | No. Column name St Activity Lower bound Upper bound Marginal |
---|
4612 | --- ------------ -- ------------ ------------ ------------ ------------ |
---|
4613 | 1 x[Seattle,New-York] |
---|
4614 | B 0 0 |
---|
4615 | 2 x[Seattle,Chicago] |
---|
4616 | B 300 0 |
---|
4617 | 3 x[Seattle,Topeka] |
---|
4618 | NL 0 0 0.036 |
---|
4619 | 4 x[San-Diego,New-York] |
---|
4620 | B 325 0 |
---|
4621 | 5 x[San-Diego,Chicago] |
---|
4622 | NL 0 0 0.009 |
---|
4623 | 6 x[San-Diego,Topeka] |
---|
4624 | B 275 0 |
---|
4625 | |
---|
4626 | End of output |
---|
4627 | \end{verbatim} |
---|
4628 | \end{small} |
---|
4629 | |
---|
4630 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
4631 | |
---|
4632 | \newpage |
---|
4633 | |
---|
4634 | \setcounter{secnumdepth}{-1} |
---|
4635 | |
---|
4636 | \section{Acknowledgment} |
---|
4637 | |
---|
4638 | The authors would like to thank the following people, who kindly read, |
---|
4639 | commented, and corrected the draft of this document: |
---|
4640 | |
---|
4641 | \medskip |
---|
4642 | |
---|
4643 | \noindent Juan Carlos Borras \verb|<borras@cs.helsinki.fi>| |
---|
4644 | |
---|
4645 | \medskip |
---|
4646 | |
---|
4647 | \noindent Harley Mackenzie \verb|<hjm@bigpond.com>| |
---|
4648 | |
---|
4649 | \medskip |
---|
4650 | |
---|
4651 | \noindent Robbie Morrison \verb|<robbie@actrix.co.nz>| |
---|
4652 | |
---|
4653 | \end{document} |
---|