1 | /* MAXFLOW, Maximum Flow Problem */ |
---|
2 | |
---|
3 | /* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */ |
---|
4 | |
---|
5 | /* The Maximum Flow Problem in a network G = (V, E), where V is a set |
---|
6 | of nodes, E within V x V is a set of arcs, is to maximize the flow |
---|
7 | from one given node s (source) to another given node t (sink) subject |
---|
8 | to conservation of flow constraints at each node and flow capacities |
---|
9 | on each arc. */ |
---|
10 | |
---|
11 | param n, integer, >= 2; |
---|
12 | /* number of nodes */ |
---|
13 | |
---|
14 | set V, default {1..n}; |
---|
15 | /* set of nodes */ |
---|
16 | |
---|
17 | set E, within V cross V; |
---|
18 | /* set of arcs */ |
---|
19 | |
---|
20 | param a{(i,j) in E}, > 0; |
---|
21 | /* a[i,j] is capacity of arc (i,j) */ |
---|
22 | |
---|
23 | param s, symbolic, in V, default 1; |
---|
24 | /* source node */ |
---|
25 | |
---|
26 | param t, symbolic, in V, != s, default n; |
---|
27 | /* sink node */ |
---|
28 | |
---|
29 | var x{(i,j) in E}, >= 0, <= a[i,j]; |
---|
30 | /* x[i,j] is elementary flow through arc (i,j) to be found */ |
---|
31 | |
---|
32 | var flow, >= 0; |
---|
33 | /* total flow from s to t */ |
---|
34 | |
---|
35 | s.t. node{i in V}: |
---|
36 | /* node[i] is conservation constraint for node i */ |
---|
37 | |
---|
38 | sum{(j,i) in E} x[j,i] + (if i = s then flow) |
---|
39 | /* summary flow into node i through all ingoing arcs */ |
---|
40 | |
---|
41 | = /* must be equal to */ |
---|
42 | |
---|
43 | sum{(i,j) in E} x[i,j] + (if i = t then flow); |
---|
44 | /* summary flow from node i through all outgoing arcs */ |
---|
45 | |
---|
46 | maximize obj: flow; |
---|
47 | /* objective is to maximize the total flow through the network */ |
---|
48 | |
---|
49 | solve; |
---|
50 | |
---|
51 | printf{1..56} "="; printf "\n"; |
---|
52 | printf "Maximum flow from node %s to node %s is %g\n\n", s, t, flow; |
---|
53 | printf "Starting node Ending node Arc capacity Flow in arc\n"; |
---|
54 | printf "------------- ----------- ------------ -----------\n"; |
---|
55 | printf{(i,j) in E: x[i,j] != 0}: "%13s %11s %12g %11g\n", i, j, |
---|
56 | a[i,j], x[i,j]; |
---|
57 | printf{1..56} "="; printf "\n"; |
---|
58 | |
---|
59 | data; |
---|
60 | |
---|
61 | /* These data correspond to an example from [Christofides]. */ |
---|
62 | |
---|
63 | /* Optimal solution is 29 */ |
---|
64 | |
---|
65 | param n := 9; |
---|
66 | |
---|
67 | param : E : a := |
---|
68 | 1 2 14 |
---|
69 | 1 4 23 |
---|
70 | 2 3 10 |
---|
71 | 2 4 9 |
---|
72 | 3 5 12 |
---|
73 | 3 8 18 |
---|
74 | 4 5 26 |
---|
75 | 5 2 11 |
---|
76 | 5 6 25 |
---|
77 | 5 7 4 |
---|
78 | 6 7 7 |
---|
79 | 6 8 8 |
---|
80 | 7 9 15 |
---|
81 | 8 9 20; |
---|
82 | |
---|
83 | end; |
---|