1 | /* min01ks.mod - finding minimal equivalent 0-1 knapsack inequality */ |
---|
2 | |
---|
3 | /* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */ |
---|
4 | |
---|
5 | /* It is obvious that for a given 0-1 knapsack inequality |
---|
6 | |
---|
7 | a[1] x[1] + ... + a[n] x[n] <= b, x[j] in {0, 1} (1) |
---|
8 | |
---|
9 | there exist infinitely many equivalent inequalities with exactly the |
---|
10 | same feasible solutions. |
---|
11 | |
---|
12 | Given a[j]'s and b this model allows to find an inequality |
---|
13 | |
---|
14 | alfa[1] x[1] + ... + alfa[n] x[n] <= beta, x[j] in {0, 1}, (2) |
---|
15 | |
---|
16 | which is equivalent to (1) and where alfa[j]'s and beta are smallest |
---|
17 | non-negative integers. |
---|
18 | |
---|
19 | This model has the following formulation: |
---|
20 | |
---|
21 | minimize |
---|
22 | |
---|
23 | z = |alfa[1]| + ... + |alfa[n]| + |beta| = (3) |
---|
24 | |
---|
25 | = alfa[1] + ... + alfa[n] + beta |
---|
26 | |
---|
27 | subject to |
---|
28 | |
---|
29 | alfa[1] x[1] + ... + alfa[n] x[n] <= beta (4) |
---|
30 | |
---|
31 | for all x satisfying to (1) |
---|
32 | |
---|
33 | alfa[1] x[1] + ... + alfa[n] x[n] >= beta + 1 (5) |
---|
34 | |
---|
35 | for all x not satisfying to (1) |
---|
36 | |
---|
37 | alfa[1], ..., alfa[n], beta are non-negative integers. |
---|
38 | |
---|
39 | Note that this model has n+1 variables and 2^n constraints. |
---|
40 | |
---|
41 | It is interesting, as noticed in [1] and explained in [2], that |
---|
42 | in most cases LP relaxation of the MIP formulation above has integer |
---|
43 | optimal solution. |
---|
44 | |
---|
45 | References |
---|
46 | |
---|
47 | 1. G.H.Bradley, P.L.Hammer, L.Wolsey, "Coefficient Reduction for |
---|
48 | Inequalities in 0-1 Variables", Math.Prog.7 (1974), 263-282. |
---|
49 | |
---|
50 | 2. G.J.Koehler, "A Study on Coefficient Reduction of Binary Knapsack |
---|
51 | Inequalities", University of Florida, 2001. */ |
---|
52 | |
---|
53 | param n, integer, > 0; |
---|
54 | /* number of variables in the knapsack inequality */ |
---|
55 | |
---|
56 | set N := 1..n; |
---|
57 | /* set of knapsack items */ |
---|
58 | |
---|
59 | /* all binary n-vectors are numbered by 0, 1, ..., 2^n-1, where vector |
---|
60 | 0 is 00...00, vector 1 is 00...01, etc. */ |
---|
61 | |
---|
62 | set U := 0..2^n-1; |
---|
63 | /* set of numbers of all binary n-vectors */ |
---|
64 | |
---|
65 | param x{i in U, j in N}, binary, := (i div 2^(j-1)) mod 2; |
---|
66 | /* x[i,j] is j-th component of i-th binary n-vector */ |
---|
67 | |
---|
68 | param a{j in N}, >= 0; |
---|
69 | /* original coefficients */ |
---|
70 | |
---|
71 | param b, >= 0; |
---|
72 | /* original right-hand side */ |
---|
73 | |
---|
74 | set D := setof{i in U: sum{j in N} a[j] * x[i,j] <= b} i; |
---|
75 | /* set of numbers of binary n-vectors, which (vectors) are feasible, |
---|
76 | i.e. satisfy to the original knapsack inequality (1) */ |
---|
77 | |
---|
78 | var alfa{j in N}, integer, >= 0; |
---|
79 | /* coefficients to be found */ |
---|
80 | |
---|
81 | var beta, integer, >= 0; |
---|
82 | /* right-hand side to be found */ |
---|
83 | |
---|
84 | minimize z: sum{j in N} alfa[j] + beta; /* (3) */ |
---|
85 | |
---|
86 | phi{i in D}: sum{j in N} alfa[j] * x[i,j] <= beta; /* (4) */ |
---|
87 | |
---|
88 | psi{i in U diff D}: sum{j in N} alfa[j] * x[i,j] >= beta + 1; /* (5) */ |
---|
89 | |
---|
90 | solve; |
---|
91 | |
---|
92 | printf "\nOriginal 0-1 knapsack inequality:\n"; |
---|
93 | for {j in 1..n} printf (if j = 1 then "" else " + ") & "%g x%d", |
---|
94 | a[j], j; |
---|
95 | printf " <= %g\n", b; |
---|
96 | printf "\nMinimized equivalent inequality:\n"; |
---|
97 | for {j in 1..n} printf (if j = 1 then "" else " + ") & "%g x%d", |
---|
98 | alfa[j], j; |
---|
99 | printf " <= %g\n\n", beta; |
---|
100 | |
---|
101 | data; |
---|
102 | |
---|
103 | /* These data correspond to the very first example from [1]. */ |
---|
104 | |
---|
105 | param n := 8; |
---|
106 | |
---|
107 | param a := [1]65, [2]64, [3]41, [4]22, [5]13, [6]12, [7]8, [8]2; |
---|
108 | |
---|
109 | param b := 80; |
---|
110 | |
---|
111 | end; |
---|