[9] | 1 | %* pbn.tex *% |
---|
| 2 | |
---|
| 3 | \documentclass[11pt,draft]{article} |
---|
| 4 | \usepackage{amssymb} |
---|
| 5 | |
---|
| 6 | \begin{document} |
---|
| 7 | |
---|
| 8 | \title{Solving Paint-By-Numbers Puzzles with GLPK} |
---|
| 9 | |
---|
| 10 | \author{Andrew Makhorin {\tt<mao@gnu.org>}} |
---|
| 11 | |
---|
| 12 | \date{August 2011} |
---|
| 13 | |
---|
| 14 | \maketitle |
---|
| 15 | |
---|
| 16 | \section{Introduction$^1$} |
---|
| 17 | |
---|
| 18 | \footnotetext[1]{This section is based on the material from [1].} |
---|
| 19 | |
---|
| 20 | A {\it paint-by-numbers} puzzle consists of an $m\times n$ grid of |
---|
| 21 | pixels (the {\it canvas}) together with $m+n$ {\it cluster-size |
---|
| 22 | sequences}, one for each row and column. The goal is to paint the canvas |
---|
| 23 | with a picture that satisfies the following constraints: |
---|
| 24 | |
---|
| 25 | 1. Each pixel must be blank or white. |
---|
| 26 | |
---|
| 27 | 2. If a row or column has cluster-size sequence $s_1$, $s_2$, \dots, |
---|
| 28 | $s_k$, then it must contain $k$ clusters of black pixels---the first |
---|
| 29 | with $s_1$ black pixels, the second with $s_2$ black pixels, and so on. |
---|
| 30 | |
---|
| 31 | It should be noted that ``first'' means ``leftmost'' for rows and |
---|
| 32 | ``topmost'' for columns, and that rows and columns need not begin or end |
---|
| 33 | with black pixels. |
---|
| 34 | |
---|
| 35 | \subsubsection*{Example} |
---|
| 36 | |
---|
| 37 | \def\arraystretch{.8} |
---|
| 38 | |
---|
| 39 | \begin{center} |
---|
| 40 | \begin{tabular}{*{3}{@{$\;\;$}c}c*{10}{@{\ }c}@{}} |
---|
| 41 | & & && & &1& &1& & & & & \\ |
---|
| 42 | & & && & &1& &1& & & & & \\ |
---|
| 43 | & & &&2&1&1&1&1&1&2&3& & \\ |
---|
| 44 | & & &&3&2&1&2&1&2&3&4&8&9\\ |
---|
| 45 | \\ |
---|
| 46 | &3&6&&$\blacksquare$&$\blacksquare$&$\blacksquare$&$\square$& |
---|
| 47 | $\blacksquare$&$\blacksquare$&$\blacksquare$&$\blacksquare$& |
---|
| 48 | $\blacksquare$&$\blacksquare$\\ |
---|
| 49 | &1&4&&$\blacksquare$&$\square$&$\square$&$\square$&$\square$& |
---|
| 50 | $\square$&$\blacksquare$&$\blacksquare$&$\blacksquare$&$\blacksquare$\\ |
---|
| 51 | 1&1&3&&$\square$&$\square$&$\blacksquare$&$\square$&$\blacksquare$& |
---|
| 52 | $\square$&$\square$&$\blacksquare$&$\blacksquare$&$\blacksquare$\\ |
---|
| 53 | & &2&&$\square$&$\square$&$\square$&$\square$&$\square$&$\square$& |
---|
| 54 | $\square$&$\square$&$\blacksquare$&$\blacksquare$\\ |
---|
| 55 | &3&3&&$\square$&$\square$&$\blacksquare$&$\blacksquare$&$\blacksquare$& |
---|
| 56 | $\square$&$\square$&$\blacksquare$&$\blacksquare$&$\blacksquare$\\ |
---|
| 57 | &1&4&&$\blacksquare$&$\square$&$\square$&$\square$&$\square$&$\square$& |
---|
| 58 | $\blacksquare$&$\blacksquare$&$\blacksquare$&$\blacksquare$\\ |
---|
| 59 | &2&5&&$\blacksquare$&$\blacksquare$&$\square$&$\square$&$\square$& |
---|
| 60 | $\blacksquare$&$\blacksquare$&$\blacksquare$&$\blacksquare$& |
---|
| 61 | $\blacksquare$\\ |
---|
| 62 | &2&5&&$\blacksquare$&$\blacksquare$&$\square$&$\square$&$\square$& |
---|
| 63 | $\blacksquare$&$\blacksquare$&$\blacksquare$&$\blacksquare$& |
---|
| 64 | $\blacksquare$\\ |
---|
| 65 | &1&1&&$\square$&$\square$&$\square$&$\blacksquare$&$\square$&$\square$& |
---|
| 66 | $\square$&$\square$&$\square$&$\blacksquare$\\ |
---|
| 67 | & &3&&$\square$&$\square$&$\blacksquare$&$\blacksquare$&$\blacksquare$& |
---|
| 68 | $\square$&$\square$&$\square$&$\square$&$\square$\\ |
---|
| 69 | \end{tabular} |
---|
| 70 | \end{center} |
---|
| 71 | |
---|
| 72 | \def\arraystretch{1} |
---|
| 73 | |
---|
| 74 | \section{Solving a puzzle} |
---|
| 75 | |
---|
| 76 | The Paint-By-Numbers puzzle can be formulated as a 0-1 integer |
---|
| 77 | feasibility problem. The formulation used in GLPK was proposed in [1]. |
---|
| 78 | |
---|
| 79 | For solving puzzles there are used two components, which both are |
---|
| 80 | coded in the GNU MathProg modeling language [2]: the model section and |
---|
| 81 | the data section. The model section is common for all puzzles and |
---|
| 82 | placed in file \verb|pbn.mod|. This file is included in the GLPK |
---|
| 83 | distribution and can be found in subdirectory \verb|examples/pbn|. |
---|
| 84 | |
---|
| 85 | To solve a particular puzzle the user only needs to prepare the data |
---|
| 86 | section, which defines input data to the puzzle. The data section for |
---|
| 87 | the example puzzle from the previous section may look like follows |
---|
| 88 | (here \verb|m| is the number of rows, and \verb|n| is the number of |
---|
| 89 | columns): |
---|
| 90 | |
---|
| 91 | \begin{footnotesize} |
---|
| 92 | \begin{verbatim} |
---|
| 93 | data; |
---|
| 94 | |
---|
| 95 | param m := 10; |
---|
| 96 | |
---|
| 97 | param n := 10; |
---|
| 98 | |
---|
| 99 | param row : 1 2 3 := |
---|
| 100 | 1 3 6 . |
---|
| 101 | 2 1 4 . |
---|
| 102 | 3 1 1 3 |
---|
| 103 | 4 2 . . |
---|
| 104 | 5 3 3 . |
---|
| 105 | 6 1 4 . |
---|
| 106 | 7 2 5 . |
---|
| 107 | 8 2 5 . |
---|
| 108 | 9 1 1 . |
---|
| 109 | 10 3 . . |
---|
| 110 | ; |
---|
| 111 | |
---|
| 112 | param col : 1 2 3 4 := |
---|
| 113 | 1 2 3 . . |
---|
| 114 | 2 1 2 . . |
---|
| 115 | 3 1 1 1 1 |
---|
| 116 | 4 1 2 . . |
---|
| 117 | 5 1 1 1 1 |
---|
| 118 | 6 1 2 . . |
---|
| 119 | 7 2 3 . . |
---|
| 120 | 8 3 4 . . |
---|
| 121 | 9 8 . . . |
---|
| 122 | 10 9 . . . |
---|
| 123 | ; |
---|
| 124 | |
---|
| 125 | end; |
---|
| 126 | \end{verbatim} |
---|
| 127 | \end{footnotesize} |
---|
| 128 | |
---|
| 129 | \newpage |
---|
| 130 | |
---|
| 131 | Let the data section for a puzzle be placed in file \verb|foo.dat|. |
---|
| 132 | Then to solve the puzzle the user should enter the following command: |
---|
| 133 | |
---|
| 134 | \begin{verbatim} |
---|
| 135 | glpsol --minisat -m pbn.mod -d foo.dat |
---|
| 136 | \end{verbatim} |
---|
| 137 | |
---|
| 138 | \noindent |
---|
| 139 | This command invokes \verb|glpsol|, the GLPK LP/MIP stand-alone solver, |
---|
| 140 | which reads the model section from file \verb|pbn.mod|, the data section |
---|
| 141 | from file \verb|foo.dat|, translates them to an internal representation, |
---|
| 142 | and solves the resulting 0-1 integer feasibility problem. The option |
---|
| 143 | \verb|--minisat| tells \verb|glpsol| to translate the feasibility |
---|
| 144 | problem to a CNF satisfiability problem and then use the MiniSat solver |
---|
| 145 | [3] to solve it. |
---|
| 146 | |
---|
| 147 | If a solution to the puzzle has been found, that is indicated by the |
---|
| 148 | message \verb|SATISFIABLE|, \verb|glpsol| prints the solution to the |
---|
| 149 | standard output (terminal), writes it to file \verb|solution.ps| in the |
---|
| 150 | PostScript format, and also writes it to file \verb|solution.dat| in the |
---|
| 151 | form of MathProg data section, which can be used later to check for |
---|
| 152 | multiple solutions, if necessary (for details see the next section). |
---|
| 153 | The message \verb|UNSATISFIABLE| means that the puzzle has no solution. |
---|
| 154 | |
---|
| 155 | Usually the time taken to solve a puzzle of moderate size (up to 50 rows |
---|
| 156 | and columns) varies from several seconds to several minutes. However, |
---|
| 157 | hard or large puzzles may require much more time. |
---|
| 158 | |
---|
| 159 | Data sections for some example puzzles included in the GLPK distribution |
---|
| 160 | can be found in subdirectory \verb|examples/pbn|. |
---|
| 161 | |
---|
| 162 | \section{Checking for multiple solutions} |
---|
| 163 | |
---|
| 164 | Sometimes the user may be interested to know if the puzzle has exactly |
---|
| 165 | one (unique) solution or it has multiple solutions. To check that the |
---|
| 166 | user should solve the puzzle as explained above in the previous section |
---|
| 167 | and then enter the following command: |
---|
| 168 | |
---|
| 169 | \begin{verbatim} |
---|
| 170 | glpsol --minisat -m pbn.mod -d foo.dat -d solution.dat |
---|
| 171 | \end{verbatim} |
---|
| 172 | |
---|
| 173 | \noindent |
---|
| 174 | In this case \verb|glpsol| reads an additional data section from file |
---|
| 175 | \verb|solution.dat|, which contains the previously found solution, |
---|
| 176 | activates an additional constraint in the model section to forbid |
---|
| 177 | finding the solution specified in the additional data section, and |
---|
| 178 | attempts to find another solution. The message \verb|UNSATISFIABLE| |
---|
| 179 | reported by \verb|glpsol| will mean that the puzzle has a unique |
---|
| 180 | solution, while the message \verb|SATISFIABLE| will mean that the puzzle |
---|
| 181 | has at least two different solutions. |
---|
| 182 | |
---|
| 183 | \newpage |
---|
| 184 | |
---|
| 185 | \section{Solution times} |
---|
| 186 | |
---|
| 187 | The table on the next page shows solution times on a sample set of |
---|
| 188 | the paint-by-numbers puzzles from the \verb|<webpbn.com>| website. |
---|
| 189 | This sample set was used in the survey [4] to compare efficiency of |
---|
| 190 | existing PBN solvers. |
---|
| 191 | |
---|
| 192 | The authors of some puzzles from the sample set have given permission |
---|
| 193 | for their puzzles to be freely redistributed as long as the original |
---|
| 194 | attribution and copyright statement are retained. In the table these |
---|
| 195 | puzzles are marked by an asterisk (*). The files containing the |
---|
| 196 | MathProg data sections for these puzzles are included in the GLPK |
---|
| 197 | distribution and can be found in subdirectory \verb|examples/pbn|. |
---|
| 198 | |
---|
| 199 | All runs were performed on Intel Pentium 4 (CPU 3GHz, 2GB of RAM). |
---|
| 200 | The C compiler used was GCC 3.4.4 with default optimization options. |
---|
| 201 | |
---|
| 202 | The column `Sol.Time' shows the time, in seconds, taken by the |
---|
| 203 | \verb|glpsol| solver to find a solution to corresponding puzzle. The |
---|
| 204 | column `Chk.Time' shows the time, in seconds, taken by \verb|glpsol| to |
---|
| 205 | check for multiple solutions, i.e. either to prove that the puzzle has |
---|
| 206 | a unique solution or find another solution to the puzzle. Both these |
---|
| 207 | times do not include the time used to translate the MathProg model and |
---|
| 208 | data sections into an internal MIP representation, but include the time |
---|
| 209 | used to translate the 0-1 feasibility problem to a CNF satisfiability |
---|
| 210 | problem. |
---|
| 211 | |
---|
| 212 | \begin{thebibliography}{10} |
---|
| 213 | |
---|
| 214 | \bibitem{1} |
---|
| 215 | Robert A. Bosch, ``Painting by Numbers'', 2000.\\ |
---|
| 216 | \verb|<http://www.oberlin.edu/~math/faculty/bosch/pbn-page.html>|. |
---|
| 217 | |
---|
| 218 | \bibitem{2} |
---|
| 219 | GLPK: Modeling Language GNU MathProg. Language Reference. (This |
---|
| 220 | document is included in the GLPK distribution and can be found in |
---|
| 221 | subdirectory \verb|doc|.) |
---|
| 222 | |
---|
| 223 | \bibitem{3} |
---|
| 224 | Niklas E\'en, Niklas S\"orensson, ``An Extensible SAT-solver'', |
---|
| 225 | Chalmers University of Technology, Sweden. \verb|<http://minisat.se/>|. |
---|
| 226 | |
---|
| 227 | \bibitem{4} |
---|
| 228 | Jan Wolter, ``Survey of Paint-by-Number Puzzle Solvers''.\\ |
---|
| 229 | \verb|<http://webpbn.com/survey/>|. |
---|
| 230 | |
---|
| 231 | \end{thebibliography} |
---|
| 232 | |
---|
| 233 | \newpage |
---|
| 234 | |
---|
| 235 | \begin{table} |
---|
| 236 | \caption{Solution times on the sample set of puzzles from [4]} |
---|
| 237 | \begin{center} |
---|
| 238 | \begin{tabular}{@{}lllcrr@{}} |
---|
| 239 | \hline |
---|
| 240 | \multicolumn{2}{c}{Puzzle}&Size&Notes&Sol.Time, s&Chk.Time, s\\ |
---|
| 241 | \hline |
---|
| 242 | \#1&Dancer* &$10\times 5$&L&$<1$&$<1$\\ |
---|
| 243 | \#6&Cat* &$20\times 20$&L&$<1$&$<1$\\ |
---|
| 244 | \#21&Skid* &$25\times 14$&L, B&$<1$&$<1$\\ |
---|
| 245 | \#27&Bucks* &$23\times 27$&B&$<1$&$<1$\\ |
---|
| 246 | \#23&Edge* &$11\times 10$&&$<1$&$<1$\\ |
---|
| 247 | \#2413&Smoke &$20\times 20$&&$<1$&$<1$\\ |
---|
| 248 | \#16&Knot* &$34\times 34$&L&1&1\\ |
---|
| 249 | \#529&Swing* &$45\times 45$&L&1&1\\ |
---|
| 250 | \#65&Mum* &$40\times 34$&&1&1\\ |
---|
| 251 | \#7604&DiCap &$55\times 55$&&10&10\\ |
---|
| 252 | \#1694&Tragic &$50\times 45$&&3&3\\ |
---|
| 253 | \#1611&Merka &$60\times 55$&B&4&4\\ |
---|
| 254 | \#436&Petro* &$35\times 40$&&1&1\\ |
---|
| 255 | \#4645&M\&M &$70\times 50$&B&5&6\\ |
---|
| 256 | \#3541&Signed &$50\times 60$&&7&7\\ |
---|
| 257 | \#803&Light* &$45\times 50$&B&1&1\\ |
---|
| 258 | \#6574&Forever*&$25\times 25$&&1&1\\ |
---|
| 259 | \#2040&Hot &$60\times 55$&&6&6\\ |
---|
| 260 | \#6739&Karate &$40\times 40$&M&2&2\\ |
---|
| 261 | \#8098&9-Dom* &$19\times 19$&&1&2\\ |
---|
| 262 | \#2556&Flag &$45\times 65$&M, B&2&2\\ |
---|
| 263 | \#2712&Lion &$47\times 47$&M&11&12\\ |
---|
| 264 | \#10088&Marley &$63\times 52$&M&135&226\\ |
---|
| 265 | \#9892&Nature &$40\times 50$&M&850&1053\\ |
---|
| 266 | \hline |
---|
| 267 | \end{tabular} |
---|
| 268 | |
---|
| 269 | \begin{tabular}{@{}lp{102mm}@{}} |
---|
| 270 | *&Puzzle designer has given permission to redistribute the puzzle.\\ |
---|
| 271 | L&Puzzle is line solvable. That is, it can be solved one line at a |
---|
| 272 | time.\\ |
---|
| 273 | B&Puzzle contains blank rows or columns.\\ |
---|
| 274 | M&Puzzle has multiple solutions.\\ |
---|
| 275 | \end{tabular} |
---|
| 276 | \end{center} |
---|
| 277 | \end{table} |
---|
| 278 | |
---|
| 279 | \end{document} |
---|