[9] | 1 | # PROD, a multiperiod production model |
---|
| 2 | # |
---|
| 3 | # References: |
---|
| 4 | # Robert Fourer, David M. Gay and Brian W. Kernighan, "A Modeling Language |
---|
| 5 | # for Mathematical Programming." Management Science 36 (1990) 519-554. |
---|
| 6 | |
---|
| 7 | ### PRODUCTION SETS AND PARAMETERS ### |
---|
| 8 | |
---|
| 9 | set prd 'products'; # Members of the product group |
---|
| 10 | |
---|
| 11 | param pt 'production time' {prd} > 0; |
---|
| 12 | |
---|
| 13 | # Crew-hours to produce 1000 units |
---|
| 14 | |
---|
| 15 | param pc 'production cost' {prd} > 0; |
---|
| 16 | |
---|
| 17 | # Nominal production cost per 1000, used |
---|
| 18 | # to compute inventory and shortage costs |
---|
| 19 | |
---|
| 20 | ### TIME PERIOD SETS AND PARAMETERS ### |
---|
| 21 | |
---|
| 22 | param first > 0 integer; |
---|
| 23 | # Index of first production period to be modeled |
---|
| 24 | |
---|
| 25 | param last > first integer; |
---|
| 26 | |
---|
| 27 | # Index of last production period to be modeled |
---|
| 28 | |
---|
| 29 | set time 'planning horizon' := first..last; |
---|
| 30 | |
---|
| 31 | ### EMPLOYMENT PARAMETERS ### |
---|
| 32 | |
---|
| 33 | param cs 'crew size' > 0 integer; |
---|
| 34 | |
---|
| 35 | # Workers per crew |
---|
| 36 | |
---|
| 37 | param sl 'shift length' > 0; |
---|
| 38 | |
---|
| 39 | # Regular-time hours per shift |
---|
| 40 | |
---|
| 41 | param rtr 'regular time rate' > 0; |
---|
| 42 | |
---|
| 43 | # Wage per hour for regular-time labor |
---|
| 44 | |
---|
| 45 | param otr 'overtime rate' > rtr; |
---|
| 46 | |
---|
| 47 | # Wage per hour for overtime labor |
---|
| 48 | |
---|
| 49 | param iw 'initial workforce' >= 0 integer; |
---|
| 50 | |
---|
| 51 | # Crews employed at start of first period |
---|
| 52 | |
---|
| 53 | param dpp 'days per period' {time} > 0; |
---|
| 54 | |
---|
| 55 | # Regular working days in a production period |
---|
| 56 | |
---|
| 57 | param ol 'overtime limit' {time} >= 0; |
---|
| 58 | |
---|
| 59 | # Maximum crew-hours of overtime in a period |
---|
| 60 | |
---|
| 61 | param cmin 'crew minimum' {time} >= 0; |
---|
| 62 | |
---|
| 63 | # Lower limit on average employment in a period |
---|
| 64 | |
---|
| 65 | param cmax 'crew maximum' {t in time} >= cmin[t]; |
---|
| 66 | |
---|
| 67 | # Upper limit on average employment in a period |
---|
| 68 | |
---|
| 69 | param hc 'hiring cost' {time} >= 0; |
---|
| 70 | |
---|
| 71 | # Penalty cost of hiring a crew |
---|
| 72 | |
---|
| 73 | param lc 'layoff cost' {time} >= 0; |
---|
| 74 | |
---|
| 75 | # Penalty cost of laying off a crew |
---|
| 76 | |
---|
| 77 | ### DEMAND PARAMETERS ### |
---|
| 78 | |
---|
| 79 | param dem 'demand' {prd,first..last+1} >= 0; |
---|
| 80 | |
---|
| 81 | # Requirements (in 1000s) |
---|
| 82 | # to be met from current production and inventory |
---|
| 83 | |
---|
| 84 | param pro 'promoted' {prd,first..last+1} logical; |
---|
| 85 | |
---|
| 86 | # true if product will be the subject |
---|
| 87 | # of a special promotion in the period |
---|
| 88 | |
---|
| 89 | ### INVENTORY AND SHORTAGE PARAMETERS ### |
---|
| 90 | |
---|
| 91 | param rir 'regular inventory ratio' >= 0; |
---|
| 92 | |
---|
| 93 | # Proportion of non-promoted demand |
---|
| 94 | # that must be in inventory the previous period |
---|
| 95 | |
---|
| 96 | param pir 'promotional inventory ratio' >= 0; |
---|
| 97 | |
---|
| 98 | # Proportion of promoted demand |
---|
| 99 | # that must be in inventory the previous period |
---|
| 100 | |
---|
| 101 | param life 'inventory lifetime' > 0 integer; |
---|
| 102 | |
---|
| 103 | # Upper limit on number of periods that |
---|
| 104 | # any product may sit in inventory |
---|
| 105 | |
---|
| 106 | param cri 'inventory cost ratio' {prd} > 0; |
---|
| 107 | |
---|
| 108 | # Inventory cost per 1000 units is |
---|
| 109 | # cri times nominal production cost |
---|
| 110 | |
---|
| 111 | param crs 'shortage cost ratio' {prd} > 0; |
---|
| 112 | |
---|
| 113 | # Shortage cost per 1000 units is |
---|
| 114 | # crs times nominal production cost |
---|
| 115 | |
---|
| 116 | param iinv 'initial inventory' {prd} >= 0; |
---|
| 117 | |
---|
| 118 | # Inventory at start of first period; age unknown |
---|
| 119 | |
---|
| 120 | param iil 'initial inventory left' {p in prd, t in time} |
---|
| 121 | := iinv[p] less sum {v in first..t} dem[p,v]; |
---|
| 122 | |
---|
| 123 | # Initial inventory still available for allocation |
---|
| 124 | # at end of period t |
---|
| 125 | |
---|
| 126 | param minv 'minimum inventory' {p in prd, t in time} |
---|
| 127 | := dem[p,t+1] * (if pro[p,t+1] then pir else rir); |
---|
| 128 | |
---|
| 129 | # Lower limit on inventory at end of period t |
---|
| 130 | |
---|
| 131 | ### VARIABLES ### |
---|
| 132 | |
---|
| 133 | var Crews{first-1..last} >= 0; |
---|
| 134 | |
---|
| 135 | # Average number of crews employed in each period |
---|
| 136 | |
---|
| 137 | var Hire{time} >= 0; # Crews hired from previous to current period |
---|
| 138 | |
---|
| 139 | var Layoff{time} >= 0; # Crews laid off from previous to current period |
---|
| 140 | |
---|
| 141 | var Rprd 'regular production' {prd,time} >= 0; |
---|
| 142 | |
---|
| 143 | # Production using regular-time labor, in 1000s |
---|
| 144 | |
---|
| 145 | var Oprd 'overtime production' {prd,time} >= 0; |
---|
| 146 | |
---|
| 147 | # Production using overtime labor, in 1000s |
---|
| 148 | |
---|
| 149 | var Inv 'inventory' {prd,time,1..life} >= 0; |
---|
| 150 | |
---|
| 151 | # Inv[p,t,a] is the amount of product p that is |
---|
| 152 | # a periods old -- produced in period (t+1)-a -- |
---|
| 153 | # and still in storage at the end of period t |
---|
| 154 | |
---|
| 155 | var Short 'shortage' {prd,time} >= 0; |
---|
| 156 | |
---|
| 157 | # Accumulated unsatisfied demand at the end of period t |
---|
| 158 | |
---|
| 159 | ### OBJECTIVE ### |
---|
| 160 | |
---|
| 161 | minimize cost: |
---|
| 162 | |
---|
| 163 | sum {t in time} rtr * sl * dpp[t] * cs * Crews[t] + |
---|
| 164 | sum {t in time} hc[t] * Hire[t] + |
---|
| 165 | sum {t in time} lc[t] * Layoff[t] + |
---|
| 166 | sum {t in time, p in prd} otr * cs * pt[p] * Oprd[p,t] + |
---|
| 167 | sum {t in time, p in prd, a in 1..life} cri[p] * pc[p] * Inv[p,t,a] + |
---|
| 168 | sum {t in time, p in prd} crs[p] * pc[p] * Short[p,t]; |
---|
| 169 | |
---|
| 170 | # Full regular wages for all crews employed, plus |
---|
| 171 | # penalties for hiring and layoffs, plus |
---|
| 172 | # wages for any overtime worked, plus |
---|
| 173 | # inventory and shortage costs |
---|
| 174 | |
---|
| 175 | # (All other production costs are assumed |
---|
| 176 | # to depend on initial inventory and on demands, |
---|
| 177 | # and so are not included explicitly.) |
---|
| 178 | |
---|
| 179 | ### CONSTRAINTS ### |
---|
| 180 | |
---|
| 181 | rlim 'regular-time limit' {t in time}: |
---|
| 182 | |
---|
| 183 | sum {p in prd} pt[p] * Rprd[p,t] <= sl * dpp[t] * Crews[t]; |
---|
| 184 | |
---|
| 185 | # Hours needed to accomplish all regular-time |
---|
| 186 | # production in a period must not exceed |
---|
| 187 | # hours available on all shifts |
---|
| 188 | |
---|
| 189 | olim 'overtime limit' {t in time}: |
---|
| 190 | |
---|
| 191 | sum {p in prd} pt[p] * Oprd[p,t] <= ol[t]; |
---|
| 192 | |
---|
| 193 | # Hours needed to accomplish all overtime |
---|
| 194 | # production in a period must not exceed |
---|
| 195 | # the specified overtime limit |
---|
| 196 | |
---|
| 197 | empl0 'initial crew level': Crews[first-1] = iw; |
---|
| 198 | |
---|
| 199 | # Use given initial workforce |
---|
| 200 | |
---|
| 201 | empl 'crew levels' {t in time}: Crews[t] = Crews[t-1] + Hire[t] - Layoff[t]; |
---|
| 202 | |
---|
| 203 | # Workforce changes by hiring or layoffs |
---|
| 204 | |
---|
| 205 | emplbnd 'crew limits' {t in time}: cmin[t] <= Crews[t] <= cmax[t]; |
---|
| 206 | |
---|
| 207 | # Workforce must remain within specified bounds |
---|
| 208 | |
---|
| 209 | dreq1 'first demand requirement' {p in prd}: |
---|
| 210 | |
---|
| 211 | Rprd[p,first] + Oprd[p,first] + Short[p,first] |
---|
| 212 | - Inv[p,first,1] = dem[p,first] less iinv[p]; |
---|
| 213 | |
---|
| 214 | dreq 'demand requirements' {p in prd, t in first+1..last}: |
---|
| 215 | |
---|
| 216 | Rprd[p,t] + Oprd[p,t] + Short[p,t] - Short[p,t-1] |
---|
| 217 | + sum {a in 1..life} (Inv[p,t-1,a] - Inv[p,t,a]) |
---|
| 218 | = dem[p,t] less iil[p,t-1]; |
---|
| 219 | |
---|
| 220 | # Production plus increase in shortage plus |
---|
| 221 | # decrease in inventory must equal demand |
---|
| 222 | |
---|
| 223 | ireq 'inventory requirements' {p in prd, t in time}: |
---|
| 224 | |
---|
| 225 | sum {a in 1..life} Inv[p,t,a] + iil[p,t] >= minv[p,t]; |
---|
| 226 | |
---|
| 227 | # Inventory in storage at end of period t |
---|
| 228 | # must meet specified minimum |
---|
| 229 | |
---|
| 230 | izero 'impossible inventories' {p in prd, v in 1..life-1, a in v+1..life}: |
---|
| 231 | |
---|
| 232 | Inv[p,first+v-1,a] = 0; |
---|
| 233 | |
---|
| 234 | # In the vth period (starting from first) |
---|
| 235 | # no inventory may be more than v periods old |
---|
| 236 | # (initial inventories are handled separately) |
---|
| 237 | |
---|
| 238 | ilim1 'new-inventory limits' {p in prd, t in time}: |
---|
| 239 | |
---|
| 240 | Inv[p,t,1] <= Rprd[p,t] + Oprd[p,t]; |
---|
| 241 | |
---|
| 242 | # New inventory cannot exceed |
---|
| 243 | # production in the most recent period |
---|
| 244 | |
---|
| 245 | ilim 'inventory limits' {p in prd, t in first+1..last, a in 2..life}: |
---|
| 246 | |
---|
| 247 | Inv[p,t,a] <= Inv[p,t-1,a-1]; |
---|
| 248 | |
---|
| 249 | # Inventory left from period (t+1)-p |
---|
| 250 | # can only decrease as time goes on |
---|
| 251 | |
---|
| 252 | ### DATA ### |
---|
| 253 | |
---|
| 254 | data; |
---|
| 255 | |
---|
| 256 | set prd := 18REG 24REG 24PRO ; |
---|
| 257 | |
---|
| 258 | param first := 1 ; |
---|
| 259 | param last := 13 ; |
---|
| 260 | param life := 2 ; |
---|
| 261 | |
---|
| 262 | param cs := 18 ; |
---|
| 263 | param sl := 8 ; |
---|
| 264 | param iw := 8 ; |
---|
| 265 | |
---|
| 266 | param rtr := 16.00 ; |
---|
| 267 | param otr := 43.85 ; |
---|
| 268 | param rir := 0.75 ; |
---|
| 269 | param pir := 0.80 ; |
---|
| 270 | |
---|
| 271 | param : pt pc cri crs iinv := |
---|
| 272 | |
---|
| 273 | 18REG 1.194 2304. 0.015 1.100 82.0 |
---|
| 274 | 24REG 1.509 2920. 0.015 1.100 792.2 |
---|
| 275 | 24PRO 1.509 2910. 0.015 1.100 0.0 ; |
---|
| 276 | |
---|
| 277 | param : dpp ol cmin cmax hc lc := |
---|
| 278 | |
---|
| 279 | 1 19.5 96.0 0.0 8.0 7500 7500 |
---|
| 280 | 2 19.0 96.0 0.0 8.0 7500 7500 |
---|
| 281 | 3 20.0 96.0 0.0 8.0 7500 7500 |
---|
| 282 | 4 19.0 96.0 0.0 8.0 7500 7500 |
---|
| 283 | 5 19.5 96.0 0.0 8.0 15000 15000 |
---|
| 284 | 6 19.0 96.0 0.0 8.0 15000 15000 |
---|
| 285 | 7 19.0 96.0 0.0 8.0 15000 15000 |
---|
| 286 | 8 20.0 96.0 0.0 8.0 15000 15000 |
---|
| 287 | 9 19.0 96.0 0.0 8.0 15000 15000 |
---|
| 288 | 10 20.0 96.0 0.0 8.0 15000 15000 |
---|
| 289 | 11 20.0 96.0 0.0 8.0 7500 7500 |
---|
| 290 | 12 18.0 96.0 0.0 8.0 7500 7500 |
---|
| 291 | 13 18.0 96.0 0.0 8.0 7500 7500 ; |
---|
| 292 | |
---|
| 293 | param dem (tr) : |
---|
| 294 | |
---|
| 295 | 18REG 24REG 24PRO := |
---|
| 296 | |
---|
| 297 | 1 63.8 1212.0 0.0 |
---|
| 298 | 2 76.0 306.2 0.0 |
---|
| 299 | 3 88.4 319.0 0.0 |
---|
| 300 | 4 913.8 208.4 0.0 |
---|
| 301 | 5 115.0 298.0 0.0 |
---|
| 302 | 6 133.8 328.2 0.0 |
---|
| 303 | 7 79.6 959.6 0.0 |
---|
| 304 | 8 111.0 257.6 0.0 |
---|
| 305 | 9 121.6 335.6 0.0 |
---|
| 306 | 10 470.0 118.0 1102.0 |
---|
| 307 | 11 78.4 284.8 0.0 |
---|
| 308 | 12 99.4 970.0 0.0 |
---|
| 309 | 13 140.4 343.8 0.0 |
---|
| 310 | 14 63.8 1212.0 0.0 ; |
---|
| 311 | |
---|
| 312 | param pro (tr) : |
---|
| 313 | |
---|
| 314 | 18REG 24REG 24PRO := |
---|
| 315 | |
---|
| 316 | 1 0 1 0 |
---|
| 317 | 2 0 0 0 |
---|
| 318 | 3 0 0 0 |
---|
| 319 | 4 1 0 0 |
---|
| 320 | 5 0 0 0 |
---|
| 321 | 6 0 0 0 |
---|
| 322 | 7 0 1 0 |
---|
| 323 | 8 0 0 0 |
---|
| 324 | 9 0 0 0 |
---|
| 325 | 10 1 0 1 |
---|
| 326 | 11 0 0 0 |
---|
| 327 | 12 0 0 0 |
---|
| 328 | 13 0 1 0 |
---|
| 329 | 14 0 1 0 ; |
---|
| 330 | |
---|
| 331 | end; |
---|