1 | /* glpapi01.c (problem creating and modifying routines) */ |
---|
2 | |
---|
3 | /*********************************************************************** |
---|
4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
5 | * |
---|
6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
7 | * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, |
---|
8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
9 | * E-mail: <mao@gnu.org>. |
---|
10 | * |
---|
11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
12 | * under the terms of the GNU General Public License as published by |
---|
13 | * the Free Software Foundation, either version 3 of the License, or |
---|
14 | * (at your option) any later version. |
---|
15 | * |
---|
16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
19 | * License for more details. |
---|
20 | * |
---|
21 | * You should have received a copy of the GNU General Public License |
---|
22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
23 | ***********************************************************************/ |
---|
24 | |
---|
25 | #include "glpios.h" |
---|
26 | |
---|
27 | /* CAUTION: DO NOT CHANGE THE LIMITS BELOW */ |
---|
28 | |
---|
29 | #define M_MAX 100000000 /* = 100*10^6 */ |
---|
30 | /* maximal number of rows in the problem object */ |
---|
31 | |
---|
32 | #define N_MAX 100000000 /* = 100*10^6 */ |
---|
33 | /* maximal number of columns in the problem object */ |
---|
34 | |
---|
35 | #define NNZ_MAX 500000000 /* = 500*10^6 */ |
---|
36 | /* maximal number of constraint coefficients in the problem object */ |
---|
37 | |
---|
38 | /*********************************************************************** |
---|
39 | * NAME |
---|
40 | * |
---|
41 | * glp_create_prob - create problem object |
---|
42 | * |
---|
43 | * SYNOPSIS |
---|
44 | * |
---|
45 | * glp_prob *glp_create_prob(void); |
---|
46 | * |
---|
47 | * DESCRIPTION |
---|
48 | * |
---|
49 | * The routine glp_create_prob creates a new problem object, which is |
---|
50 | * initially "empty", i.e. has no rows and columns. |
---|
51 | * |
---|
52 | * RETURNS |
---|
53 | * |
---|
54 | * The routine returns a pointer to the object created, which should be |
---|
55 | * used in any subsequent operations on this object. */ |
---|
56 | |
---|
57 | static void create_prob(glp_prob *lp) |
---|
58 | { lp->magic = GLP_PROB_MAGIC; |
---|
59 | lp->pool = dmp_create_pool(); |
---|
60 | #if 0 /* 17/XI-2009 */ |
---|
61 | lp->cps = xmalloc(sizeof(struct LPXCPS)); |
---|
62 | lpx_reset_parms(lp); |
---|
63 | #else |
---|
64 | lp->parms = NULL; |
---|
65 | #endif |
---|
66 | lp->tree = NULL; |
---|
67 | #if 0 |
---|
68 | lp->lwa = 0; |
---|
69 | lp->cwa = NULL; |
---|
70 | #endif |
---|
71 | /* LP/MIP data */ |
---|
72 | lp->name = NULL; |
---|
73 | lp->obj = NULL; |
---|
74 | lp->dir = GLP_MIN; |
---|
75 | lp->c0 = 0.0; |
---|
76 | lp->m_max = 100; |
---|
77 | lp->n_max = 200; |
---|
78 | lp->m = lp->n = 0; |
---|
79 | lp->nnz = 0; |
---|
80 | lp->row = xcalloc(1+lp->m_max, sizeof(GLPROW *)); |
---|
81 | lp->col = xcalloc(1+lp->n_max, sizeof(GLPCOL *)); |
---|
82 | lp->r_tree = lp->c_tree = NULL; |
---|
83 | /* basis factorization */ |
---|
84 | lp->valid = 0; |
---|
85 | lp->head = xcalloc(1+lp->m_max, sizeof(int)); |
---|
86 | lp->bfcp = NULL; |
---|
87 | lp->bfd = NULL; |
---|
88 | /* basic solution (LP) */ |
---|
89 | lp->pbs_stat = lp->dbs_stat = GLP_UNDEF; |
---|
90 | lp->obj_val = 0.0; |
---|
91 | lp->it_cnt = 0; |
---|
92 | lp->some = 0; |
---|
93 | /* interior-point solution (LP) */ |
---|
94 | lp->ipt_stat = GLP_UNDEF; |
---|
95 | lp->ipt_obj = 0.0; |
---|
96 | /* integer solution (MIP) */ |
---|
97 | lp->mip_stat = GLP_UNDEF; |
---|
98 | lp->mip_obj = 0.0; |
---|
99 | return; |
---|
100 | } |
---|
101 | |
---|
102 | glp_prob *glp_create_prob(void) |
---|
103 | { glp_prob *lp; |
---|
104 | lp = xmalloc(sizeof(glp_prob)); |
---|
105 | create_prob(lp); |
---|
106 | return lp; |
---|
107 | } |
---|
108 | |
---|
109 | /*********************************************************************** |
---|
110 | * NAME |
---|
111 | * |
---|
112 | * glp_set_prob_name - assign (change) problem name |
---|
113 | * |
---|
114 | * SYNOPSIS |
---|
115 | * |
---|
116 | * void glp_set_prob_name(glp_prob *lp, const char *name); |
---|
117 | * |
---|
118 | * DESCRIPTION |
---|
119 | * |
---|
120 | * The routine glp_set_prob_name assigns a given symbolic name (1 up to |
---|
121 | * 255 characters) to the specified problem object. |
---|
122 | * |
---|
123 | * If the parameter name is NULL or empty string, the routine erases an |
---|
124 | * existing symbolic name of the problem object. */ |
---|
125 | |
---|
126 | void glp_set_prob_name(glp_prob *lp, const char *name) |
---|
127 | { glp_tree *tree = lp->tree; |
---|
128 | if (tree != NULL && tree->reason != 0) |
---|
129 | xerror("glp_set_prob_name: operation not allowed\n"); |
---|
130 | if (lp->name != NULL) |
---|
131 | { dmp_free_atom(lp->pool, lp->name, strlen(lp->name)+1); |
---|
132 | lp->name = NULL; |
---|
133 | } |
---|
134 | if (!(name == NULL || name[0] == '\0')) |
---|
135 | { int k; |
---|
136 | for (k = 0; name[k] != '\0'; k++) |
---|
137 | { if (k == 256) |
---|
138 | xerror("glp_set_prob_name: problem name too long\n"); |
---|
139 | if (iscntrl((unsigned char)name[k])) |
---|
140 | xerror("glp_set_prob_name: problem name contains invalid" |
---|
141 | " character(s)\n"); |
---|
142 | } |
---|
143 | lp->name = dmp_get_atom(lp->pool, strlen(name)+1); |
---|
144 | strcpy(lp->name, name); |
---|
145 | } |
---|
146 | return; |
---|
147 | } |
---|
148 | |
---|
149 | /*********************************************************************** |
---|
150 | * NAME |
---|
151 | * |
---|
152 | * glp_set_obj_name - assign (change) objective function name |
---|
153 | * |
---|
154 | * SYNOPSIS |
---|
155 | * |
---|
156 | * void glp_set_obj_name(glp_prob *lp, const char *name); |
---|
157 | * |
---|
158 | * DESCRIPTION |
---|
159 | * |
---|
160 | * The routine glp_set_obj_name assigns a given symbolic name (1 up to |
---|
161 | * 255 characters) to the objective function of the specified problem |
---|
162 | * object. |
---|
163 | * |
---|
164 | * If the parameter name is NULL or empty string, the routine erases an |
---|
165 | * existing name of the objective function. */ |
---|
166 | |
---|
167 | void glp_set_obj_name(glp_prob *lp, const char *name) |
---|
168 | { glp_tree *tree = lp->tree; |
---|
169 | if (tree != NULL && tree->reason != 0) |
---|
170 | xerror("glp_set_obj_name: operation not allowed\n"); |
---|
171 | if (lp->obj != NULL) |
---|
172 | { dmp_free_atom(lp->pool, lp->obj, strlen(lp->obj)+1); |
---|
173 | lp->obj = NULL; |
---|
174 | } |
---|
175 | if (!(name == NULL || name[0] == '\0')) |
---|
176 | { int k; |
---|
177 | for (k = 0; name[k] != '\0'; k++) |
---|
178 | { if (k == 256) |
---|
179 | xerror("glp_set_obj_name: objective name too long\n"); |
---|
180 | if (iscntrl((unsigned char)name[k])) |
---|
181 | xerror("glp_set_obj_name: objective name contains invali" |
---|
182 | "d character(s)\n"); |
---|
183 | } |
---|
184 | lp->obj = dmp_get_atom(lp->pool, strlen(name)+1); |
---|
185 | strcpy(lp->obj, name); |
---|
186 | } |
---|
187 | return; |
---|
188 | } |
---|
189 | |
---|
190 | /*********************************************************************** |
---|
191 | * NAME |
---|
192 | * |
---|
193 | * glp_set_obj_dir - set (change) optimization direction flag |
---|
194 | * |
---|
195 | * SYNOPSIS |
---|
196 | * |
---|
197 | * void glp_set_obj_dir(glp_prob *lp, int dir); |
---|
198 | * |
---|
199 | * DESCRIPTION |
---|
200 | * |
---|
201 | * The routine glp_set_obj_dir sets (changes) optimization direction |
---|
202 | * flag (i.e. "sense" of the objective function) as specified by the |
---|
203 | * parameter dir: |
---|
204 | * |
---|
205 | * GLP_MIN - minimization; |
---|
206 | * GLP_MAX - maximization. */ |
---|
207 | |
---|
208 | void glp_set_obj_dir(glp_prob *lp, int dir) |
---|
209 | { glp_tree *tree = lp->tree; |
---|
210 | if (tree != NULL && tree->reason != 0) |
---|
211 | xerror("glp_set_obj_dir: operation not allowed\n"); |
---|
212 | if (!(dir == GLP_MIN || dir == GLP_MAX)) |
---|
213 | xerror("glp_set_obj_dir: dir = %d; invalid direction flag\n", |
---|
214 | dir); |
---|
215 | lp->dir = dir; |
---|
216 | return; |
---|
217 | } |
---|
218 | |
---|
219 | /*********************************************************************** |
---|
220 | * NAME |
---|
221 | * |
---|
222 | * glp_add_rows - add new rows to problem object |
---|
223 | * |
---|
224 | * SYNOPSIS |
---|
225 | * |
---|
226 | * int glp_add_rows(glp_prob *lp, int nrs); |
---|
227 | * |
---|
228 | * DESCRIPTION |
---|
229 | * |
---|
230 | * The routine glp_add_rows adds nrs rows (constraints) to the specified |
---|
231 | * problem object. New rows are always added to the end of the row list, |
---|
232 | * so the ordinal numbers of existing rows remain unchanged. |
---|
233 | * |
---|
234 | * Being added each new row is initially free (unbounded) and has empty |
---|
235 | * list of the constraint coefficients. |
---|
236 | * |
---|
237 | * RETURNS |
---|
238 | * |
---|
239 | * The routine glp_add_rows returns the ordinal number of the first new |
---|
240 | * row added to the problem object. */ |
---|
241 | |
---|
242 | int glp_add_rows(glp_prob *lp, int nrs) |
---|
243 | { glp_tree *tree = lp->tree; |
---|
244 | GLPROW *row; |
---|
245 | int m_new, i; |
---|
246 | /* determine new number of rows */ |
---|
247 | if (nrs < 1) |
---|
248 | xerror("glp_add_rows: nrs = %d; invalid number of rows\n", |
---|
249 | nrs); |
---|
250 | if (nrs > M_MAX - lp->m) |
---|
251 | xerror("glp_add_rows: nrs = %d; too many rows\n", nrs); |
---|
252 | m_new = lp->m + nrs; |
---|
253 | /* increase the room, if necessary */ |
---|
254 | if (lp->m_max < m_new) |
---|
255 | { GLPROW **save = lp->row; |
---|
256 | while (lp->m_max < m_new) |
---|
257 | { lp->m_max += lp->m_max; |
---|
258 | xassert(lp->m_max > 0); |
---|
259 | } |
---|
260 | lp->row = xcalloc(1+lp->m_max, sizeof(GLPROW *)); |
---|
261 | memcpy(&lp->row[1], &save[1], lp->m * sizeof(GLPROW *)); |
---|
262 | xfree(save); |
---|
263 | /* do not forget about the basis header */ |
---|
264 | xfree(lp->head); |
---|
265 | lp->head = xcalloc(1+lp->m_max, sizeof(int)); |
---|
266 | } |
---|
267 | /* add new rows to the end of the row list */ |
---|
268 | for (i = lp->m+1; i <= m_new; i++) |
---|
269 | { /* create row descriptor */ |
---|
270 | lp->row[i] = row = dmp_get_atom(lp->pool, sizeof(GLPROW)); |
---|
271 | row->i = i; |
---|
272 | row->name = NULL; |
---|
273 | row->node = NULL; |
---|
274 | #if 1 /* 20/IX-2008 */ |
---|
275 | row->level = 0; |
---|
276 | row->origin = 0; |
---|
277 | row->klass = 0; |
---|
278 | if (tree != NULL) |
---|
279 | { switch (tree->reason) |
---|
280 | { case 0: |
---|
281 | break; |
---|
282 | case GLP_IROWGEN: |
---|
283 | xassert(tree->curr != NULL); |
---|
284 | row->level = tree->curr->level; |
---|
285 | row->origin = GLP_RF_LAZY; |
---|
286 | break; |
---|
287 | case GLP_ICUTGEN: |
---|
288 | xassert(tree->curr != NULL); |
---|
289 | row->level = tree->curr->level; |
---|
290 | row->origin = GLP_RF_CUT; |
---|
291 | break; |
---|
292 | default: |
---|
293 | xassert(tree != tree); |
---|
294 | } |
---|
295 | } |
---|
296 | #endif |
---|
297 | row->type = GLP_FR; |
---|
298 | row->lb = row->ub = 0.0; |
---|
299 | row->ptr = NULL; |
---|
300 | row->rii = 1.0; |
---|
301 | row->stat = GLP_BS; |
---|
302 | #if 0 |
---|
303 | row->bind = -1; |
---|
304 | #else |
---|
305 | row->bind = 0; |
---|
306 | #endif |
---|
307 | row->prim = row->dual = 0.0; |
---|
308 | row->pval = row->dval = 0.0; |
---|
309 | row->mipx = 0.0; |
---|
310 | } |
---|
311 | /* set new number of rows */ |
---|
312 | lp->m = m_new; |
---|
313 | /* invalidate the basis factorization */ |
---|
314 | lp->valid = 0; |
---|
315 | #if 1 |
---|
316 | if (tree != NULL && tree->reason != 0) tree->reopt = 1; |
---|
317 | #endif |
---|
318 | /* return the ordinal number of the first row added */ |
---|
319 | return m_new - nrs + 1; |
---|
320 | } |
---|
321 | |
---|
322 | /*********************************************************************** |
---|
323 | * NAME |
---|
324 | * |
---|
325 | * glp_add_cols - add new columns to problem object |
---|
326 | * |
---|
327 | * SYNOPSIS |
---|
328 | * |
---|
329 | * int glp_add_cols(glp_prob *lp, int ncs); |
---|
330 | * |
---|
331 | * DESCRIPTION |
---|
332 | * |
---|
333 | * The routine glp_add_cols adds ncs columns (structural variables) to |
---|
334 | * the specified problem object. New columns are always added to the end |
---|
335 | * of the column list, so the ordinal numbers of existing columns remain |
---|
336 | * unchanged. |
---|
337 | * |
---|
338 | * Being added each new column is initially fixed at zero and has empty |
---|
339 | * list of the constraint coefficients. |
---|
340 | * |
---|
341 | * RETURNS |
---|
342 | * |
---|
343 | * The routine glp_add_cols returns the ordinal number of the first new |
---|
344 | * column added to the problem object. */ |
---|
345 | |
---|
346 | int glp_add_cols(glp_prob *lp, int ncs) |
---|
347 | { glp_tree *tree = lp->tree; |
---|
348 | GLPCOL *col; |
---|
349 | int n_new, j; |
---|
350 | if (tree != NULL && tree->reason != 0) |
---|
351 | xerror("glp_add_cols: operation not allowed\n"); |
---|
352 | /* determine new number of columns */ |
---|
353 | if (ncs < 1) |
---|
354 | xerror("glp_add_cols: ncs = %d; invalid number of columns\n", |
---|
355 | ncs); |
---|
356 | if (ncs > N_MAX - lp->n) |
---|
357 | xerror("glp_add_cols: ncs = %d; too many columns\n", ncs); |
---|
358 | n_new = lp->n + ncs; |
---|
359 | /* increase the room, if necessary */ |
---|
360 | if (lp->n_max < n_new) |
---|
361 | { GLPCOL **save = lp->col; |
---|
362 | while (lp->n_max < n_new) |
---|
363 | { lp->n_max += lp->n_max; |
---|
364 | xassert(lp->n_max > 0); |
---|
365 | } |
---|
366 | lp->col = xcalloc(1+lp->n_max, sizeof(GLPCOL *)); |
---|
367 | memcpy(&lp->col[1], &save[1], lp->n * sizeof(GLPCOL *)); |
---|
368 | xfree(save); |
---|
369 | } |
---|
370 | /* add new columns to the end of the column list */ |
---|
371 | for (j = lp->n+1; j <= n_new; j++) |
---|
372 | { /* create column descriptor */ |
---|
373 | lp->col[j] = col = dmp_get_atom(lp->pool, sizeof(GLPCOL)); |
---|
374 | col->j = j; |
---|
375 | col->name = NULL; |
---|
376 | col->node = NULL; |
---|
377 | col->kind = GLP_CV; |
---|
378 | col->type = GLP_FX; |
---|
379 | col->lb = col->ub = 0.0; |
---|
380 | col->coef = 0.0; |
---|
381 | col->ptr = NULL; |
---|
382 | col->sjj = 1.0; |
---|
383 | col->stat = GLP_NS; |
---|
384 | #if 0 |
---|
385 | col->bind = -1; |
---|
386 | #else |
---|
387 | col->bind = 0; /* the basis may remain valid */ |
---|
388 | #endif |
---|
389 | col->prim = col->dual = 0.0; |
---|
390 | col->pval = col->dval = 0.0; |
---|
391 | col->mipx = 0.0; |
---|
392 | } |
---|
393 | /* set new number of columns */ |
---|
394 | lp->n = n_new; |
---|
395 | /* return the ordinal number of the first column added */ |
---|
396 | return n_new - ncs + 1; |
---|
397 | } |
---|
398 | |
---|
399 | /*********************************************************************** |
---|
400 | * NAME |
---|
401 | * |
---|
402 | * glp_set_row_name - assign (change) row name |
---|
403 | * |
---|
404 | * SYNOPSIS |
---|
405 | * |
---|
406 | * void glp_set_row_name(glp_prob *lp, int i, const char *name); |
---|
407 | * |
---|
408 | * DESCRIPTION |
---|
409 | * |
---|
410 | * The routine glp_set_row_name assigns a given symbolic name (1 up to |
---|
411 | * 255 characters) to i-th row (auxiliary variable) of the specified |
---|
412 | * problem object. |
---|
413 | * |
---|
414 | * If the parameter name is NULL or empty string, the routine erases an |
---|
415 | * existing name of i-th row. */ |
---|
416 | |
---|
417 | void glp_set_row_name(glp_prob *lp, int i, const char *name) |
---|
418 | { glp_tree *tree = lp->tree; |
---|
419 | GLPROW *row; |
---|
420 | if (!(1 <= i && i <= lp->m)) |
---|
421 | xerror("glp_set_row_name: i = %d; row number out of range\n", |
---|
422 | i); |
---|
423 | row = lp->row[i]; |
---|
424 | if (tree != NULL && tree->reason != 0) |
---|
425 | { xassert(tree->curr != NULL); |
---|
426 | xassert(row->level == tree->curr->level); |
---|
427 | } |
---|
428 | if (row->name != NULL) |
---|
429 | { if (row->node != NULL) |
---|
430 | { xassert(lp->r_tree != NULL); |
---|
431 | avl_delete_node(lp->r_tree, row->node); |
---|
432 | row->node = NULL; |
---|
433 | } |
---|
434 | dmp_free_atom(lp->pool, row->name, strlen(row->name)+1); |
---|
435 | row->name = NULL; |
---|
436 | } |
---|
437 | if (!(name == NULL || name[0] == '\0')) |
---|
438 | { int k; |
---|
439 | for (k = 0; name[k] != '\0'; k++) |
---|
440 | { if (k == 256) |
---|
441 | xerror("glp_set_row_name: i = %d; row name too long\n", |
---|
442 | i); |
---|
443 | if (iscntrl((unsigned char)name[k])) |
---|
444 | xerror("glp_set_row_name: i = %d: row name contains inva" |
---|
445 | "lid character(s)\n", i); |
---|
446 | } |
---|
447 | row->name = dmp_get_atom(lp->pool, strlen(name)+1); |
---|
448 | strcpy(row->name, name); |
---|
449 | if (lp->r_tree != NULL) |
---|
450 | { xassert(row->node == NULL); |
---|
451 | row->node = avl_insert_node(lp->r_tree, row->name); |
---|
452 | avl_set_node_link(row->node, row); |
---|
453 | } |
---|
454 | } |
---|
455 | return; |
---|
456 | } |
---|
457 | |
---|
458 | /*********************************************************************** |
---|
459 | * NAME |
---|
460 | * |
---|
461 | * glp_set_col_name - assign (change) column name |
---|
462 | * |
---|
463 | * SYNOPSIS |
---|
464 | * |
---|
465 | * void glp_set_col_name(glp_prob *lp, int j, const char *name); |
---|
466 | * |
---|
467 | * DESCRIPTION |
---|
468 | * |
---|
469 | * The routine glp_set_col_name assigns a given symbolic name (1 up to |
---|
470 | * 255 characters) to j-th column (structural variable) of the specified |
---|
471 | * problem object. |
---|
472 | * |
---|
473 | * If the parameter name is NULL or empty string, the routine erases an |
---|
474 | * existing name of j-th column. */ |
---|
475 | |
---|
476 | void glp_set_col_name(glp_prob *lp, int j, const char *name) |
---|
477 | { glp_tree *tree = lp->tree; |
---|
478 | GLPCOL *col; |
---|
479 | if (tree != NULL && tree->reason != 0) |
---|
480 | xerror("glp_set_col_name: operation not allowed\n"); |
---|
481 | if (!(1 <= j && j <= lp->n)) |
---|
482 | xerror("glp_set_col_name: j = %d; column number out of range\n" |
---|
483 | , j); |
---|
484 | col = lp->col[j]; |
---|
485 | if (col->name != NULL) |
---|
486 | { if (col->node != NULL) |
---|
487 | { xassert(lp->c_tree != NULL); |
---|
488 | avl_delete_node(lp->c_tree, col->node); |
---|
489 | col->node = NULL; |
---|
490 | } |
---|
491 | dmp_free_atom(lp->pool, col->name, strlen(col->name)+1); |
---|
492 | col->name = NULL; |
---|
493 | } |
---|
494 | if (!(name == NULL || name[0] == '\0')) |
---|
495 | { int k; |
---|
496 | for (k = 0; name[k] != '\0'; k++) |
---|
497 | { if (k == 256) |
---|
498 | xerror("glp_set_col_name: j = %d; column name too long\n" |
---|
499 | , j); |
---|
500 | if (iscntrl((unsigned char)name[k])) |
---|
501 | xerror("glp_set_col_name: j = %d: column name contains i" |
---|
502 | "nvalid character(s)\n", j); |
---|
503 | } |
---|
504 | col->name = dmp_get_atom(lp->pool, strlen(name)+1); |
---|
505 | strcpy(col->name, name); |
---|
506 | if (lp->c_tree != NULL && col->name != NULL) |
---|
507 | { xassert(col->node == NULL); |
---|
508 | col->node = avl_insert_node(lp->c_tree, col->name); |
---|
509 | avl_set_node_link(col->node, col); |
---|
510 | } |
---|
511 | } |
---|
512 | return; |
---|
513 | } |
---|
514 | |
---|
515 | /*********************************************************************** |
---|
516 | * NAME |
---|
517 | * |
---|
518 | * glp_set_row_bnds - set (change) row bounds |
---|
519 | * |
---|
520 | * SYNOPSIS |
---|
521 | * |
---|
522 | * void glp_set_row_bnds(glp_prob *lp, int i, int type, double lb, |
---|
523 | * double ub); |
---|
524 | * |
---|
525 | * DESCRIPTION |
---|
526 | * |
---|
527 | * The routine glp_set_row_bnds sets (changes) the type and bounds of |
---|
528 | * i-th row (auxiliary variable) of the specified problem object. |
---|
529 | * |
---|
530 | * Parameters type, lb, and ub specify the type, lower bound, and upper |
---|
531 | * bound, respectively, as follows: |
---|
532 | * |
---|
533 | * Type Bounds Comments |
---|
534 | * ------------------------------------------------------ |
---|
535 | * GLP_FR -inf < x < +inf Free variable |
---|
536 | * GLP_LO lb <= x < +inf Variable with lower bound |
---|
537 | * GLP_UP -inf < x <= ub Variable with upper bound |
---|
538 | * GLP_DB lb <= x <= ub Double-bounded variable |
---|
539 | * GLP_FX x = lb Fixed variable |
---|
540 | * |
---|
541 | * where x is the auxiliary variable associated with i-th row. |
---|
542 | * |
---|
543 | * If the row has no lower bound, the parameter lb is ignored. If the |
---|
544 | * row has no upper bound, the parameter ub is ignored. If the row is |
---|
545 | * an equality constraint (i.e. the corresponding auxiliary variable is |
---|
546 | * of fixed type), only the parameter lb is used while the parameter ub |
---|
547 | * is ignored. */ |
---|
548 | |
---|
549 | void glp_set_row_bnds(glp_prob *lp, int i, int type, double lb, |
---|
550 | double ub) |
---|
551 | { GLPROW *row; |
---|
552 | if (!(1 <= i && i <= lp->m)) |
---|
553 | xerror("glp_set_row_bnds: i = %d; row number out of range\n", |
---|
554 | i); |
---|
555 | row = lp->row[i]; |
---|
556 | row->type = type; |
---|
557 | switch (type) |
---|
558 | { case GLP_FR: |
---|
559 | row->lb = row->ub = 0.0; |
---|
560 | if (row->stat != GLP_BS) row->stat = GLP_NF; |
---|
561 | break; |
---|
562 | case GLP_LO: |
---|
563 | row->lb = lb, row->ub = 0.0; |
---|
564 | if (row->stat != GLP_BS) row->stat = GLP_NL; |
---|
565 | break; |
---|
566 | case GLP_UP: |
---|
567 | row->lb = 0.0, row->ub = ub; |
---|
568 | if (row->stat != GLP_BS) row->stat = GLP_NU; |
---|
569 | break; |
---|
570 | case GLP_DB: |
---|
571 | row->lb = lb, row->ub = ub; |
---|
572 | if (!(row->stat == GLP_BS || |
---|
573 | row->stat == GLP_NL || row->stat == GLP_NU)) |
---|
574 | row->stat = (fabs(lb) <= fabs(ub) ? GLP_NL : GLP_NU); |
---|
575 | break; |
---|
576 | case GLP_FX: |
---|
577 | row->lb = row->ub = lb; |
---|
578 | if (row->stat != GLP_BS) row->stat = GLP_NS; |
---|
579 | break; |
---|
580 | default: |
---|
581 | xerror("glp_set_row_bnds: i = %d; type = %d; invalid row ty" |
---|
582 | "pe\n", i, type); |
---|
583 | } |
---|
584 | return; |
---|
585 | } |
---|
586 | |
---|
587 | /*********************************************************************** |
---|
588 | * NAME |
---|
589 | * |
---|
590 | * glp_set_col_bnds - set (change) column bounds |
---|
591 | * |
---|
592 | * SYNOPSIS |
---|
593 | * |
---|
594 | * void glp_set_col_bnds(glp_prob *lp, int j, int type, double lb, |
---|
595 | * double ub); |
---|
596 | * |
---|
597 | * DESCRIPTION |
---|
598 | * |
---|
599 | * The routine glp_set_col_bnds sets (changes) the type and bounds of |
---|
600 | * j-th column (structural variable) of the specified problem object. |
---|
601 | * |
---|
602 | * Parameters type, lb, and ub specify the type, lower bound, and upper |
---|
603 | * bound, respectively, as follows: |
---|
604 | * |
---|
605 | * Type Bounds Comments |
---|
606 | * ------------------------------------------------------ |
---|
607 | * GLP_FR -inf < x < +inf Free variable |
---|
608 | * GLP_LO lb <= x < +inf Variable with lower bound |
---|
609 | * GLP_UP -inf < x <= ub Variable with upper bound |
---|
610 | * GLP_DB lb <= x <= ub Double-bounded variable |
---|
611 | * GLP_FX x = lb Fixed variable |
---|
612 | * |
---|
613 | * where x is the structural variable associated with j-th column. |
---|
614 | * |
---|
615 | * If the column has no lower bound, the parameter lb is ignored. If the |
---|
616 | * column has no upper bound, the parameter ub is ignored. If the column |
---|
617 | * is of fixed type, only the parameter lb is used while the parameter |
---|
618 | * ub is ignored. */ |
---|
619 | |
---|
620 | void glp_set_col_bnds(glp_prob *lp, int j, int type, double lb, |
---|
621 | double ub) |
---|
622 | { GLPCOL *col; |
---|
623 | if (!(1 <= j && j <= lp->n)) |
---|
624 | xerror("glp_set_col_bnds: j = %d; column number out of range\n" |
---|
625 | , j); |
---|
626 | col = lp->col[j]; |
---|
627 | col->type = type; |
---|
628 | switch (type) |
---|
629 | { case GLP_FR: |
---|
630 | col->lb = col->ub = 0.0; |
---|
631 | if (col->stat != GLP_BS) col->stat = GLP_NF; |
---|
632 | break; |
---|
633 | case GLP_LO: |
---|
634 | col->lb = lb, col->ub = 0.0; |
---|
635 | if (col->stat != GLP_BS) col->stat = GLP_NL; |
---|
636 | break; |
---|
637 | case GLP_UP: |
---|
638 | col->lb = 0.0, col->ub = ub; |
---|
639 | if (col->stat != GLP_BS) col->stat = GLP_NU; |
---|
640 | break; |
---|
641 | case GLP_DB: |
---|
642 | col->lb = lb, col->ub = ub; |
---|
643 | if (!(col->stat == GLP_BS || |
---|
644 | col->stat == GLP_NL || col->stat == GLP_NU)) |
---|
645 | col->stat = (fabs(lb) <= fabs(ub) ? GLP_NL : GLP_NU); |
---|
646 | break; |
---|
647 | case GLP_FX: |
---|
648 | col->lb = col->ub = lb; |
---|
649 | if (col->stat != GLP_BS) col->stat = GLP_NS; |
---|
650 | break; |
---|
651 | default: |
---|
652 | xerror("glp_set_col_bnds: j = %d; type = %d; invalid column" |
---|
653 | " type\n", j, type); |
---|
654 | } |
---|
655 | return; |
---|
656 | } |
---|
657 | |
---|
658 | /*********************************************************************** |
---|
659 | * NAME |
---|
660 | * |
---|
661 | * glp_set_obj_coef - set (change) obj. coefficient or constant term |
---|
662 | * |
---|
663 | * SYNOPSIS |
---|
664 | * |
---|
665 | * void glp_set_obj_coef(glp_prob *lp, int j, double coef); |
---|
666 | * |
---|
667 | * DESCRIPTION |
---|
668 | * |
---|
669 | * The routine glp_set_obj_coef sets (changes) objective coefficient at |
---|
670 | * j-th column (structural variable) of the specified problem object. |
---|
671 | * |
---|
672 | * If the parameter j is 0, the routine sets (changes) the constant term |
---|
673 | * ("shift") of the objective function. */ |
---|
674 | |
---|
675 | void glp_set_obj_coef(glp_prob *lp, int j, double coef) |
---|
676 | { glp_tree *tree = lp->tree; |
---|
677 | if (tree != NULL && tree->reason != 0) |
---|
678 | xerror("glp_set_obj_coef: operation not allowed\n"); |
---|
679 | if (!(0 <= j && j <= lp->n)) |
---|
680 | xerror("glp_set_obj_coef: j = %d; column number out of range\n" |
---|
681 | , j); |
---|
682 | if (j == 0) |
---|
683 | lp->c0 = coef; |
---|
684 | else |
---|
685 | lp->col[j]->coef = coef; |
---|
686 | return; |
---|
687 | } |
---|
688 | |
---|
689 | /*********************************************************************** |
---|
690 | * NAME |
---|
691 | * |
---|
692 | * glp_set_mat_row - set (replace) row of the constraint matrix |
---|
693 | * |
---|
694 | * SYNOPSIS |
---|
695 | * |
---|
696 | * void glp_set_mat_row(glp_prob *lp, int i, int len, const int ind[], |
---|
697 | * const double val[]); |
---|
698 | * |
---|
699 | * DESCRIPTION |
---|
700 | * |
---|
701 | * The routine glp_set_mat_row stores (replaces) the contents of i-th |
---|
702 | * row of the constraint matrix of the specified problem object. |
---|
703 | * |
---|
704 | * Column indices and numeric values of new row elements must be placed |
---|
705 | * in locations ind[1], ..., ind[len] and val[1], ..., val[len], where |
---|
706 | * 0 <= len <= n is the new length of i-th row, n is the current number |
---|
707 | * of columns in the problem object. Elements with identical column |
---|
708 | * indices are not allowed. Zero elements are allowed, but they are not |
---|
709 | * stored in the constraint matrix. |
---|
710 | * |
---|
711 | * If the parameter len is zero, the parameters ind and/or val can be |
---|
712 | * specified as NULL. */ |
---|
713 | |
---|
714 | void glp_set_mat_row(glp_prob *lp, int i, int len, const int ind[], |
---|
715 | const double val[]) |
---|
716 | { glp_tree *tree = lp->tree; |
---|
717 | GLPROW *row; |
---|
718 | GLPCOL *col; |
---|
719 | GLPAIJ *aij, *next; |
---|
720 | int j, k; |
---|
721 | /* obtain pointer to i-th row */ |
---|
722 | if (!(1 <= i && i <= lp->m)) |
---|
723 | xerror("glp_set_mat_row: i = %d; row number out of range\n", |
---|
724 | i); |
---|
725 | row = lp->row[i]; |
---|
726 | if (tree != NULL && tree->reason != 0) |
---|
727 | { xassert(tree->curr != NULL); |
---|
728 | xassert(row->level == tree->curr->level); |
---|
729 | } |
---|
730 | /* remove all existing elements from i-th row */ |
---|
731 | while (row->ptr != NULL) |
---|
732 | { /* take next element in the row */ |
---|
733 | aij = row->ptr; |
---|
734 | /* remove the element from the row list */ |
---|
735 | row->ptr = aij->r_next; |
---|
736 | /* obtain pointer to corresponding column */ |
---|
737 | col = aij->col; |
---|
738 | /* remove the element from the column list */ |
---|
739 | if (aij->c_prev == NULL) |
---|
740 | col->ptr = aij->c_next; |
---|
741 | else |
---|
742 | aij->c_prev->c_next = aij->c_next; |
---|
743 | if (aij->c_next == NULL) |
---|
744 | ; |
---|
745 | else |
---|
746 | aij->c_next->c_prev = aij->c_prev; |
---|
747 | /* return the element to the memory pool */ |
---|
748 | dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; |
---|
749 | /* if the corresponding column is basic, invalidate the basis |
---|
750 | factorization */ |
---|
751 | if (col->stat == GLP_BS) lp->valid = 0; |
---|
752 | } |
---|
753 | /* store new contents of i-th row */ |
---|
754 | if (!(0 <= len && len <= lp->n)) |
---|
755 | xerror("glp_set_mat_row: i = %d; len = %d; invalid row length " |
---|
756 | "\n", i, len); |
---|
757 | if (len > NNZ_MAX - lp->nnz) |
---|
758 | xerror("glp_set_mat_row: i = %d; len = %d; too many constraint" |
---|
759 | " coefficients\n", i, len); |
---|
760 | for (k = 1; k <= len; k++) |
---|
761 | { /* take number j of corresponding column */ |
---|
762 | j = ind[k]; |
---|
763 | /* obtain pointer to j-th column */ |
---|
764 | if (!(1 <= j && j <= lp->n)) |
---|
765 | xerror("glp_set_mat_row: i = %d; ind[%d] = %d; column index" |
---|
766 | " out of range\n", i, k, j); |
---|
767 | col = lp->col[j]; |
---|
768 | /* if there is element with the same column index, it can only |
---|
769 | be found in the beginning of j-th column list */ |
---|
770 | if (col->ptr != NULL && col->ptr->row->i == i) |
---|
771 | xerror("glp_set_mat_row: i = %d; ind[%d] = %d; duplicate co" |
---|
772 | "lumn indices not allowed\n", i, k, j); |
---|
773 | /* create new element */ |
---|
774 | aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++; |
---|
775 | aij->row = row; |
---|
776 | aij->col = col; |
---|
777 | aij->val = val[k]; |
---|
778 | /* add the new element to the beginning of i-th row and j-th |
---|
779 | column lists */ |
---|
780 | aij->r_prev = NULL; |
---|
781 | aij->r_next = row->ptr; |
---|
782 | aij->c_prev = NULL; |
---|
783 | aij->c_next = col->ptr; |
---|
784 | if (aij->r_next != NULL) aij->r_next->r_prev = aij; |
---|
785 | if (aij->c_next != NULL) aij->c_next->c_prev = aij; |
---|
786 | row->ptr = col->ptr = aij; |
---|
787 | /* if the corresponding column is basic, invalidate the basis |
---|
788 | factorization */ |
---|
789 | if (col->stat == GLP_BS && aij->val != 0.0) lp->valid = 0; |
---|
790 | } |
---|
791 | /* remove zero elements from i-th row */ |
---|
792 | for (aij = row->ptr; aij != NULL; aij = next) |
---|
793 | { next = aij->r_next; |
---|
794 | if (aij->val == 0.0) |
---|
795 | { /* remove the element from the row list */ |
---|
796 | if (aij->r_prev == NULL) |
---|
797 | row->ptr = next; |
---|
798 | else |
---|
799 | aij->r_prev->r_next = next; |
---|
800 | if (next == NULL) |
---|
801 | ; |
---|
802 | else |
---|
803 | next->r_prev = aij->r_prev; |
---|
804 | /* remove the element from the column list */ |
---|
805 | xassert(aij->c_prev == NULL); |
---|
806 | aij->col->ptr = aij->c_next; |
---|
807 | if (aij->c_next != NULL) aij->c_next->c_prev = NULL; |
---|
808 | /* return the element to the memory pool */ |
---|
809 | dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; |
---|
810 | } |
---|
811 | } |
---|
812 | return; |
---|
813 | } |
---|
814 | |
---|
815 | /*********************************************************************** |
---|
816 | * NAME |
---|
817 | * |
---|
818 | * glp_set_mat_col - set (replace) column of the constraint matrix |
---|
819 | * |
---|
820 | * SYNOPSIS |
---|
821 | * |
---|
822 | * void glp_set_mat_col(glp_prob *lp, int j, int len, const int ind[], |
---|
823 | * const double val[]); |
---|
824 | * |
---|
825 | * DESCRIPTION |
---|
826 | * |
---|
827 | * The routine glp_set_mat_col stores (replaces) the contents of j-th |
---|
828 | * column of the constraint matrix of the specified problem object. |
---|
829 | * |
---|
830 | * Row indices and numeric values of new column elements must be placed |
---|
831 | * in locations ind[1], ..., ind[len] and val[1], ..., val[len], where |
---|
832 | * 0 <= len <= m is the new length of j-th column, m is the current |
---|
833 | * number of rows in the problem object. Elements with identical column |
---|
834 | * indices are not allowed. Zero elements are allowed, but they are not |
---|
835 | * stored in the constraint matrix. |
---|
836 | * |
---|
837 | * If the parameter len is zero, the parameters ind and/or val can be |
---|
838 | * specified as NULL. */ |
---|
839 | |
---|
840 | void glp_set_mat_col(glp_prob *lp, int j, int len, const int ind[], |
---|
841 | const double val[]) |
---|
842 | { glp_tree *tree = lp->tree; |
---|
843 | GLPROW *row; |
---|
844 | GLPCOL *col; |
---|
845 | GLPAIJ *aij, *next; |
---|
846 | int i, k; |
---|
847 | if (tree != NULL && tree->reason != 0) |
---|
848 | xerror("glp_set_mat_col: operation not allowed\n"); |
---|
849 | /* obtain pointer to j-th column */ |
---|
850 | if (!(1 <= j && j <= lp->n)) |
---|
851 | xerror("glp_set_mat_col: j = %d; column number out of range\n", |
---|
852 | j); |
---|
853 | col = lp->col[j]; |
---|
854 | /* remove all existing elements from j-th column */ |
---|
855 | while (col->ptr != NULL) |
---|
856 | { /* take next element in the column */ |
---|
857 | aij = col->ptr; |
---|
858 | /* remove the element from the column list */ |
---|
859 | col->ptr = aij->c_next; |
---|
860 | /* obtain pointer to corresponding row */ |
---|
861 | row = aij->row; |
---|
862 | /* remove the element from the row list */ |
---|
863 | if (aij->r_prev == NULL) |
---|
864 | row->ptr = aij->r_next; |
---|
865 | else |
---|
866 | aij->r_prev->r_next = aij->r_next; |
---|
867 | if (aij->r_next == NULL) |
---|
868 | ; |
---|
869 | else |
---|
870 | aij->r_next->r_prev = aij->r_prev; |
---|
871 | /* return the element to the memory pool */ |
---|
872 | dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; |
---|
873 | } |
---|
874 | /* store new contents of j-th column */ |
---|
875 | if (!(0 <= len && len <= lp->m)) |
---|
876 | xerror("glp_set_mat_col: j = %d; len = %d; invalid column leng" |
---|
877 | "th\n", j, len); |
---|
878 | if (len > NNZ_MAX - lp->nnz) |
---|
879 | xerror("glp_set_mat_col: j = %d; len = %d; too many constraint" |
---|
880 | " coefficients\n", j, len); |
---|
881 | for (k = 1; k <= len; k++) |
---|
882 | { /* take number i of corresponding row */ |
---|
883 | i = ind[k]; |
---|
884 | /* obtain pointer to i-th row */ |
---|
885 | if (!(1 <= i && i <= lp->m)) |
---|
886 | xerror("glp_set_mat_col: j = %d; ind[%d] = %d; row index ou" |
---|
887 | "t of range\n", j, k, i); |
---|
888 | row = lp->row[i]; |
---|
889 | /* if there is element with the same row index, it can only be |
---|
890 | found in the beginning of i-th row list */ |
---|
891 | if (row->ptr != NULL && row->ptr->col->j == j) |
---|
892 | xerror("glp_set_mat_col: j = %d; ind[%d] = %d; duplicate ro" |
---|
893 | "w indices not allowed\n", j, k, i); |
---|
894 | /* create new element */ |
---|
895 | aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++; |
---|
896 | aij->row = row; |
---|
897 | aij->col = col; |
---|
898 | aij->val = val[k]; |
---|
899 | /* add the new element to the beginning of i-th row and j-th |
---|
900 | column lists */ |
---|
901 | aij->r_prev = NULL; |
---|
902 | aij->r_next = row->ptr; |
---|
903 | aij->c_prev = NULL; |
---|
904 | aij->c_next = col->ptr; |
---|
905 | if (aij->r_next != NULL) aij->r_next->r_prev = aij; |
---|
906 | if (aij->c_next != NULL) aij->c_next->c_prev = aij; |
---|
907 | row->ptr = col->ptr = aij; |
---|
908 | } |
---|
909 | /* remove zero elements from j-th column */ |
---|
910 | for (aij = col->ptr; aij != NULL; aij = next) |
---|
911 | { next = aij->c_next; |
---|
912 | if (aij->val == 0.0) |
---|
913 | { /* remove the element from the row list */ |
---|
914 | xassert(aij->r_prev == NULL); |
---|
915 | aij->row->ptr = aij->r_next; |
---|
916 | if (aij->r_next != NULL) aij->r_next->r_prev = NULL; |
---|
917 | /* remove the element from the column list */ |
---|
918 | if (aij->c_prev == NULL) |
---|
919 | col->ptr = next; |
---|
920 | else |
---|
921 | aij->c_prev->c_next = next; |
---|
922 | if (next == NULL) |
---|
923 | ; |
---|
924 | else |
---|
925 | next->c_prev = aij->c_prev; |
---|
926 | /* return the element to the memory pool */ |
---|
927 | dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; |
---|
928 | } |
---|
929 | } |
---|
930 | /* if j-th column is basic, invalidate the basis factorization */ |
---|
931 | if (col->stat == GLP_BS) lp->valid = 0; |
---|
932 | return; |
---|
933 | } |
---|
934 | |
---|
935 | /*********************************************************************** |
---|
936 | * NAME |
---|
937 | * |
---|
938 | * glp_load_matrix - load (replace) the whole constraint matrix |
---|
939 | * |
---|
940 | * SYNOPSIS |
---|
941 | * |
---|
942 | * void glp_load_matrix(glp_prob *lp, int ne, const int ia[], |
---|
943 | * const int ja[], const double ar[]); |
---|
944 | * |
---|
945 | * DESCRIPTION |
---|
946 | * |
---|
947 | * The routine glp_load_matrix loads the constraint matrix passed in |
---|
948 | * the arrays ia, ja, and ar into the specified problem object. Before |
---|
949 | * loading the current contents of the constraint matrix is destroyed. |
---|
950 | * |
---|
951 | * Constraint coefficients (elements of the constraint matrix) must be |
---|
952 | * specified as triplets (ia[k], ja[k], ar[k]) for k = 1, ..., ne, |
---|
953 | * where ia[k] is the row index, ja[k] is the column index, ar[k] is a |
---|
954 | * numeric value of corresponding constraint coefficient. The parameter |
---|
955 | * ne specifies the total number of (non-zero) elements in the matrix |
---|
956 | * to be loaded. Coefficients with identical indices are not allowed. |
---|
957 | * Zero coefficients are allowed, however, they are not stored in the |
---|
958 | * constraint matrix. |
---|
959 | * |
---|
960 | * If the parameter ne is zero, the parameters ia, ja, and ar can be |
---|
961 | * specified as NULL. */ |
---|
962 | |
---|
963 | void glp_load_matrix(glp_prob *lp, int ne, const int ia[], |
---|
964 | const int ja[], const double ar[]) |
---|
965 | { glp_tree *tree = lp->tree; |
---|
966 | GLPROW *row; |
---|
967 | GLPCOL *col; |
---|
968 | GLPAIJ *aij, *next; |
---|
969 | int i, j, k; |
---|
970 | if (tree != NULL && tree->reason != 0) |
---|
971 | xerror("glp_load_matrix: operation not allowed\n"); |
---|
972 | /* clear the constraint matrix */ |
---|
973 | for (i = 1; i <= lp->m; i++) |
---|
974 | { row = lp->row[i]; |
---|
975 | while (row->ptr != NULL) |
---|
976 | { aij = row->ptr; |
---|
977 | row->ptr = aij->r_next; |
---|
978 | dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; |
---|
979 | } |
---|
980 | } |
---|
981 | xassert(lp->nnz == 0); |
---|
982 | for (j = 1; j <= lp->n; j++) lp->col[j]->ptr = NULL; |
---|
983 | /* load the new contents of the constraint matrix and build its |
---|
984 | row lists */ |
---|
985 | if (ne < 0) |
---|
986 | xerror("glp_load_matrix: ne = %d; invalid number of constraint" |
---|
987 | " coefficients\n", ne); |
---|
988 | if (ne > NNZ_MAX) |
---|
989 | xerror("glp_load_matrix: ne = %d; too many constraint coeffici" |
---|
990 | "ents\n", ne); |
---|
991 | for (k = 1; k <= ne; k++) |
---|
992 | { /* take indices of new element */ |
---|
993 | i = ia[k], j = ja[k]; |
---|
994 | /* obtain pointer to i-th row */ |
---|
995 | if (!(1 <= i && i <= lp->m)) |
---|
996 | xerror("glp_load_matrix: ia[%d] = %d; row index out of rang" |
---|
997 | "e\n", k, i); |
---|
998 | row = lp->row[i]; |
---|
999 | /* obtain pointer to j-th column */ |
---|
1000 | if (!(1 <= j && j <= lp->n)) |
---|
1001 | xerror("glp_load_matrix: ja[%d] = %d; column index out of r" |
---|
1002 | "ange\n", k, j); |
---|
1003 | col = lp->col[j]; |
---|
1004 | /* create new element */ |
---|
1005 | aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++; |
---|
1006 | aij->row = row; |
---|
1007 | aij->col = col; |
---|
1008 | aij->val = ar[k]; |
---|
1009 | /* add the new element to the beginning of i-th row list */ |
---|
1010 | aij->r_prev = NULL; |
---|
1011 | aij->r_next = row->ptr; |
---|
1012 | if (aij->r_next != NULL) aij->r_next->r_prev = aij; |
---|
1013 | row->ptr = aij; |
---|
1014 | } |
---|
1015 | xassert(lp->nnz == ne); |
---|
1016 | /* build column lists of the constraint matrix and check elements |
---|
1017 | with identical indices */ |
---|
1018 | for (i = 1; i <= lp->m; i++) |
---|
1019 | { for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next) |
---|
1020 | { /* obtain pointer to corresponding column */ |
---|
1021 | col = aij->col; |
---|
1022 | /* if there is element with identical indices, it can only |
---|
1023 | be found in the beginning of j-th column list */ |
---|
1024 | if (col->ptr != NULL && col->ptr->row->i == i) |
---|
1025 | { for (k = 1; k <= ne; k++) |
---|
1026 | if (ia[k] == i && ja[k] == col->j) break; |
---|
1027 | xerror("glp_load_mat: ia[%d] = %d; ja[%d] = %d; duplicat" |
---|
1028 | "e indices not allowed\n", k, i, k, col->j); |
---|
1029 | } |
---|
1030 | /* add the element to the beginning of j-th column list */ |
---|
1031 | aij->c_prev = NULL; |
---|
1032 | aij->c_next = col->ptr; |
---|
1033 | if (aij->c_next != NULL) aij->c_next->c_prev = aij; |
---|
1034 | col->ptr = aij; |
---|
1035 | } |
---|
1036 | } |
---|
1037 | /* remove zero elements from the constraint matrix */ |
---|
1038 | for (i = 1; i <= lp->m; i++) |
---|
1039 | { row = lp->row[i]; |
---|
1040 | for (aij = row->ptr; aij != NULL; aij = next) |
---|
1041 | { next = aij->r_next; |
---|
1042 | if (aij->val == 0.0) |
---|
1043 | { /* remove the element from the row list */ |
---|
1044 | if (aij->r_prev == NULL) |
---|
1045 | row->ptr = next; |
---|
1046 | else |
---|
1047 | aij->r_prev->r_next = next; |
---|
1048 | if (next == NULL) |
---|
1049 | ; |
---|
1050 | else |
---|
1051 | next->r_prev = aij->r_prev; |
---|
1052 | /* remove the element from the column list */ |
---|
1053 | if (aij->c_prev == NULL) |
---|
1054 | aij->col->ptr = aij->c_next; |
---|
1055 | else |
---|
1056 | aij->c_prev->c_next = aij->c_next; |
---|
1057 | if (aij->c_next == NULL) |
---|
1058 | ; |
---|
1059 | else |
---|
1060 | aij->c_next->c_prev = aij->c_prev; |
---|
1061 | /* return the element to the memory pool */ |
---|
1062 | dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; |
---|
1063 | } |
---|
1064 | } |
---|
1065 | } |
---|
1066 | /* invalidate the basis factorization */ |
---|
1067 | lp->valid = 0; |
---|
1068 | return; |
---|
1069 | } |
---|
1070 | |
---|
1071 | /*********************************************************************** |
---|
1072 | * NAME |
---|
1073 | * |
---|
1074 | * glp_check_dup - check for duplicate elements in sparse matrix |
---|
1075 | * |
---|
1076 | * SYNOPSIS |
---|
1077 | * |
---|
1078 | * int glp_check_dup(int m, int n, int ne, const int ia[], |
---|
1079 | * const int ja[]); |
---|
1080 | * |
---|
1081 | * DESCRIPTION |
---|
1082 | * |
---|
1083 | * The routine glp_check_dup checks for duplicate elements (that is, |
---|
1084 | * elements with identical indices) in a sparse matrix specified in the |
---|
1085 | * coordinate format. |
---|
1086 | * |
---|
1087 | * The parameters m and n specifies, respectively, the number of rows |
---|
1088 | * and columns in the matrix, m >= 0, n >= 0. |
---|
1089 | * |
---|
1090 | * The parameter ne specifies the number of (structurally) non-zero |
---|
1091 | * elements in the matrix, ne >= 0. |
---|
1092 | * |
---|
1093 | * Elements of the matrix are specified as doublets (ia[k],ja[k]) for |
---|
1094 | * k = 1,...,ne, where ia[k] is a row index, ja[k] is a column index. |
---|
1095 | * |
---|
1096 | * The routine glp_check_dup can be used prior to a call to the routine |
---|
1097 | * glp_load_matrix to check that the constraint matrix to be loaded has |
---|
1098 | * no duplicate elements. |
---|
1099 | * |
---|
1100 | * RETURNS |
---|
1101 | * |
---|
1102 | * The routine glp_check_dup returns one of the following values: |
---|
1103 | * |
---|
1104 | * 0 - the matrix has no duplicate elements; |
---|
1105 | * |
---|
1106 | * -k - indices ia[k] or/and ja[k] are out of range; |
---|
1107 | * |
---|
1108 | * +k - element (ia[k],ja[k]) is duplicate. */ |
---|
1109 | |
---|
1110 | int glp_check_dup(int m, int n, int ne, const int ia[], const int ja[]) |
---|
1111 | { int i, j, k, *ptr, *next, ret; |
---|
1112 | char *flag; |
---|
1113 | if (m < 0) |
---|
1114 | xerror("glp_check_dup: m = %d; invalid parameter\n"); |
---|
1115 | if (n < 0) |
---|
1116 | xerror("glp_check_dup: n = %d; invalid parameter\n"); |
---|
1117 | if (ne < 0) |
---|
1118 | xerror("glp_check_dup: ne = %d; invalid parameter\n"); |
---|
1119 | if (ne > 0 && ia == NULL) |
---|
1120 | xerror("glp_check_dup: ia = %p; invalid parameter\n", ia); |
---|
1121 | if (ne > 0 && ja == NULL) |
---|
1122 | xerror("glp_check_dup: ja = %p; invalid parameter\n", ja); |
---|
1123 | for (k = 1; k <= ne; k++) |
---|
1124 | { i = ia[k], j = ja[k]; |
---|
1125 | if (!(1 <= i && i <= m && 1 <= j && j <= n)) |
---|
1126 | { ret = -k; |
---|
1127 | goto done; |
---|
1128 | } |
---|
1129 | } |
---|
1130 | if (m == 0 || n == 0) |
---|
1131 | { ret = 0; |
---|
1132 | goto done; |
---|
1133 | } |
---|
1134 | /* allocate working arrays */ |
---|
1135 | ptr = xcalloc(1+m, sizeof(int)); |
---|
1136 | next = xcalloc(1+ne, sizeof(int)); |
---|
1137 | flag = xcalloc(1+n, sizeof(char)); |
---|
1138 | /* build row lists */ |
---|
1139 | for (i = 1; i <= m; i++) |
---|
1140 | ptr[i] = 0; |
---|
1141 | for (k = 1; k <= ne; k++) |
---|
1142 | { i = ia[k]; |
---|
1143 | next[k] = ptr[i]; |
---|
1144 | ptr[i] = k; |
---|
1145 | } |
---|
1146 | /* clear column flags */ |
---|
1147 | for (j = 1; j <= n; j++) |
---|
1148 | flag[j] = 0; |
---|
1149 | /* check for duplicate elements */ |
---|
1150 | for (i = 1; i <= m; i++) |
---|
1151 | { for (k = ptr[i]; k != 0; k = next[k]) |
---|
1152 | { j = ja[k]; |
---|
1153 | if (flag[j]) |
---|
1154 | { /* find first element (i,j) */ |
---|
1155 | for (k = 1; k <= ne; k++) |
---|
1156 | if (ia[k] == i && ja[k] == j) break; |
---|
1157 | xassert(k <= ne); |
---|
1158 | /* find next (duplicate) element (i,j) */ |
---|
1159 | for (k++; k <= ne; k++) |
---|
1160 | if (ia[k] == i && ja[k] == j) break; |
---|
1161 | xassert(k <= ne); |
---|
1162 | ret = +k; |
---|
1163 | goto skip; |
---|
1164 | } |
---|
1165 | flag[j] = 1; |
---|
1166 | } |
---|
1167 | /* clear column flags */ |
---|
1168 | for (k = ptr[i]; k != 0; k = next[k]) |
---|
1169 | flag[ja[k]] = 0; |
---|
1170 | } |
---|
1171 | /* no duplicate element found */ |
---|
1172 | ret = 0; |
---|
1173 | skip: /* free working arrays */ |
---|
1174 | xfree(ptr); |
---|
1175 | xfree(next); |
---|
1176 | xfree(flag); |
---|
1177 | done: return ret; |
---|
1178 | } |
---|
1179 | |
---|
1180 | /*********************************************************************** |
---|
1181 | * NAME |
---|
1182 | * |
---|
1183 | * glp_sort_matrix - sort elements of the constraint matrix |
---|
1184 | * |
---|
1185 | * SYNOPSIS |
---|
1186 | * |
---|
1187 | * void glp_sort_matrix(glp_prob *P); |
---|
1188 | * |
---|
1189 | * DESCRIPTION |
---|
1190 | * |
---|
1191 | * The routine glp_sort_matrix sorts elements of the constraint matrix |
---|
1192 | * rebuilding its row and column linked lists. On exit from the routine |
---|
1193 | * the constraint matrix is not changed, however, elements in the row |
---|
1194 | * linked lists become ordered by ascending column indices, and the |
---|
1195 | * elements in the column linked lists become ordered by ascending row |
---|
1196 | * indices. */ |
---|
1197 | |
---|
1198 | void glp_sort_matrix(glp_prob *P) |
---|
1199 | { GLPAIJ *aij; |
---|
1200 | int i, j; |
---|
1201 | if (P == NULL || P->magic != GLP_PROB_MAGIC) |
---|
1202 | xerror("glp_sort_matrix: P = %p; invalid problem object\n", |
---|
1203 | P); |
---|
1204 | /* rebuild row linked lists */ |
---|
1205 | for (i = P->m; i >= 1; i--) |
---|
1206 | P->row[i]->ptr = NULL; |
---|
1207 | for (j = P->n; j >= 1; j--) |
---|
1208 | { for (aij = P->col[j]->ptr; aij != NULL; aij = aij->c_next) |
---|
1209 | { i = aij->row->i; |
---|
1210 | aij->r_prev = NULL; |
---|
1211 | aij->r_next = P->row[i]->ptr; |
---|
1212 | if (aij->r_next != NULL) aij->r_next->r_prev = aij; |
---|
1213 | P->row[i]->ptr = aij; |
---|
1214 | } |
---|
1215 | } |
---|
1216 | /* rebuild column linked lists */ |
---|
1217 | for (j = P->n; j >= 1; j--) |
---|
1218 | P->col[j]->ptr = NULL; |
---|
1219 | for (i = P->m; i >= 1; i--) |
---|
1220 | { for (aij = P->row[i]->ptr; aij != NULL; aij = aij->r_next) |
---|
1221 | { j = aij->col->j; |
---|
1222 | aij->c_prev = NULL; |
---|
1223 | aij->c_next = P->col[j]->ptr; |
---|
1224 | if (aij->c_next != NULL) aij->c_next->c_prev = aij; |
---|
1225 | P->col[j]->ptr = aij; |
---|
1226 | } |
---|
1227 | } |
---|
1228 | return; |
---|
1229 | } |
---|
1230 | |
---|
1231 | /*********************************************************************** |
---|
1232 | * NAME |
---|
1233 | * |
---|
1234 | * glp_del_rows - delete rows from problem object |
---|
1235 | * |
---|
1236 | * SYNOPSIS |
---|
1237 | * |
---|
1238 | * void glp_del_rows(glp_prob *lp, int nrs, const int num[]); |
---|
1239 | * |
---|
1240 | * DESCRIPTION |
---|
1241 | * |
---|
1242 | * The routine glp_del_rows deletes rows from the specified problem |
---|
1243 | * object. Ordinal numbers of rows to be deleted should be placed in |
---|
1244 | * locations num[1], ..., num[nrs], where nrs > 0. |
---|
1245 | * |
---|
1246 | * Note that deleting rows involves changing ordinal numbers of other |
---|
1247 | * rows remaining in the problem object. New ordinal numbers of the |
---|
1248 | * remaining rows are assigned under the assumption that the original |
---|
1249 | * order of rows is not changed. */ |
---|
1250 | |
---|
1251 | void glp_del_rows(glp_prob *lp, int nrs, const int num[]) |
---|
1252 | { glp_tree *tree = lp->tree; |
---|
1253 | GLPROW *row; |
---|
1254 | int i, k, m_new; |
---|
1255 | /* mark rows to be deleted */ |
---|
1256 | if (!(1 <= nrs && nrs <= lp->m)) |
---|
1257 | xerror("glp_del_rows: nrs = %d; invalid number of rows\n", |
---|
1258 | nrs); |
---|
1259 | for (k = 1; k <= nrs; k++) |
---|
1260 | { /* take the number of row to be deleted */ |
---|
1261 | i = num[k]; |
---|
1262 | /* obtain pointer to i-th row */ |
---|
1263 | if (!(1 <= i && i <= lp->m)) |
---|
1264 | xerror("glp_del_rows: num[%d] = %d; row number out of range" |
---|
1265 | "\n", k, i); |
---|
1266 | row = lp->row[i]; |
---|
1267 | if (tree != NULL && tree->reason != 0) |
---|
1268 | { if (!(tree->reason == GLP_IROWGEN || |
---|
1269 | tree->reason == GLP_ICUTGEN)) |
---|
1270 | xerror("glp_del_rows: operation not allowed\n"); |
---|
1271 | xassert(tree->curr != NULL); |
---|
1272 | if (row->level != tree->curr->level) |
---|
1273 | xerror("glp_del_rows: num[%d] = %d; invalid attempt to d" |
---|
1274 | "elete row created not in current subproblem\n", k,i); |
---|
1275 | if (row->stat != GLP_BS) |
---|
1276 | xerror("glp_del_rows: num[%d] = %d; invalid attempt to d" |
---|
1277 | "elete active row (constraint)\n", k, i); |
---|
1278 | tree->reinv = 1; |
---|
1279 | } |
---|
1280 | /* check that the row is not marked yet */ |
---|
1281 | if (row->i == 0) |
---|
1282 | xerror("glp_del_rows: num[%d] = %d; duplicate row numbers n" |
---|
1283 | "ot allowed\n", k, i); |
---|
1284 | /* erase symbolic name assigned to the row */ |
---|
1285 | glp_set_row_name(lp, i, NULL); |
---|
1286 | xassert(row->node == NULL); |
---|
1287 | /* erase corresponding row of the constraint matrix */ |
---|
1288 | glp_set_mat_row(lp, i, 0, NULL, NULL); |
---|
1289 | xassert(row->ptr == NULL); |
---|
1290 | /* mark the row to be deleted */ |
---|
1291 | row->i = 0; |
---|
1292 | } |
---|
1293 | /* delete all marked rows from the row list */ |
---|
1294 | m_new = 0; |
---|
1295 | for (i = 1; i <= lp->m; i++) |
---|
1296 | { /* obtain pointer to i-th row */ |
---|
1297 | row = lp->row[i]; |
---|
1298 | /* check if the row is marked */ |
---|
1299 | if (row->i == 0) |
---|
1300 | { /* it is marked, delete it */ |
---|
1301 | dmp_free_atom(lp->pool, row, sizeof(GLPROW)); |
---|
1302 | } |
---|
1303 | else |
---|
1304 | { /* it is not marked; keep it */ |
---|
1305 | row->i = ++m_new; |
---|
1306 | lp->row[row->i] = row; |
---|
1307 | } |
---|
1308 | } |
---|
1309 | /* set new number of rows */ |
---|
1310 | lp->m = m_new; |
---|
1311 | /* invalidate the basis factorization */ |
---|
1312 | lp->valid = 0; |
---|
1313 | return; |
---|
1314 | } |
---|
1315 | |
---|
1316 | /*********************************************************************** |
---|
1317 | * NAME |
---|
1318 | * |
---|
1319 | * glp_del_cols - delete columns from problem object |
---|
1320 | * |
---|
1321 | * SYNOPSIS |
---|
1322 | * |
---|
1323 | * void glp_del_cols(glp_prob *lp, int ncs, const int num[]); |
---|
1324 | * |
---|
1325 | * DESCRIPTION |
---|
1326 | * |
---|
1327 | * The routine glp_del_cols deletes columns from the specified problem |
---|
1328 | * object. Ordinal numbers of columns to be deleted should be placed in |
---|
1329 | * locations num[1], ..., num[ncs], where ncs > 0. |
---|
1330 | * |
---|
1331 | * Note that deleting columns involves changing ordinal numbers of |
---|
1332 | * other columns remaining in the problem object. New ordinal numbers |
---|
1333 | * of the remaining columns are assigned under the assumption that the |
---|
1334 | * original order of columns is not changed. */ |
---|
1335 | |
---|
1336 | void glp_del_cols(glp_prob *lp, int ncs, const int num[]) |
---|
1337 | { glp_tree *tree = lp->tree; |
---|
1338 | GLPCOL *col; |
---|
1339 | int j, k, n_new; |
---|
1340 | if (tree != NULL && tree->reason != 0) |
---|
1341 | xerror("glp_del_cols: operation not allowed\n"); |
---|
1342 | /* mark columns to be deleted */ |
---|
1343 | if (!(1 <= ncs && ncs <= lp->n)) |
---|
1344 | xerror("glp_del_cols: ncs = %d; invalid number of columns\n", |
---|
1345 | ncs); |
---|
1346 | for (k = 1; k <= ncs; k++) |
---|
1347 | { /* take the number of column to be deleted */ |
---|
1348 | j = num[k]; |
---|
1349 | /* obtain pointer to j-th column */ |
---|
1350 | if (!(1 <= j && j <= lp->n)) |
---|
1351 | xerror("glp_del_cols: num[%d] = %d; column number out of ra" |
---|
1352 | "nge", k, j); |
---|
1353 | col = lp->col[j]; |
---|
1354 | /* check that the column is not marked yet */ |
---|
1355 | if (col->j == 0) |
---|
1356 | xerror("glp_del_cols: num[%d] = %d; duplicate column number" |
---|
1357 | "s not allowed\n", k, j); |
---|
1358 | /* erase symbolic name assigned to the column */ |
---|
1359 | glp_set_col_name(lp, j, NULL); |
---|
1360 | xassert(col->node == NULL); |
---|
1361 | /* erase corresponding column of the constraint matrix */ |
---|
1362 | glp_set_mat_col(lp, j, 0, NULL, NULL); |
---|
1363 | xassert(col->ptr == NULL); |
---|
1364 | /* mark the column to be deleted */ |
---|
1365 | col->j = 0; |
---|
1366 | /* if it is basic, invalidate the basis factorization */ |
---|
1367 | if (col->stat == GLP_BS) lp->valid = 0; |
---|
1368 | } |
---|
1369 | /* delete all marked columns from the column list */ |
---|
1370 | n_new = 0; |
---|
1371 | for (j = 1; j <= lp->n; j++) |
---|
1372 | { /* obtain pointer to j-th column */ |
---|
1373 | col = lp->col[j]; |
---|
1374 | /* check if the column is marked */ |
---|
1375 | if (col->j == 0) |
---|
1376 | { /* it is marked; delete it */ |
---|
1377 | dmp_free_atom(lp->pool, col, sizeof(GLPCOL)); |
---|
1378 | } |
---|
1379 | else |
---|
1380 | { /* it is not marked; keep it */ |
---|
1381 | col->j = ++n_new; |
---|
1382 | lp->col[col->j] = col; |
---|
1383 | } |
---|
1384 | } |
---|
1385 | /* set new number of columns */ |
---|
1386 | lp->n = n_new; |
---|
1387 | /* if the basis header is still valid, adjust it */ |
---|
1388 | if (lp->valid) |
---|
1389 | { int m = lp->m; |
---|
1390 | int *head = lp->head; |
---|
1391 | for (j = 1; j <= n_new; j++) |
---|
1392 | { k = lp->col[j]->bind; |
---|
1393 | if (k != 0) |
---|
1394 | { xassert(1 <= k && k <= m); |
---|
1395 | head[k] = m + j; |
---|
1396 | } |
---|
1397 | } |
---|
1398 | } |
---|
1399 | return; |
---|
1400 | } |
---|
1401 | |
---|
1402 | /*********************************************************************** |
---|
1403 | * NAME |
---|
1404 | * |
---|
1405 | * glp_copy_prob - copy problem object content |
---|
1406 | * |
---|
1407 | * SYNOPSIS |
---|
1408 | * |
---|
1409 | * void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names); |
---|
1410 | * |
---|
1411 | * DESCRIPTION |
---|
1412 | * |
---|
1413 | * The routine glp_copy_prob copies the content of the problem object |
---|
1414 | * prob to the problem object dest. |
---|
1415 | * |
---|
1416 | * The parameter names is a flag. If it is non-zero, the routine also |
---|
1417 | * copies all symbolic names; otherwise, if it is zero, symbolic names |
---|
1418 | * are not copied. */ |
---|
1419 | |
---|
1420 | void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names) |
---|
1421 | { glp_tree *tree = dest->tree; |
---|
1422 | glp_bfcp bfcp; |
---|
1423 | int i, j, len, *ind; |
---|
1424 | double *val; |
---|
1425 | if (tree != NULL && tree->reason != 0) |
---|
1426 | xerror("glp_copy_prob: operation not allowed\n"); |
---|
1427 | if (dest == prob) |
---|
1428 | xerror("glp_copy_prob: copying problem object to itself not al" |
---|
1429 | "lowed\n"); |
---|
1430 | if (!(names == GLP_ON || names == GLP_OFF)) |
---|
1431 | xerror("glp_copy_prob: names = %d; invalid parameter\n", |
---|
1432 | names); |
---|
1433 | glp_erase_prob(dest); |
---|
1434 | if (names && prob->name != NULL) |
---|
1435 | glp_set_prob_name(dest, prob->name); |
---|
1436 | if (names && prob->obj != NULL) |
---|
1437 | glp_set_obj_name(dest, prob->obj); |
---|
1438 | dest->dir = prob->dir; |
---|
1439 | dest->c0 = prob->c0; |
---|
1440 | if (prob->m > 0) |
---|
1441 | glp_add_rows(dest, prob->m); |
---|
1442 | if (prob->n > 0) |
---|
1443 | glp_add_cols(dest, prob->n); |
---|
1444 | glp_get_bfcp(prob, &bfcp); |
---|
1445 | glp_set_bfcp(dest, &bfcp); |
---|
1446 | dest->pbs_stat = prob->pbs_stat; |
---|
1447 | dest->dbs_stat = prob->dbs_stat; |
---|
1448 | dest->obj_val = prob->obj_val; |
---|
1449 | dest->some = prob->some; |
---|
1450 | dest->ipt_stat = prob->ipt_stat; |
---|
1451 | dest->ipt_obj = prob->ipt_obj; |
---|
1452 | dest->mip_stat = prob->mip_stat; |
---|
1453 | dest->mip_obj = prob->mip_obj; |
---|
1454 | for (i = 1; i <= prob->m; i++) |
---|
1455 | { GLPROW *to = dest->row[i]; |
---|
1456 | GLPROW *from = prob->row[i]; |
---|
1457 | if (names && from->name != NULL) |
---|
1458 | glp_set_row_name(dest, i, from->name); |
---|
1459 | to->type = from->type; |
---|
1460 | to->lb = from->lb; |
---|
1461 | to->ub = from->ub; |
---|
1462 | to->rii = from->rii; |
---|
1463 | to->stat = from->stat; |
---|
1464 | to->prim = from->prim; |
---|
1465 | to->dual = from->dual; |
---|
1466 | to->pval = from->pval; |
---|
1467 | to->dval = from->dval; |
---|
1468 | to->mipx = from->mipx; |
---|
1469 | } |
---|
1470 | ind = xcalloc(1+prob->m, sizeof(int)); |
---|
1471 | val = xcalloc(1+prob->m, sizeof(double)); |
---|
1472 | for (j = 1; j <= prob->n; j++) |
---|
1473 | { GLPCOL *to = dest->col[j]; |
---|
1474 | GLPCOL *from = prob->col[j]; |
---|
1475 | if (names && from->name != NULL) |
---|
1476 | glp_set_col_name(dest, j, from->name); |
---|
1477 | to->kind = from->kind; |
---|
1478 | to->type = from->type; |
---|
1479 | to->lb = from->lb; |
---|
1480 | to->ub = from->ub; |
---|
1481 | to->coef = from->coef; |
---|
1482 | len = glp_get_mat_col(prob, j, ind, val); |
---|
1483 | glp_set_mat_col(dest, j, len, ind, val); |
---|
1484 | to->sjj = from->sjj; |
---|
1485 | to->stat = from->stat; |
---|
1486 | to->prim = from->prim; |
---|
1487 | to->dual = from->dual; |
---|
1488 | to->pval = from->pval; |
---|
1489 | to->dval = from->dval; |
---|
1490 | to->mipx = from->mipx; |
---|
1491 | } |
---|
1492 | xfree(ind); |
---|
1493 | xfree(val); |
---|
1494 | return; |
---|
1495 | } |
---|
1496 | |
---|
1497 | /*********************************************************************** |
---|
1498 | * NAME |
---|
1499 | * |
---|
1500 | * glp_erase_prob - erase problem object content |
---|
1501 | * |
---|
1502 | * SYNOPSIS |
---|
1503 | * |
---|
1504 | * void glp_erase_prob(glp_prob *lp); |
---|
1505 | * |
---|
1506 | * DESCRIPTION |
---|
1507 | * |
---|
1508 | * The routine glp_erase_prob erases the content of the specified |
---|
1509 | * problem object. The effect of this operation is the same as if the |
---|
1510 | * problem object would be deleted with the routine glp_delete_prob and |
---|
1511 | * then created anew with the routine glp_create_prob, with exception |
---|
1512 | * that the handle (pointer) to the problem object remains valid. */ |
---|
1513 | |
---|
1514 | static void delete_prob(glp_prob *lp); |
---|
1515 | |
---|
1516 | void glp_erase_prob(glp_prob *lp) |
---|
1517 | { glp_tree *tree = lp->tree; |
---|
1518 | if (tree != NULL && tree->reason != 0) |
---|
1519 | xerror("glp_erase_prob: operation not allowed\n"); |
---|
1520 | delete_prob(lp); |
---|
1521 | create_prob(lp); |
---|
1522 | return; |
---|
1523 | } |
---|
1524 | |
---|
1525 | /*********************************************************************** |
---|
1526 | * NAME |
---|
1527 | * |
---|
1528 | * glp_delete_prob - delete problem object |
---|
1529 | * |
---|
1530 | * SYNOPSIS |
---|
1531 | * |
---|
1532 | * void glp_delete_prob(glp_prob *lp); |
---|
1533 | * |
---|
1534 | * DESCRIPTION |
---|
1535 | * |
---|
1536 | * The routine glp_delete_prob deletes the specified problem object and |
---|
1537 | * frees all the memory allocated to it. */ |
---|
1538 | |
---|
1539 | static void delete_prob(glp_prob *lp) |
---|
1540 | { lp->magic = 0x3F3F3F3F; |
---|
1541 | dmp_delete_pool(lp->pool); |
---|
1542 | #if 0 /* 17/XI-2009 */ |
---|
1543 | xfree(lp->cps); |
---|
1544 | #else |
---|
1545 | if (lp->parms != NULL) xfree(lp->parms); |
---|
1546 | #endif |
---|
1547 | xassert(lp->tree == NULL); |
---|
1548 | #if 0 |
---|
1549 | if (lp->cwa != NULL) xfree(lp->cwa); |
---|
1550 | #endif |
---|
1551 | xfree(lp->row); |
---|
1552 | xfree(lp->col); |
---|
1553 | if (lp->r_tree != NULL) avl_delete_tree(lp->r_tree); |
---|
1554 | if (lp->c_tree != NULL) avl_delete_tree(lp->c_tree); |
---|
1555 | xfree(lp->head); |
---|
1556 | if (lp->bfcp != NULL) xfree(lp->bfcp); |
---|
1557 | if (lp->bfd != NULL) bfd_delete_it(lp->bfd); |
---|
1558 | return; |
---|
1559 | } |
---|
1560 | |
---|
1561 | void glp_delete_prob(glp_prob *lp) |
---|
1562 | { glp_tree *tree = lp->tree; |
---|
1563 | if (tree != NULL && tree->reason != 0) |
---|
1564 | xerror("glp_delete_prob: operation not allowed\n"); |
---|
1565 | delete_prob(lp); |
---|
1566 | xfree(lp); |
---|
1567 | return; |
---|
1568 | } |
---|
1569 | |
---|
1570 | /* eof */ |
---|