[9] | 1 | /* glpapi08.c (interior-point method routines) */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
| 7 | * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, |
---|
| 8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 9 | * E-mail: <mao@gnu.org>. |
---|
| 10 | * |
---|
| 11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 14 | * (at your option) any later version. |
---|
| 15 | * |
---|
| 16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 19 | * License for more details. |
---|
| 20 | * |
---|
| 21 | * You should have received a copy of the GNU General Public License |
---|
| 22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 23 | ***********************************************************************/ |
---|
| 24 | |
---|
| 25 | #include "glpapi.h" |
---|
| 26 | #include "glpipm.h" |
---|
| 27 | #include "glpnpp.h" |
---|
| 28 | |
---|
| 29 | /*********************************************************************** |
---|
| 30 | * NAME |
---|
| 31 | * |
---|
| 32 | * glp_interior - solve LP problem with the interior-point method |
---|
| 33 | * |
---|
| 34 | * SYNOPSIS |
---|
| 35 | * |
---|
| 36 | * int glp_interior(glp_prob *P, const glp_iptcp *parm); |
---|
| 37 | * |
---|
| 38 | * The routine glp_interior is a driver to the LP solver based on the |
---|
| 39 | * interior-point method. |
---|
| 40 | * |
---|
| 41 | * The interior-point solver has a set of control parameters. Values of |
---|
| 42 | * the control parameters can be passed in a structure glp_iptcp, which |
---|
| 43 | * the parameter parm points to. |
---|
| 44 | * |
---|
| 45 | * Currently this routine implements an easy variant of the primal-dual |
---|
| 46 | * interior-point method based on Mehrotra's technique. |
---|
| 47 | * |
---|
| 48 | * This routine transforms the original LP problem to an equivalent LP |
---|
| 49 | * problem in the standard formulation (all constraints are equalities, |
---|
| 50 | * all variables are non-negative), calls the routine ipm_main to solve |
---|
| 51 | * the transformed problem, and then transforms an obtained solution to |
---|
| 52 | * the solution of the original problem. |
---|
| 53 | * |
---|
| 54 | * RETURNS |
---|
| 55 | * |
---|
| 56 | * 0 The LP problem instance has been successfully solved. This code |
---|
| 57 | * does not necessarily mean that the solver has found optimal |
---|
| 58 | * solution. It only means that the solution process was successful. |
---|
| 59 | * |
---|
| 60 | * GLP_EFAIL |
---|
| 61 | * The problem has no rows/columns. |
---|
| 62 | * |
---|
| 63 | * GLP_ENOCVG |
---|
| 64 | * Very slow convergence or divergence. |
---|
| 65 | * |
---|
| 66 | * GLP_EITLIM |
---|
| 67 | * Iteration limit exceeded. |
---|
| 68 | * |
---|
| 69 | * GLP_EINSTAB |
---|
| 70 | * Numerical instability on solving Newtonian system. */ |
---|
| 71 | |
---|
| 72 | static void transform(NPP *npp) |
---|
| 73 | { /* transform LP to the standard formulation */ |
---|
| 74 | NPPROW *row, *prev_row; |
---|
| 75 | NPPCOL *col, *prev_col; |
---|
| 76 | for (row = npp->r_tail; row != NULL; row = prev_row) |
---|
| 77 | { prev_row = row->prev; |
---|
| 78 | if (row->lb == -DBL_MAX && row->ub == +DBL_MAX) |
---|
| 79 | npp_free_row(npp, row); |
---|
| 80 | else if (row->lb == -DBL_MAX) |
---|
| 81 | npp_leq_row(npp, row); |
---|
| 82 | else if (row->ub == +DBL_MAX) |
---|
| 83 | npp_geq_row(npp, row); |
---|
| 84 | else if (row->lb != row->ub) |
---|
| 85 | { if (fabs(row->lb) < fabs(row->ub)) |
---|
| 86 | npp_geq_row(npp, row); |
---|
| 87 | else |
---|
| 88 | npp_leq_row(npp, row); |
---|
| 89 | } |
---|
| 90 | } |
---|
| 91 | for (col = npp->c_tail; col != NULL; col = prev_col) |
---|
| 92 | { prev_col = col->prev; |
---|
| 93 | if (col->lb == -DBL_MAX && col->ub == +DBL_MAX) |
---|
| 94 | npp_free_col(npp, col); |
---|
| 95 | else if (col->lb == -DBL_MAX) |
---|
| 96 | npp_ubnd_col(npp, col); |
---|
| 97 | else if (col->ub == +DBL_MAX) |
---|
| 98 | { if (col->lb != 0.0) |
---|
| 99 | npp_lbnd_col(npp, col); |
---|
| 100 | } |
---|
| 101 | else if (col->lb != col->ub) |
---|
| 102 | { if (fabs(col->lb) < fabs(col->ub)) |
---|
| 103 | { if (col->lb != 0.0) |
---|
| 104 | npp_lbnd_col(npp, col); |
---|
| 105 | } |
---|
| 106 | else |
---|
| 107 | npp_ubnd_col(npp, col); |
---|
| 108 | npp_dbnd_col(npp, col); |
---|
| 109 | } |
---|
| 110 | else |
---|
| 111 | npp_fixed_col(npp, col); |
---|
| 112 | } |
---|
| 113 | for (row = npp->r_head; row != NULL; row = row->next) |
---|
| 114 | xassert(row->lb == row->ub); |
---|
| 115 | for (col = npp->c_head; col != NULL; col = col->next) |
---|
| 116 | xassert(col->lb == 0.0 && col->ub == +DBL_MAX); |
---|
| 117 | return; |
---|
| 118 | } |
---|
| 119 | |
---|
| 120 | int glp_interior(glp_prob *P, const glp_iptcp *parm) |
---|
| 121 | { glp_iptcp _parm; |
---|
| 122 | GLPROW *row; |
---|
| 123 | GLPCOL *col; |
---|
| 124 | NPP *npp = NULL; |
---|
| 125 | glp_prob *prob = NULL; |
---|
| 126 | int i, j, ret; |
---|
| 127 | /* check control parameters */ |
---|
| 128 | if (parm == NULL) |
---|
| 129 | glp_init_iptcp(&_parm), parm = &_parm; |
---|
| 130 | if (!(parm->msg_lev == GLP_MSG_OFF || |
---|
| 131 | parm->msg_lev == GLP_MSG_ERR || |
---|
| 132 | parm->msg_lev == GLP_MSG_ON || |
---|
| 133 | parm->msg_lev == GLP_MSG_ALL)) |
---|
| 134 | xerror("glp_interior: msg_lev = %d; invalid parameter\n", |
---|
| 135 | parm->msg_lev); |
---|
| 136 | if (!(parm->ord_alg == GLP_ORD_NONE || |
---|
| 137 | parm->ord_alg == GLP_ORD_QMD || |
---|
| 138 | parm->ord_alg == GLP_ORD_AMD || |
---|
| 139 | parm->ord_alg == GLP_ORD_SYMAMD)) |
---|
| 140 | xerror("glp_interior: ord_alg = %d; invalid parameter\n", |
---|
| 141 | parm->ord_alg); |
---|
| 142 | /* interior-point solution is currently undefined */ |
---|
| 143 | P->ipt_stat = GLP_UNDEF; |
---|
| 144 | P->ipt_obj = 0.0; |
---|
| 145 | /* check bounds of double-bounded variables */ |
---|
| 146 | for (i = 1; i <= P->m; i++) |
---|
| 147 | { row = P->row[i]; |
---|
| 148 | if (row->type == GLP_DB && row->lb >= row->ub) |
---|
| 149 | { if (parm->msg_lev >= GLP_MSG_ERR) |
---|
| 150 | xprintf("glp_interior: row %d: lb = %g, ub = %g; incorre" |
---|
| 151 | "ct bounds\n", i, row->lb, row->ub); |
---|
| 152 | ret = GLP_EBOUND; |
---|
| 153 | goto done; |
---|
| 154 | } |
---|
| 155 | } |
---|
| 156 | for (j = 1; j <= P->n; j++) |
---|
| 157 | { col = P->col[j]; |
---|
| 158 | if (col->type == GLP_DB && col->lb >= col->ub) |
---|
| 159 | { if (parm->msg_lev >= GLP_MSG_ERR) |
---|
| 160 | xprintf("glp_interior: column %d: lb = %g, ub = %g; inco" |
---|
| 161 | "rrect bounds\n", j, col->lb, col->ub); |
---|
| 162 | ret = GLP_EBOUND; |
---|
| 163 | goto done; |
---|
| 164 | } |
---|
| 165 | } |
---|
| 166 | /* transform LP to the standard formulation */ |
---|
| 167 | if (parm->msg_lev >= GLP_MSG_ALL) |
---|
| 168 | xprintf("Original LP has %d row(s), %d column(s), and %d non-z" |
---|
| 169 | "ero(s)\n", P->m, P->n, P->nnz); |
---|
| 170 | npp = npp_create_wksp(); |
---|
| 171 | npp_load_prob(npp, P, GLP_OFF, GLP_IPT, GLP_ON); |
---|
| 172 | transform(npp); |
---|
| 173 | prob = glp_create_prob(); |
---|
| 174 | npp_build_prob(npp, prob); |
---|
| 175 | if (parm->msg_lev >= GLP_MSG_ALL) |
---|
| 176 | xprintf("Working LP has %d row(s), %d column(s), and %d non-ze" |
---|
| 177 | "ro(s)\n", prob->m, prob->n, prob->nnz); |
---|
| 178 | #if 1 |
---|
| 179 | /* currently empty problem cannot be solved */ |
---|
| 180 | if (!(prob->m > 0 && prob->n > 0)) |
---|
| 181 | { if (parm->msg_lev >= GLP_MSG_ERR) |
---|
| 182 | xprintf("glp_interior: unable to solve empty problem\n"); |
---|
| 183 | ret = GLP_EFAIL; |
---|
| 184 | goto done; |
---|
| 185 | } |
---|
| 186 | #endif |
---|
| 187 | /* scale the resultant LP */ |
---|
| 188 | { ENV *env = get_env_ptr(); |
---|
| 189 | int term_out = env->term_out; |
---|
| 190 | env->term_out = GLP_OFF; |
---|
| 191 | glp_scale_prob(prob, GLP_SF_EQ); |
---|
| 192 | env->term_out = term_out; |
---|
| 193 | } |
---|
| 194 | /* warn about dense columns */ |
---|
| 195 | if (parm->msg_lev >= GLP_MSG_ON && prob->m >= 200) |
---|
| 196 | { int len, cnt = 0; |
---|
| 197 | for (j = 1; j <= prob->n; j++) |
---|
| 198 | { len = glp_get_mat_col(prob, j, NULL, NULL); |
---|
| 199 | if ((double)len >= 0.20 * (double)prob->m) cnt++; |
---|
| 200 | } |
---|
| 201 | if (cnt == 1) |
---|
| 202 | xprintf("WARNING: PROBLEM HAS ONE DENSE COLUMN\n"); |
---|
| 203 | else if (cnt > 0) |
---|
| 204 | xprintf("WARNING: PROBLEM HAS %d DENSE COLUMNS\n", cnt); |
---|
| 205 | } |
---|
| 206 | /* solve the transformed LP */ |
---|
| 207 | ret = ipm_solve(prob, parm); |
---|
| 208 | /* postprocess solution from the transformed LP */ |
---|
| 209 | npp_postprocess(npp, prob); |
---|
| 210 | /* and store solution to the original LP */ |
---|
| 211 | npp_unload_sol(npp, P); |
---|
| 212 | done: /* free working program objects */ |
---|
| 213 | if (npp != NULL) npp_delete_wksp(npp); |
---|
| 214 | if (prob != NULL) glp_delete_prob(prob); |
---|
| 215 | /* return to the application program */ |
---|
| 216 | return ret; |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | /*********************************************************************** |
---|
| 220 | * NAME |
---|
| 221 | * |
---|
| 222 | * glp_init_iptcp - initialize interior-point solver control parameters |
---|
| 223 | * |
---|
| 224 | * SYNOPSIS |
---|
| 225 | * |
---|
| 226 | * void glp_init_iptcp(glp_iptcp *parm); |
---|
| 227 | * |
---|
| 228 | * DESCRIPTION |
---|
| 229 | * |
---|
| 230 | * The routine glp_init_iptcp initializes control parameters, which are |
---|
| 231 | * used by the interior-point solver, with default values. |
---|
| 232 | * |
---|
| 233 | * Default values of the control parameters are stored in the glp_iptcp |
---|
| 234 | * structure, which the parameter parm points to. */ |
---|
| 235 | |
---|
| 236 | void glp_init_iptcp(glp_iptcp *parm) |
---|
| 237 | { parm->msg_lev = GLP_MSG_ALL; |
---|
| 238 | parm->ord_alg = GLP_ORD_AMD; |
---|
| 239 | return; |
---|
| 240 | } |
---|
| 241 | |
---|
| 242 | /*********************************************************************** |
---|
| 243 | * NAME |
---|
| 244 | * |
---|
| 245 | * glp_ipt_status - retrieve status of interior-point solution |
---|
| 246 | * |
---|
| 247 | * SYNOPSIS |
---|
| 248 | * |
---|
| 249 | * int glp_ipt_status(glp_prob *lp); |
---|
| 250 | * |
---|
| 251 | * RETURNS |
---|
| 252 | * |
---|
| 253 | * The routine glp_ipt_status reports the status of solution found by |
---|
| 254 | * the interior-point solver as follows: |
---|
| 255 | * |
---|
| 256 | * GLP_UNDEF - interior-point solution is undefined; |
---|
| 257 | * GLP_OPT - interior-point solution is optimal; |
---|
| 258 | * GLP_INFEAS - interior-point solution is infeasible; |
---|
| 259 | * GLP_NOFEAS - no feasible solution exists. */ |
---|
| 260 | |
---|
| 261 | int glp_ipt_status(glp_prob *lp) |
---|
| 262 | { int ipt_stat = lp->ipt_stat; |
---|
| 263 | return ipt_stat; |
---|
| 264 | } |
---|
| 265 | |
---|
| 266 | /*********************************************************************** |
---|
| 267 | * NAME |
---|
| 268 | * |
---|
| 269 | * glp_ipt_obj_val - retrieve objective value (interior point) |
---|
| 270 | * |
---|
| 271 | * SYNOPSIS |
---|
| 272 | * |
---|
| 273 | * double glp_ipt_obj_val(glp_prob *lp); |
---|
| 274 | * |
---|
| 275 | * RETURNS |
---|
| 276 | * |
---|
| 277 | * The routine glp_ipt_obj_val returns value of the objective function |
---|
| 278 | * for interior-point solution. */ |
---|
| 279 | |
---|
| 280 | double glp_ipt_obj_val(glp_prob *lp) |
---|
| 281 | { /*struct LPXCPS *cps = lp->cps;*/ |
---|
| 282 | double z; |
---|
| 283 | z = lp->ipt_obj; |
---|
| 284 | /*if (cps->round && fabs(z) < 1e-9) z = 0.0;*/ |
---|
| 285 | return z; |
---|
| 286 | } |
---|
| 287 | |
---|
| 288 | /*********************************************************************** |
---|
| 289 | * NAME |
---|
| 290 | * |
---|
| 291 | * glp_ipt_row_prim - retrieve row primal value (interior point) |
---|
| 292 | * |
---|
| 293 | * SYNOPSIS |
---|
| 294 | * |
---|
| 295 | * double glp_ipt_row_prim(glp_prob *lp, int i); |
---|
| 296 | * |
---|
| 297 | * RETURNS |
---|
| 298 | * |
---|
| 299 | * The routine glp_ipt_row_prim returns primal value of the auxiliary |
---|
| 300 | * variable associated with i-th row. */ |
---|
| 301 | |
---|
| 302 | double glp_ipt_row_prim(glp_prob *lp, int i) |
---|
| 303 | { /*struct LPXCPS *cps = lp->cps;*/ |
---|
| 304 | double pval; |
---|
| 305 | if (!(1 <= i && i <= lp->m)) |
---|
| 306 | xerror("glp_ipt_row_prim: i = %d; row number out of range\n", |
---|
| 307 | i); |
---|
| 308 | pval = lp->row[i]->pval; |
---|
| 309 | /*if (cps->round && fabs(pval) < 1e-9) pval = 0.0;*/ |
---|
| 310 | return pval; |
---|
| 311 | } |
---|
| 312 | |
---|
| 313 | /*********************************************************************** |
---|
| 314 | * NAME |
---|
| 315 | * |
---|
| 316 | * glp_ipt_row_dual - retrieve row dual value (interior point) |
---|
| 317 | * |
---|
| 318 | * SYNOPSIS |
---|
| 319 | * |
---|
| 320 | * double glp_ipt_row_dual(glp_prob *lp, int i); |
---|
| 321 | * |
---|
| 322 | * RETURNS |
---|
| 323 | * |
---|
| 324 | * The routine glp_ipt_row_dual returns dual value (i.e. reduced cost) |
---|
| 325 | * of the auxiliary variable associated with i-th row. */ |
---|
| 326 | |
---|
| 327 | double glp_ipt_row_dual(glp_prob *lp, int i) |
---|
| 328 | { /*struct LPXCPS *cps = lp->cps;*/ |
---|
| 329 | double dval; |
---|
| 330 | if (!(1 <= i && i <= lp->m)) |
---|
| 331 | xerror("glp_ipt_row_dual: i = %d; row number out of range\n", |
---|
| 332 | i); |
---|
| 333 | dval = lp->row[i]->dval; |
---|
| 334 | /*if (cps->round && fabs(dval) < 1e-9) dval = 0.0;*/ |
---|
| 335 | return dval; |
---|
| 336 | } |
---|
| 337 | |
---|
| 338 | /*********************************************************************** |
---|
| 339 | * NAME |
---|
| 340 | * |
---|
| 341 | * glp_ipt_col_prim - retrieve column primal value (interior point) |
---|
| 342 | * |
---|
| 343 | * SYNOPSIS |
---|
| 344 | * |
---|
| 345 | * double glp_ipt_col_prim(glp_prob *lp, int j); |
---|
| 346 | * |
---|
| 347 | * RETURNS |
---|
| 348 | * |
---|
| 349 | * The routine glp_ipt_col_prim returns primal value of the structural |
---|
| 350 | * variable associated with j-th column. */ |
---|
| 351 | |
---|
| 352 | double glp_ipt_col_prim(glp_prob *lp, int j) |
---|
| 353 | { /*struct LPXCPS *cps = lp->cps;*/ |
---|
| 354 | double pval; |
---|
| 355 | if (!(1 <= j && j <= lp->n)) |
---|
| 356 | xerror("glp_ipt_col_prim: j = %d; column number out of range\n" |
---|
| 357 | , j); |
---|
| 358 | pval = lp->col[j]->pval; |
---|
| 359 | /*if (cps->round && fabs(pval) < 1e-9) pval = 0.0;*/ |
---|
| 360 | return pval; |
---|
| 361 | } |
---|
| 362 | |
---|
| 363 | /*********************************************************************** |
---|
| 364 | * NAME |
---|
| 365 | * |
---|
| 366 | * glp_ipt_col_dual - retrieve column dual value (interior point) |
---|
| 367 | * |
---|
| 368 | * SYNOPSIS |
---|
| 369 | * |
---|
| 370 | * #include "glplpx.h" |
---|
| 371 | * double glp_ipt_col_dual(glp_prob *lp, int j); |
---|
| 372 | * |
---|
| 373 | * RETURNS |
---|
| 374 | * |
---|
| 375 | * The routine glp_ipt_col_dual returns dual value (i.e. reduced cost) |
---|
| 376 | * of the structural variable associated with j-th column. */ |
---|
| 377 | |
---|
| 378 | double glp_ipt_col_dual(glp_prob *lp, int j) |
---|
| 379 | { /*struct LPXCPS *cps = lp->cps;*/ |
---|
| 380 | double dval; |
---|
| 381 | if (!(1 <= j && j <= lp->n)) |
---|
| 382 | xerror("glp_ipt_col_dual: j = %d; column number out of range\n" |
---|
| 383 | , j); |
---|
| 384 | dval = lp->col[j]->dval; |
---|
| 385 | /*if (cps->round && fabs(dval) < 1e-9) dval = 0.0;*/ |
---|
| 386 | return dval; |
---|
| 387 | } |
---|
| 388 | |
---|
| 389 | /* eof */ |
---|