[9] | 1 | /* glpapi16.c (graph and network analysis routines) */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
| 7 | * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, |
---|
| 8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 9 | * E-mail: <mao@gnu.org>. |
---|
| 10 | * |
---|
| 11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 14 | * (at your option) any later version. |
---|
| 15 | * |
---|
| 16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 19 | * License for more details. |
---|
| 20 | * |
---|
| 21 | * You should have received a copy of the GNU General Public License |
---|
| 22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 23 | ***********************************************************************/ |
---|
| 24 | |
---|
| 25 | #include "glpapi.h" |
---|
| 26 | #include "glpnet.h" |
---|
| 27 | |
---|
| 28 | /*********************************************************************** |
---|
| 29 | * NAME |
---|
| 30 | * |
---|
| 31 | * glp_weak_comp - find all weakly connected components of graph |
---|
| 32 | * |
---|
| 33 | * SYNOPSIS |
---|
| 34 | * |
---|
| 35 | * int glp_weak_comp(glp_graph *G, int v_num); |
---|
| 36 | * |
---|
| 37 | * DESCRIPTION |
---|
| 38 | * |
---|
| 39 | * The routine glp_weak_comp finds all weakly connected components of |
---|
| 40 | * the specified graph. |
---|
| 41 | * |
---|
| 42 | * The parameter v_num specifies an offset of the field of type int |
---|
| 43 | * in the vertex data block, to which the routine stores the number of |
---|
| 44 | * a (weakly) connected component containing that vertex. If v_num < 0, |
---|
| 45 | * no component numbers are stored. |
---|
| 46 | * |
---|
| 47 | * The components are numbered in arbitrary order from 1 to nc, where |
---|
| 48 | * nc is the total number of components found, 0 <= nc <= |V|. |
---|
| 49 | * |
---|
| 50 | * RETURNS |
---|
| 51 | * |
---|
| 52 | * The routine returns nc, the total number of components found. */ |
---|
| 53 | |
---|
| 54 | int glp_weak_comp(glp_graph *G, int v_num) |
---|
| 55 | { glp_vertex *v; |
---|
| 56 | glp_arc *a; |
---|
| 57 | int f, i, j, nc, nv, pos1, pos2, *prev, *next, *list; |
---|
| 58 | if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int)) |
---|
| 59 | xerror("glp_weak_comp: v_num = %d; invalid offset\n", v_num); |
---|
| 60 | nv = G->nv; |
---|
| 61 | if (nv == 0) |
---|
| 62 | { nc = 0; |
---|
| 63 | goto done; |
---|
| 64 | } |
---|
| 65 | /* allocate working arrays */ |
---|
| 66 | prev = xcalloc(1+nv, sizeof(int)); |
---|
| 67 | next = xcalloc(1+nv, sizeof(int)); |
---|
| 68 | list = xcalloc(1+nv, sizeof(int)); |
---|
| 69 | /* if vertex i is unlabelled, prev[i] is the index of previous |
---|
| 70 | unlabelled vertex, and next[i] is the index of next unlabelled |
---|
| 71 | vertex; if vertex i is labelled, then prev[i] < 0, and next[i] |
---|
| 72 | is the connected component number */ |
---|
| 73 | /* initially all vertices are unlabelled */ |
---|
| 74 | f = 1; |
---|
| 75 | for (i = 1; i <= nv; i++) |
---|
| 76 | prev[i] = i - 1, next[i] = i + 1; |
---|
| 77 | next[nv] = 0; |
---|
| 78 | /* main loop (until all vertices have been labelled) */ |
---|
| 79 | nc = 0; |
---|
| 80 | while (f != 0) |
---|
| 81 | { /* take an unlabelled vertex */ |
---|
| 82 | i = f; |
---|
| 83 | /* and remove it from the list of unlabelled vertices */ |
---|
| 84 | f = next[i]; |
---|
| 85 | if (f != 0) prev[f] = 0; |
---|
| 86 | /* label the vertex; it begins a new component */ |
---|
| 87 | prev[i] = -1, next[i] = ++nc; |
---|
| 88 | /* breadth first search */ |
---|
| 89 | list[1] = i, pos1 = pos2 = 1; |
---|
| 90 | while (pos1 <= pos2) |
---|
| 91 | { /* dequeue vertex i */ |
---|
| 92 | i = list[pos1++]; |
---|
| 93 | /* consider all arcs incoming to vertex i */ |
---|
| 94 | for (a = G->v[i]->in; a != NULL; a = a->h_next) |
---|
| 95 | { /* vertex j is adjacent to vertex i */ |
---|
| 96 | j = a->tail->i; |
---|
| 97 | if (prev[j] >= 0) |
---|
| 98 | { /* vertex j is unlabelled */ |
---|
| 99 | /* remove it from the list of unlabelled vertices */ |
---|
| 100 | if (prev[j] == 0) |
---|
| 101 | f = next[j]; |
---|
| 102 | else |
---|
| 103 | next[prev[j]] = next[j]; |
---|
| 104 | if (next[j] == 0) |
---|
| 105 | ; |
---|
| 106 | else |
---|
| 107 | prev[next[j]] = prev[j]; |
---|
| 108 | /* label the vertex */ |
---|
| 109 | prev[j] = -1, next[j] = nc; |
---|
| 110 | /* and enqueue it for further consideration */ |
---|
| 111 | list[++pos2] = j; |
---|
| 112 | } |
---|
| 113 | } |
---|
| 114 | /* consider all arcs outgoing from vertex i */ |
---|
| 115 | for (a = G->v[i]->out; a != NULL; a = a->t_next) |
---|
| 116 | { /* vertex j is adjacent to vertex i */ |
---|
| 117 | j = a->head->i; |
---|
| 118 | if (prev[j] >= 0) |
---|
| 119 | { /* vertex j is unlabelled */ |
---|
| 120 | /* remove it from the list of unlabelled vertices */ |
---|
| 121 | if (prev[j] == 0) |
---|
| 122 | f = next[j]; |
---|
| 123 | else |
---|
| 124 | next[prev[j]] = next[j]; |
---|
| 125 | if (next[j] == 0) |
---|
| 126 | ; |
---|
| 127 | else |
---|
| 128 | prev[next[j]] = prev[j]; |
---|
| 129 | /* label the vertex */ |
---|
| 130 | prev[j] = -1, next[j] = nc; |
---|
| 131 | /* and enqueue it for further consideration */ |
---|
| 132 | list[++pos2] = j; |
---|
| 133 | } |
---|
| 134 | } |
---|
| 135 | } |
---|
| 136 | } |
---|
| 137 | /* store component numbers */ |
---|
| 138 | if (v_num >= 0) |
---|
| 139 | { for (i = 1; i <= nv; i++) |
---|
| 140 | { v = G->v[i]; |
---|
| 141 | memcpy((char *)v->data + v_num, &next[i], sizeof(int)); |
---|
| 142 | } |
---|
| 143 | } |
---|
| 144 | /* free working arrays */ |
---|
| 145 | xfree(prev); |
---|
| 146 | xfree(next); |
---|
| 147 | xfree(list); |
---|
| 148 | done: return nc; |
---|
| 149 | } |
---|
| 150 | |
---|
| 151 | /*********************************************************************** |
---|
| 152 | * NAME |
---|
| 153 | * |
---|
| 154 | * glp_strong_comp - find all strongly connected components of graph |
---|
| 155 | * |
---|
| 156 | * SYNOPSIS |
---|
| 157 | * |
---|
| 158 | * int glp_strong_comp(glp_graph *G, int v_num); |
---|
| 159 | * |
---|
| 160 | * DESCRIPTION |
---|
| 161 | * |
---|
| 162 | * The routine glp_strong_comp finds all strongly connected components |
---|
| 163 | * of the specified graph. |
---|
| 164 | * |
---|
| 165 | * The parameter v_num specifies an offset of the field of type int |
---|
| 166 | * in the vertex data block, to which the routine stores the number of |
---|
| 167 | * a strongly connected component containing that vertex. If v_num < 0, |
---|
| 168 | * no component numbers are stored. |
---|
| 169 | * |
---|
| 170 | * The components are numbered in arbitrary order from 1 to nc, where |
---|
| 171 | * nc is the total number of components found, 0 <= nc <= |V|. However, |
---|
| 172 | * the component numbering has the property that for every arc (i->j) |
---|
| 173 | * in the graph the condition num(i) >= num(j) holds. |
---|
| 174 | * |
---|
| 175 | * RETURNS |
---|
| 176 | * |
---|
| 177 | * The routine returns nc, the total number of components found. */ |
---|
| 178 | |
---|
| 179 | int glp_strong_comp(glp_graph *G, int v_num) |
---|
| 180 | { glp_vertex *v; |
---|
| 181 | glp_arc *a; |
---|
| 182 | int i, k, last, n, na, nc, *icn, *ip, *lenr, *ior, *ib, *lowl, |
---|
| 183 | *numb, *prev; |
---|
| 184 | if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int)) |
---|
| 185 | xerror("glp_strong_comp: v_num = %d; invalid offset\n", |
---|
| 186 | v_num); |
---|
| 187 | n = G->nv; |
---|
| 188 | if (n == 0) |
---|
| 189 | { nc = 0; |
---|
| 190 | goto done; |
---|
| 191 | } |
---|
| 192 | na = G->na; |
---|
| 193 | icn = xcalloc(1+na, sizeof(int)); |
---|
| 194 | ip = xcalloc(1+n, sizeof(int)); |
---|
| 195 | lenr = xcalloc(1+n, sizeof(int)); |
---|
| 196 | ior = xcalloc(1+n, sizeof(int)); |
---|
| 197 | ib = xcalloc(1+n, sizeof(int)); |
---|
| 198 | lowl = xcalloc(1+n, sizeof(int)); |
---|
| 199 | numb = xcalloc(1+n, sizeof(int)); |
---|
| 200 | prev = xcalloc(1+n, sizeof(int)); |
---|
| 201 | k = 1; |
---|
| 202 | for (i = 1; i <= n; i++) |
---|
| 203 | { v = G->v[i]; |
---|
| 204 | ip[i] = k; |
---|
| 205 | for (a = v->out; a != NULL; a = a->t_next) |
---|
| 206 | icn[k++] = a->head->i; |
---|
| 207 | lenr[i] = k - ip[i]; |
---|
| 208 | } |
---|
| 209 | xassert(na == k-1); |
---|
| 210 | nc = mc13d(n, icn, ip, lenr, ior, ib, lowl, numb, prev); |
---|
| 211 | if (v_num >= 0) |
---|
| 212 | { xassert(ib[1] == 1); |
---|
| 213 | for (k = 1; k <= nc; k++) |
---|
| 214 | { last = (k < nc ? ib[k+1] : n+1); |
---|
| 215 | xassert(ib[k] < last); |
---|
| 216 | for (i = ib[k]; i < last; i++) |
---|
| 217 | { v = G->v[ior[i]]; |
---|
| 218 | memcpy((char *)v->data + v_num, &k, sizeof(int)); |
---|
| 219 | } |
---|
| 220 | } |
---|
| 221 | } |
---|
| 222 | xfree(icn); |
---|
| 223 | xfree(ip); |
---|
| 224 | xfree(lenr); |
---|
| 225 | xfree(ior); |
---|
| 226 | xfree(ib); |
---|
| 227 | xfree(lowl); |
---|
| 228 | xfree(numb); |
---|
| 229 | xfree(prev); |
---|
| 230 | done: return nc; |
---|
| 231 | } |
---|
| 232 | |
---|
| 233 | /*********************************************************************** |
---|
| 234 | * NAME |
---|
| 235 | * |
---|
| 236 | * glp_top_sort - topological sorting of acyclic digraph |
---|
| 237 | * |
---|
| 238 | * SYNOPSIS |
---|
| 239 | * |
---|
| 240 | * int glp_top_sort(glp_graph *G, int v_num); |
---|
| 241 | * |
---|
| 242 | * DESCRIPTION |
---|
| 243 | * |
---|
| 244 | * The routine glp_top_sort performs topological sorting of vertices of |
---|
| 245 | * the specified acyclic digraph. |
---|
| 246 | * |
---|
| 247 | * The parameter v_num specifies an offset of the field of type int in |
---|
| 248 | * the vertex data block, to which the routine stores the vertex number |
---|
| 249 | * assigned. If v_num < 0, vertex numbers are not stored. |
---|
| 250 | * |
---|
| 251 | * The vertices are numbered from 1 to n, where n is the total number |
---|
| 252 | * of vertices in the graph. The vertex numbering has the property that |
---|
| 253 | * for every arc (i->j) in the graph the condition num(i) < num(j) |
---|
| 254 | * holds. Special case num(i) = 0 means that vertex i is not assigned a |
---|
| 255 | * number, because the graph is *not* acyclic. |
---|
| 256 | * |
---|
| 257 | * RETURNS |
---|
| 258 | * |
---|
| 259 | * If the graph is acyclic and therefore all the vertices have been |
---|
| 260 | * assigned numbers, the routine glp_top_sort returns zero. Otherwise, |
---|
| 261 | * if the graph is not acyclic, the routine returns the number of |
---|
| 262 | * vertices which have not been numbered, i.e. for which num(i) = 0. */ |
---|
| 263 | |
---|
| 264 | static int top_sort(glp_graph *G, int num[]) |
---|
| 265 | { glp_arc *a; |
---|
| 266 | int i, j, cnt, top, *stack, *indeg; |
---|
| 267 | /* allocate working arrays */ |
---|
| 268 | indeg = xcalloc(1+G->nv, sizeof(int)); |
---|
| 269 | stack = xcalloc(1+G->nv, sizeof(int)); |
---|
| 270 | /* determine initial indegree of each vertex; push into the stack |
---|
| 271 | the vertices having zero indegree */ |
---|
| 272 | top = 0; |
---|
| 273 | for (i = 1; i <= G->nv; i++) |
---|
| 274 | { num[i] = indeg[i] = 0; |
---|
| 275 | for (a = G->v[i]->in; a != NULL; a = a->h_next) |
---|
| 276 | indeg[i]++; |
---|
| 277 | if (indeg[i] == 0) |
---|
| 278 | stack[++top] = i; |
---|
| 279 | } |
---|
| 280 | /* assign numbers to vertices in the sorted order */ |
---|
| 281 | cnt = 0; |
---|
| 282 | while (top > 0) |
---|
| 283 | { /* pull vertex i from the stack */ |
---|
| 284 | i = stack[top--]; |
---|
| 285 | /* it has zero indegree in the current graph */ |
---|
| 286 | xassert(indeg[i] == 0); |
---|
| 287 | /* so assign it a next number */ |
---|
| 288 | xassert(num[i] == 0); |
---|
| 289 | num[i] = ++cnt; |
---|
| 290 | /* remove vertex i from the current graph, update indegree of |
---|
| 291 | its adjacent vertices, and push into the stack new vertices |
---|
| 292 | whose indegree becomes zero */ |
---|
| 293 | for (a = G->v[i]->out; a != NULL; a = a->t_next) |
---|
| 294 | { j = a->head->i; |
---|
| 295 | /* there exists arc (i->j) in the graph */ |
---|
| 296 | xassert(indeg[j] > 0); |
---|
| 297 | indeg[j]--; |
---|
| 298 | if (indeg[j] == 0) |
---|
| 299 | stack[++top] = j; |
---|
| 300 | } |
---|
| 301 | } |
---|
| 302 | /* free working arrays */ |
---|
| 303 | xfree(indeg); |
---|
| 304 | xfree(stack); |
---|
| 305 | return G->nv - cnt; |
---|
| 306 | } |
---|
| 307 | |
---|
| 308 | int glp_top_sort(glp_graph *G, int v_num) |
---|
| 309 | { glp_vertex *v; |
---|
| 310 | int i, cnt, *num; |
---|
| 311 | if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int)) |
---|
| 312 | xerror("glp_top_sort: v_num = %d; invalid offset\n", v_num); |
---|
| 313 | if (G->nv == 0) |
---|
| 314 | { cnt = 0; |
---|
| 315 | goto done; |
---|
| 316 | } |
---|
| 317 | num = xcalloc(1+G->nv, sizeof(int)); |
---|
| 318 | cnt = top_sort(G, num); |
---|
| 319 | if (v_num >= 0) |
---|
| 320 | { for (i = 1; i <= G->nv; i++) |
---|
| 321 | { v = G->v[i]; |
---|
| 322 | memcpy((char *)v->data + v_num, &num[i], sizeof(int)); |
---|
| 323 | } |
---|
| 324 | } |
---|
| 325 | xfree(num); |
---|
| 326 | done: return cnt; |
---|
| 327 | } |
---|
| 328 | |
---|
| 329 | /* eof */ |
---|