1 | /* glpapi18.c (maximum clique problem) */ |
---|
2 | |
---|
3 | /*********************************************************************** |
---|
4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
5 | * |
---|
6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
7 | * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, |
---|
8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
9 | * E-mail: <mao@gnu.org>. |
---|
10 | * |
---|
11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
12 | * under the terms of the GNU General Public License as published by |
---|
13 | * the Free Software Foundation, either version 3 of the License, or |
---|
14 | * (at your option) any later version. |
---|
15 | * |
---|
16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
19 | * License for more details. |
---|
20 | * |
---|
21 | * You should have received a copy of the GNU General Public License |
---|
22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
23 | ***********************************************************************/ |
---|
24 | |
---|
25 | #include "glpapi.h" |
---|
26 | #include "glpnet.h" |
---|
27 | |
---|
28 | static void set_edge(int nv, unsigned char a[], int i, int j) |
---|
29 | { int k; |
---|
30 | xassert(1 <= j && j < i && i <= nv); |
---|
31 | k = ((i - 1) * (i - 2)) / 2 + (j - 1); |
---|
32 | a[k / CHAR_BIT] |= |
---|
33 | (unsigned char)(1 << ((CHAR_BIT - 1) - k % CHAR_BIT)); |
---|
34 | return; |
---|
35 | } |
---|
36 | |
---|
37 | int glp_wclique_exact(glp_graph *G, int v_wgt, double *sol, int v_set) |
---|
38 | { /* find maximum weight clique with exact algorithm */ |
---|
39 | glp_arc *e; |
---|
40 | int i, j, k, len, x, *w, *ind, ret = 0; |
---|
41 | unsigned char *a; |
---|
42 | double s, t; |
---|
43 | if (v_wgt >= 0 && v_wgt > G->v_size - (int)sizeof(double)) |
---|
44 | xerror("glp_wclique_exact: v_wgt = %d; invalid parameter\n", |
---|
45 | v_wgt); |
---|
46 | if (v_set >= 0 && v_set > G->v_size - (int)sizeof(int)) |
---|
47 | xerror("glp_wclique_exact: v_set = %d; invalid parameter\n", |
---|
48 | v_set); |
---|
49 | if (G->nv == 0) |
---|
50 | { /* empty graph has only empty clique */ |
---|
51 | if (sol != NULL) *sol = 0.0; |
---|
52 | return 0; |
---|
53 | } |
---|
54 | /* allocate working arrays */ |
---|
55 | w = xcalloc(1+G->nv, sizeof(int)); |
---|
56 | ind = xcalloc(1+G->nv, sizeof(int)); |
---|
57 | len = G->nv; /* # vertices */ |
---|
58 | len = len * (len - 1) / 2; /* # entries in lower triangle */ |
---|
59 | len = (len + (CHAR_BIT - 1)) / CHAR_BIT; /* # bytes needed */ |
---|
60 | a = xcalloc(len, sizeof(char)); |
---|
61 | memset(a, 0, len * sizeof(char)); |
---|
62 | /* determine vertex weights */ |
---|
63 | s = 0.0; |
---|
64 | for (i = 1; i <= G->nv; i++) |
---|
65 | { if (v_wgt >= 0) |
---|
66 | { memcpy(&t, (char *)G->v[i]->data + v_wgt, sizeof(double)); |
---|
67 | if (!(0.0 <= t && t <= (double)INT_MAX && t == floor(t))) |
---|
68 | { ret = GLP_EDATA; |
---|
69 | goto done; |
---|
70 | } |
---|
71 | w[i] = (int)t; |
---|
72 | } |
---|
73 | else |
---|
74 | w[i] = 1; |
---|
75 | s += (double)w[i]; |
---|
76 | } |
---|
77 | if (s > (double)INT_MAX) |
---|
78 | { ret = GLP_EDATA; |
---|
79 | goto done; |
---|
80 | } |
---|
81 | /* build the adjacency matrix */ |
---|
82 | for (i = 1; i <= G->nv; i++) |
---|
83 | { for (e = G->v[i]->in; e != NULL; e = e->h_next) |
---|
84 | { j = e->tail->i; |
---|
85 | /* there exists edge (j,i) in the graph */ |
---|
86 | if (i > j) set_edge(G->nv, a, i, j); |
---|
87 | } |
---|
88 | for (e = G->v[i]->out; e != NULL; e = e->t_next) |
---|
89 | { j = e->head->i; |
---|
90 | /* there exists edge (i,j) in the graph */ |
---|
91 | if (i > j) set_edge(G->nv, a, i, j); |
---|
92 | } |
---|
93 | } |
---|
94 | /* find maximum weight clique in the graph */ |
---|
95 | len = wclique(G->nv, w, a, ind); |
---|
96 | /* compute the clique weight */ |
---|
97 | s = 0.0; |
---|
98 | for (k = 1; k <= len; k++) |
---|
99 | { i = ind[k]; |
---|
100 | xassert(1 <= i && i <= G->nv); |
---|
101 | s += (double)w[i]; |
---|
102 | } |
---|
103 | if (sol != NULL) *sol = s; |
---|
104 | /* mark vertices included in the clique */ |
---|
105 | if (v_set >= 0) |
---|
106 | { x = 0; |
---|
107 | for (i = 1; i <= G->nv; i++) |
---|
108 | memcpy((char *)G->v[i]->data + v_set, &x, sizeof(int)); |
---|
109 | x = 1; |
---|
110 | for (k = 1; k <= len; k++) |
---|
111 | { i = ind[k]; |
---|
112 | memcpy((char *)G->v[i]->data + v_set, &x, sizeof(int)); |
---|
113 | } |
---|
114 | } |
---|
115 | done: /* free working arrays */ |
---|
116 | xfree(w); |
---|
117 | xfree(ind); |
---|
118 | xfree(a); |
---|
119 | return ret; |
---|
120 | } |
---|
121 | |
---|
122 | /* eof */ |
---|