[9] | 1 | /* glpios02.c (preprocess current subproblem) */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
| 7 | * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, |
---|
| 8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 9 | * E-mail: <mao@gnu.org>. |
---|
| 10 | * |
---|
| 11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 14 | * (at your option) any later version. |
---|
| 15 | * |
---|
| 16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 19 | * License for more details. |
---|
| 20 | * |
---|
| 21 | * You should have received a copy of the GNU General Public License |
---|
| 22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 23 | ***********************************************************************/ |
---|
| 24 | |
---|
| 25 | #include "glpios.h" |
---|
| 26 | |
---|
| 27 | /*********************************************************************** |
---|
| 28 | * prepare_row_info - prepare row info to determine implied bounds |
---|
| 29 | * |
---|
| 30 | * Given a row (linear form) |
---|
| 31 | * |
---|
| 32 | * n |
---|
| 33 | * sum a[j] * x[j] (1) |
---|
| 34 | * j=1 |
---|
| 35 | * |
---|
| 36 | * and bounds of columns (variables) |
---|
| 37 | * |
---|
| 38 | * l[j] <= x[j] <= u[j] (2) |
---|
| 39 | * |
---|
| 40 | * this routine computes f_min, j_min, f_max, j_max needed to determine |
---|
| 41 | * implied bounds. |
---|
| 42 | * |
---|
| 43 | * ALGORITHM |
---|
| 44 | * |
---|
| 45 | * Let J+ = {j : a[j] > 0} and J- = {j : a[j] < 0}. |
---|
| 46 | * |
---|
| 47 | * Parameters f_min and j_min are computed as follows: |
---|
| 48 | * |
---|
| 49 | * 1) if there is no x[k] such that k in J+ and l[k] = -inf or k in J- |
---|
| 50 | * and u[k] = +inf, then |
---|
| 51 | * |
---|
| 52 | * f_min := sum a[j] * l[j] + sum a[j] * u[j] |
---|
| 53 | * j in J+ j in J- |
---|
| 54 | * (3) |
---|
| 55 | * j_min := 0 |
---|
| 56 | * |
---|
| 57 | * 2) if there is exactly one x[k] such that k in J+ and l[k] = -inf |
---|
| 58 | * or k in J- and u[k] = +inf, then |
---|
| 59 | * |
---|
| 60 | * f_min := sum a[j] * l[j] + sum a[j] * u[j] |
---|
| 61 | * j in J+\{k} j in J-\{k} |
---|
| 62 | * (4) |
---|
| 63 | * j_min := k |
---|
| 64 | * |
---|
| 65 | * 3) if there are two or more x[k] such that k in J+ and l[k] = -inf |
---|
| 66 | * or k in J- and u[k] = +inf, then |
---|
| 67 | * |
---|
| 68 | * f_min := -inf |
---|
| 69 | * (5) |
---|
| 70 | * j_min := 0 |
---|
| 71 | * |
---|
| 72 | * Parameters f_max and j_max are computed in a similar way as follows: |
---|
| 73 | * |
---|
| 74 | * 1) if there is no x[k] such that k in J+ and u[k] = +inf or k in J- |
---|
| 75 | * and l[k] = -inf, then |
---|
| 76 | * |
---|
| 77 | * f_max := sum a[j] * u[j] + sum a[j] * l[j] |
---|
| 78 | * j in J+ j in J- |
---|
| 79 | * (6) |
---|
| 80 | * j_max := 0 |
---|
| 81 | * |
---|
| 82 | * 2) if there is exactly one x[k] such that k in J+ and u[k] = +inf |
---|
| 83 | * or k in J- and l[k] = -inf, then |
---|
| 84 | * |
---|
| 85 | * f_max := sum a[j] * u[j] + sum a[j] * l[j] |
---|
| 86 | * j in J+\{k} j in J-\{k} |
---|
| 87 | * (7) |
---|
| 88 | * j_max := k |
---|
| 89 | * |
---|
| 90 | * 3) if there are two or more x[k] such that k in J+ and u[k] = +inf |
---|
| 91 | * or k in J- and l[k] = -inf, then |
---|
| 92 | * |
---|
| 93 | * f_max := +inf |
---|
| 94 | * (8) |
---|
| 95 | * j_max := 0 */ |
---|
| 96 | |
---|
| 97 | struct f_info |
---|
| 98 | { int j_min, j_max; |
---|
| 99 | double f_min, f_max; |
---|
| 100 | }; |
---|
| 101 | |
---|
| 102 | static void prepare_row_info(int n, const double a[], const double l[], |
---|
| 103 | const double u[], struct f_info *f) |
---|
| 104 | { int j, j_min, j_max; |
---|
| 105 | double f_min, f_max; |
---|
| 106 | xassert(n >= 0); |
---|
| 107 | /* determine f_min and j_min */ |
---|
| 108 | f_min = 0.0, j_min = 0; |
---|
| 109 | for (j = 1; j <= n; j++) |
---|
| 110 | { if (a[j] > 0.0) |
---|
| 111 | { if (l[j] == -DBL_MAX) |
---|
| 112 | { if (j_min == 0) |
---|
| 113 | j_min = j; |
---|
| 114 | else |
---|
| 115 | { f_min = -DBL_MAX, j_min = 0; |
---|
| 116 | break; |
---|
| 117 | } |
---|
| 118 | } |
---|
| 119 | else |
---|
| 120 | f_min += a[j] * l[j]; |
---|
| 121 | } |
---|
| 122 | else if (a[j] < 0.0) |
---|
| 123 | { if (u[j] == +DBL_MAX) |
---|
| 124 | { if (j_min == 0) |
---|
| 125 | j_min = j; |
---|
| 126 | else |
---|
| 127 | { f_min = -DBL_MAX, j_min = 0; |
---|
| 128 | break; |
---|
| 129 | } |
---|
| 130 | } |
---|
| 131 | else |
---|
| 132 | f_min += a[j] * u[j]; |
---|
| 133 | } |
---|
| 134 | else |
---|
| 135 | xassert(a != a); |
---|
| 136 | } |
---|
| 137 | f->f_min = f_min, f->j_min = j_min; |
---|
| 138 | /* determine f_max and j_max */ |
---|
| 139 | f_max = 0.0, j_max = 0; |
---|
| 140 | for (j = 1; j <= n; j++) |
---|
| 141 | { if (a[j] > 0.0) |
---|
| 142 | { if (u[j] == +DBL_MAX) |
---|
| 143 | { if (j_max == 0) |
---|
| 144 | j_max = j; |
---|
| 145 | else |
---|
| 146 | { f_max = +DBL_MAX, j_max = 0; |
---|
| 147 | break; |
---|
| 148 | } |
---|
| 149 | } |
---|
| 150 | else |
---|
| 151 | f_max += a[j] * u[j]; |
---|
| 152 | } |
---|
| 153 | else if (a[j] < 0.0) |
---|
| 154 | { if (l[j] == -DBL_MAX) |
---|
| 155 | { if (j_max == 0) |
---|
| 156 | j_max = j; |
---|
| 157 | else |
---|
| 158 | { f_max = +DBL_MAX, j_max = 0; |
---|
| 159 | break; |
---|
| 160 | } |
---|
| 161 | } |
---|
| 162 | else |
---|
| 163 | f_max += a[j] * l[j]; |
---|
| 164 | } |
---|
| 165 | else |
---|
| 166 | xassert(a != a); |
---|
| 167 | } |
---|
| 168 | f->f_max = f_max, f->j_max = j_max; |
---|
| 169 | return; |
---|
| 170 | } |
---|
| 171 | |
---|
| 172 | /*********************************************************************** |
---|
| 173 | * row_implied_bounds - determine row implied bounds |
---|
| 174 | * |
---|
| 175 | * Given a row (linear form) |
---|
| 176 | * |
---|
| 177 | * n |
---|
| 178 | * sum a[j] * x[j] |
---|
| 179 | * j=1 |
---|
| 180 | * |
---|
| 181 | * and bounds of columns (variables) |
---|
| 182 | * |
---|
| 183 | * l[j] <= x[j] <= u[j] |
---|
| 184 | * |
---|
| 185 | * this routine determines implied bounds of the row. |
---|
| 186 | * |
---|
| 187 | * ALGORITHM |
---|
| 188 | * |
---|
| 189 | * Let J+ = {j : a[j] > 0} and J- = {j : a[j] < 0}. |
---|
| 190 | * |
---|
| 191 | * The implied lower bound of the row is computed as follows: |
---|
| 192 | * |
---|
| 193 | * L' := sum a[j] * l[j] + sum a[j] * u[j] (9) |
---|
| 194 | * j in J+ j in J- |
---|
| 195 | * |
---|
| 196 | * and as it follows from (3), (4), and (5): |
---|
| 197 | * |
---|
| 198 | * L' := if j_min = 0 then f_min else -inf (10) |
---|
| 199 | * |
---|
| 200 | * The implied upper bound of the row is computed as follows: |
---|
| 201 | * |
---|
| 202 | * U' := sum a[j] * u[j] + sum a[j] * l[j] (11) |
---|
| 203 | * j in J+ j in J- |
---|
| 204 | * |
---|
| 205 | * and as it follows from (6), (7), and (8): |
---|
| 206 | * |
---|
| 207 | * U' := if j_max = 0 then f_max else +inf (12) |
---|
| 208 | * |
---|
| 209 | * The implied bounds are stored in locations LL and UU. */ |
---|
| 210 | |
---|
| 211 | static void row_implied_bounds(const struct f_info *f, double *LL, |
---|
| 212 | double *UU) |
---|
| 213 | { *LL = (f->j_min == 0 ? f->f_min : -DBL_MAX); |
---|
| 214 | *UU = (f->j_max == 0 ? f->f_max : +DBL_MAX); |
---|
| 215 | return; |
---|
| 216 | } |
---|
| 217 | |
---|
| 218 | /*********************************************************************** |
---|
| 219 | * col_implied_bounds - determine column implied bounds |
---|
| 220 | * |
---|
| 221 | * Given a row (constraint) |
---|
| 222 | * |
---|
| 223 | * n |
---|
| 224 | * L <= sum a[j] * x[j] <= U (13) |
---|
| 225 | * j=1 |
---|
| 226 | * |
---|
| 227 | * and bounds of columns (variables) |
---|
| 228 | * |
---|
| 229 | * l[j] <= x[j] <= u[j] |
---|
| 230 | * |
---|
| 231 | * this routine determines implied bounds of variable x[k]. |
---|
| 232 | * |
---|
| 233 | * It is assumed that if L != -inf, the lower bound of the row can be |
---|
| 234 | * active, and if U != +inf, the upper bound of the row can be active. |
---|
| 235 | * |
---|
| 236 | * ALGORITHM |
---|
| 237 | * |
---|
| 238 | * From (13) it follows that |
---|
| 239 | * |
---|
| 240 | * L <= sum a[j] * x[j] + a[k] * x[k] <= U |
---|
| 241 | * j!=k |
---|
| 242 | * or |
---|
| 243 | * |
---|
| 244 | * L - sum a[j] * x[j] <= a[k] * x[k] <= U - sum a[j] * x[j] |
---|
| 245 | * j!=k j!=k |
---|
| 246 | * |
---|
| 247 | * Thus, if the row lower bound L can be active, implied lower bound of |
---|
| 248 | * term a[k] * x[k] can be determined as follows: |
---|
| 249 | * |
---|
| 250 | * ilb(a[k] * x[k]) = min(L - sum a[j] * x[j]) = |
---|
| 251 | * j!=k |
---|
| 252 | * (14) |
---|
| 253 | * = L - max sum a[j] * x[j] |
---|
| 254 | * j!=k |
---|
| 255 | * |
---|
| 256 | * where, as it follows from (6), (7), and (8) |
---|
| 257 | * |
---|
| 258 | * / f_max - a[k] * u[k], j_max = 0, a[k] > 0 |
---|
| 259 | * | |
---|
| 260 | * | f_max - a[k] * l[k], j_max = 0, a[k] < 0 |
---|
| 261 | * max sum a[j] * x[j] = { |
---|
| 262 | * j!=k | f_max, j_max = k |
---|
| 263 | * | |
---|
| 264 | * \ +inf, j_max != 0 |
---|
| 265 | * |
---|
| 266 | * and if the upper bound U can be active, implied upper bound of term |
---|
| 267 | * a[k] * x[k] can be determined as follows: |
---|
| 268 | * |
---|
| 269 | * iub(a[k] * x[k]) = max(U - sum a[j] * x[j]) = |
---|
| 270 | * j!=k |
---|
| 271 | * (15) |
---|
| 272 | * = U - min sum a[j] * x[j] |
---|
| 273 | * j!=k |
---|
| 274 | * |
---|
| 275 | * where, as it follows from (3), (4), and (5) |
---|
| 276 | * |
---|
| 277 | * / f_min - a[k] * l[k], j_min = 0, a[k] > 0 |
---|
| 278 | * | |
---|
| 279 | * | f_min - a[k] * u[k], j_min = 0, a[k] < 0 |
---|
| 280 | * min sum a[j] * x[j] = { |
---|
| 281 | * j!=k | f_min, j_min = k |
---|
| 282 | * | |
---|
| 283 | * \ -inf, j_min != 0 |
---|
| 284 | * |
---|
| 285 | * Since |
---|
| 286 | * |
---|
| 287 | * ilb(a[k] * x[k]) <= a[k] * x[k] <= iub(a[k] * x[k]) |
---|
| 288 | * |
---|
| 289 | * implied lower and upper bounds of x[k] are determined as follows: |
---|
| 290 | * |
---|
| 291 | * l'[k] := if a[k] > 0 then ilb / a[k] else ulb / a[k] (16) |
---|
| 292 | * |
---|
| 293 | * u'[k] := if a[k] > 0 then ulb / a[k] else ilb / a[k] (17) |
---|
| 294 | * |
---|
| 295 | * The implied bounds are stored in locations ll and uu. */ |
---|
| 296 | |
---|
| 297 | static void col_implied_bounds(const struct f_info *f, int n, |
---|
| 298 | const double a[], double L, double U, const double l[], |
---|
| 299 | const double u[], int k, double *ll, double *uu) |
---|
| 300 | { double ilb, iub; |
---|
| 301 | xassert(n >= 0); |
---|
| 302 | xassert(1 <= k && k <= n); |
---|
| 303 | /* determine implied lower bound of term a[k] * x[k] (14) */ |
---|
| 304 | if (L == -DBL_MAX || f->f_max == +DBL_MAX) |
---|
| 305 | ilb = -DBL_MAX; |
---|
| 306 | else if (f->j_max == 0) |
---|
| 307 | { if (a[k] > 0.0) |
---|
| 308 | { xassert(u[k] != +DBL_MAX); |
---|
| 309 | ilb = L - (f->f_max - a[k] * u[k]); |
---|
| 310 | } |
---|
| 311 | else if (a[k] < 0.0) |
---|
| 312 | { xassert(l[k] != -DBL_MAX); |
---|
| 313 | ilb = L - (f->f_max - a[k] * l[k]); |
---|
| 314 | } |
---|
| 315 | else |
---|
| 316 | xassert(a != a); |
---|
| 317 | } |
---|
| 318 | else if (f->j_max == k) |
---|
| 319 | ilb = L - f->f_max; |
---|
| 320 | else |
---|
| 321 | ilb = -DBL_MAX; |
---|
| 322 | /* determine implied upper bound of term a[k] * x[k] (15) */ |
---|
| 323 | if (U == +DBL_MAX || f->f_min == -DBL_MAX) |
---|
| 324 | iub = +DBL_MAX; |
---|
| 325 | else if (f->j_min == 0) |
---|
| 326 | { if (a[k] > 0.0) |
---|
| 327 | { xassert(l[k] != -DBL_MAX); |
---|
| 328 | iub = U - (f->f_min - a[k] * l[k]); |
---|
| 329 | } |
---|
| 330 | else if (a[k] < 0.0) |
---|
| 331 | { xassert(u[k] != +DBL_MAX); |
---|
| 332 | iub = U - (f->f_min - a[k] * u[k]); |
---|
| 333 | } |
---|
| 334 | else |
---|
| 335 | xassert(a != a); |
---|
| 336 | } |
---|
| 337 | else if (f->j_min == k) |
---|
| 338 | iub = U - f->f_min; |
---|
| 339 | else |
---|
| 340 | iub = +DBL_MAX; |
---|
| 341 | /* determine implied bounds of x[k] (16) and (17) */ |
---|
| 342 | #if 1 |
---|
| 343 | /* do not use a[k] if it has small magnitude to prevent wrong |
---|
| 344 | implied bounds; for example, 1e-15 * x1 >= x2 + x3, where |
---|
| 345 | x1 >= -10, x2, x3 >= 0, would lead to wrong conclusion that |
---|
| 346 | x1 >= 0 */ |
---|
| 347 | if (fabs(a[k]) < 1e-6) |
---|
| 348 | *ll = -DBL_MAX, *uu = +DBL_MAX; else |
---|
| 349 | #endif |
---|
| 350 | if (a[k] > 0.0) |
---|
| 351 | { *ll = (ilb == -DBL_MAX ? -DBL_MAX : ilb / a[k]); |
---|
| 352 | *uu = (iub == +DBL_MAX ? +DBL_MAX : iub / a[k]); |
---|
| 353 | } |
---|
| 354 | else if (a[k] < 0.0) |
---|
| 355 | { *ll = (iub == +DBL_MAX ? -DBL_MAX : iub / a[k]); |
---|
| 356 | *uu = (ilb == -DBL_MAX ? +DBL_MAX : ilb / a[k]); |
---|
| 357 | } |
---|
| 358 | else |
---|
| 359 | xassert(a != a); |
---|
| 360 | return; |
---|
| 361 | } |
---|
| 362 | |
---|
| 363 | /*********************************************************************** |
---|
| 364 | * check_row_bounds - check and relax original row bounds |
---|
| 365 | * |
---|
| 366 | * Given a row (constraint) |
---|
| 367 | * |
---|
| 368 | * n |
---|
| 369 | * L <= sum a[j] * x[j] <= U |
---|
| 370 | * j=1 |
---|
| 371 | * |
---|
| 372 | * and bounds of columns (variables) |
---|
| 373 | * |
---|
| 374 | * l[j] <= x[j] <= u[j] |
---|
| 375 | * |
---|
| 376 | * this routine checks the original row bounds L and U for feasibility |
---|
| 377 | * and redundancy. If the original lower bound L or/and upper bound U |
---|
| 378 | * cannot be active due to bounds of variables, the routine remove them |
---|
| 379 | * replacing by -inf or/and +inf, respectively. |
---|
| 380 | * |
---|
| 381 | * If no primal infeasibility is detected, the routine returns zero, |
---|
| 382 | * otherwise non-zero. */ |
---|
| 383 | |
---|
| 384 | static int check_row_bounds(const struct f_info *f, double *L_, |
---|
| 385 | double *U_) |
---|
| 386 | { int ret = 0; |
---|
| 387 | double L = *L_, U = *U_, LL, UU; |
---|
| 388 | /* determine implied bounds of the row */ |
---|
| 389 | row_implied_bounds(f, &LL, &UU); |
---|
| 390 | /* check if the original lower bound is infeasible */ |
---|
| 391 | if (L != -DBL_MAX) |
---|
| 392 | { double eps = 1e-3 * (1.0 + fabs(L)); |
---|
| 393 | if (UU < L - eps) |
---|
| 394 | { ret = 1; |
---|
| 395 | goto done; |
---|
| 396 | } |
---|
| 397 | } |
---|
| 398 | /* check if the original upper bound is infeasible */ |
---|
| 399 | if (U != +DBL_MAX) |
---|
| 400 | { double eps = 1e-3 * (1.0 + fabs(U)); |
---|
| 401 | if (LL > U + eps) |
---|
| 402 | { ret = 1; |
---|
| 403 | goto done; |
---|
| 404 | } |
---|
| 405 | } |
---|
| 406 | /* check if the original lower bound is redundant */ |
---|
| 407 | if (L != -DBL_MAX) |
---|
| 408 | { double eps = 1e-12 * (1.0 + fabs(L)); |
---|
| 409 | if (LL > L - eps) |
---|
| 410 | { /* it cannot be active, so remove it */ |
---|
| 411 | *L_ = -DBL_MAX; |
---|
| 412 | } |
---|
| 413 | } |
---|
| 414 | /* check if the original upper bound is redundant */ |
---|
| 415 | if (U != +DBL_MAX) |
---|
| 416 | { double eps = 1e-12 * (1.0 + fabs(U)); |
---|
| 417 | if (UU < U + eps) |
---|
| 418 | { /* it cannot be active, so remove it */ |
---|
| 419 | *U_ = +DBL_MAX; |
---|
| 420 | } |
---|
| 421 | } |
---|
| 422 | done: return ret; |
---|
| 423 | } |
---|
| 424 | |
---|
| 425 | /*********************************************************************** |
---|
| 426 | * check_col_bounds - check and tighten original column bounds |
---|
| 427 | * |
---|
| 428 | * Given a row (constraint) |
---|
| 429 | * |
---|
| 430 | * n |
---|
| 431 | * L <= sum a[j] * x[j] <= U |
---|
| 432 | * j=1 |
---|
| 433 | * |
---|
| 434 | * and bounds of columns (variables) |
---|
| 435 | * |
---|
| 436 | * l[j] <= x[j] <= u[j] |
---|
| 437 | * |
---|
| 438 | * for column (variable) x[j] this routine checks the original column |
---|
| 439 | * bounds l[j] and u[j] for feasibility and redundancy. If the original |
---|
| 440 | * lower bound l[j] or/and upper bound u[j] cannot be active due to |
---|
| 441 | * bounds of the constraint and other variables, the routine tighten |
---|
| 442 | * them replacing by corresponding implied bounds, if possible. |
---|
| 443 | * |
---|
| 444 | * NOTE: It is assumed that if L != -inf, the row lower bound can be |
---|
| 445 | * active, and if U != +inf, the row upper bound can be active. |
---|
| 446 | * |
---|
| 447 | * The flag means that variable x[j] is required to be integer. |
---|
| 448 | * |
---|
| 449 | * New actual bounds for x[j] are stored in locations lj and uj. |
---|
| 450 | * |
---|
| 451 | * If no primal infeasibility is detected, the routine returns zero, |
---|
| 452 | * otherwise non-zero. */ |
---|
| 453 | |
---|
| 454 | static int check_col_bounds(const struct f_info *f, int n, |
---|
| 455 | const double a[], double L, double U, const double l[], |
---|
| 456 | const double u[], int flag, int j, double *_lj, double *_uj) |
---|
| 457 | { int ret = 0; |
---|
| 458 | double lj, uj, ll, uu; |
---|
| 459 | xassert(n >= 0); |
---|
| 460 | xassert(1 <= j && j <= n); |
---|
| 461 | lj = l[j], uj = u[j]; |
---|
| 462 | /* determine implied bounds of the column */ |
---|
| 463 | col_implied_bounds(f, n, a, L, U, l, u, j, &ll, &uu); |
---|
| 464 | /* if x[j] is integral, round its implied bounds */ |
---|
| 465 | if (flag) |
---|
| 466 | { if (ll != -DBL_MAX) |
---|
| 467 | ll = (ll - floor(ll) < 1e-3 ? floor(ll) : ceil(ll)); |
---|
| 468 | if (uu != +DBL_MAX) |
---|
| 469 | uu = (ceil(uu) - uu < 1e-3 ? ceil(uu) : floor(uu)); |
---|
| 470 | } |
---|
| 471 | /* check if the original lower bound is infeasible */ |
---|
| 472 | if (lj != -DBL_MAX) |
---|
| 473 | { double eps = 1e-3 * (1.0 + fabs(lj)); |
---|
| 474 | if (uu < lj - eps) |
---|
| 475 | { ret = 1; |
---|
| 476 | goto done; |
---|
| 477 | } |
---|
| 478 | } |
---|
| 479 | /* check if the original upper bound is infeasible */ |
---|
| 480 | if (uj != +DBL_MAX) |
---|
| 481 | { double eps = 1e-3 * (1.0 + fabs(uj)); |
---|
| 482 | if (ll > uj + eps) |
---|
| 483 | { ret = 1; |
---|
| 484 | goto done; |
---|
| 485 | } |
---|
| 486 | } |
---|
| 487 | /* check if the original lower bound is redundant */ |
---|
| 488 | if (ll != -DBL_MAX) |
---|
| 489 | { double eps = 1e-3 * (1.0 + fabs(ll)); |
---|
| 490 | if (lj < ll - eps) |
---|
| 491 | { /* it cannot be active, so tighten it */ |
---|
| 492 | lj = ll; |
---|
| 493 | } |
---|
| 494 | } |
---|
| 495 | /* check if the original upper bound is redundant */ |
---|
| 496 | if (uu != +DBL_MAX) |
---|
| 497 | { double eps = 1e-3 * (1.0 + fabs(uu)); |
---|
| 498 | if (uj > uu + eps) |
---|
| 499 | { /* it cannot be active, so tighten it */ |
---|
| 500 | uj = uu; |
---|
| 501 | } |
---|
| 502 | } |
---|
| 503 | /* due to round-off errors it may happen that lj > uj (although |
---|
| 504 | lj < uj + eps, since no primal infeasibility is detected), so |
---|
| 505 | adjuct the new actual bounds to provide lj <= uj */ |
---|
| 506 | if (!(lj == -DBL_MAX || uj == +DBL_MAX)) |
---|
| 507 | { double t1 = fabs(lj), t2 = fabs(uj); |
---|
| 508 | double eps = 1e-10 * (1.0 + (t1 <= t2 ? t1 : t2)); |
---|
| 509 | if (lj > uj - eps) |
---|
| 510 | { if (lj == l[j]) |
---|
| 511 | uj = lj; |
---|
| 512 | else if (uj == u[j]) |
---|
| 513 | lj = uj; |
---|
| 514 | else if (t1 <= t2) |
---|
| 515 | uj = lj; |
---|
| 516 | else |
---|
| 517 | lj = uj; |
---|
| 518 | } |
---|
| 519 | } |
---|
| 520 | *_lj = lj, *_uj = uj; |
---|
| 521 | done: return ret; |
---|
| 522 | } |
---|
| 523 | |
---|
| 524 | /*********************************************************************** |
---|
| 525 | * check_efficiency - check if change in column bounds is efficient |
---|
| 526 | * |
---|
| 527 | * Given the original bounds of a column l and u and its new actual |
---|
| 528 | * bounds l' and u' (possibly tighten by the routine check_col_bounds) |
---|
| 529 | * this routine checks if the change in the column bounds is efficient |
---|
| 530 | * enough. If so, the routine returns non-zero, otherwise zero. |
---|
| 531 | * |
---|
| 532 | * The flag means that the variable is required to be integer. */ |
---|
| 533 | |
---|
| 534 | static int check_efficiency(int flag, double l, double u, double ll, |
---|
| 535 | double uu) |
---|
| 536 | { int eff = 0; |
---|
| 537 | /* check efficiency for lower bound */ |
---|
| 538 | if (l < ll) |
---|
| 539 | { if (flag || l == -DBL_MAX) |
---|
| 540 | eff++; |
---|
| 541 | else |
---|
| 542 | { double r; |
---|
| 543 | if (u == +DBL_MAX) |
---|
| 544 | r = 1.0 + fabs(l); |
---|
| 545 | else |
---|
| 546 | r = 1.0 + (u - l); |
---|
| 547 | if (ll - l >= 0.25 * r) |
---|
| 548 | eff++; |
---|
| 549 | } |
---|
| 550 | } |
---|
| 551 | /* check efficiency for upper bound */ |
---|
| 552 | if (u > uu) |
---|
| 553 | { if (flag || u == +DBL_MAX) |
---|
| 554 | eff++; |
---|
| 555 | else |
---|
| 556 | { double r; |
---|
| 557 | if (l == -DBL_MAX) |
---|
| 558 | r = 1.0 + fabs(u); |
---|
| 559 | else |
---|
| 560 | r = 1.0 + (u - l); |
---|
| 561 | if (u - uu >= 0.25 * r) |
---|
| 562 | eff++; |
---|
| 563 | } |
---|
| 564 | } |
---|
| 565 | return eff; |
---|
| 566 | } |
---|
| 567 | |
---|
| 568 | /*********************************************************************** |
---|
| 569 | * basic_preprocessing - perform basic preprocessing |
---|
| 570 | * |
---|
| 571 | * This routine performs basic preprocessing of the specified MIP that |
---|
| 572 | * includes relaxing some row bounds and tightening some column bounds. |
---|
| 573 | * |
---|
| 574 | * On entry the arrays L and U contains original row bounds, and the |
---|
| 575 | * arrays l and u contains original column bounds: |
---|
| 576 | * |
---|
| 577 | * L[0] is the lower bound of the objective row; |
---|
| 578 | * L[i], i = 1,...,m, is the lower bound of i-th row; |
---|
| 579 | * U[0] is the upper bound of the objective row; |
---|
| 580 | * U[i], i = 1,...,m, is the upper bound of i-th row; |
---|
| 581 | * l[0] is not used; |
---|
| 582 | * l[j], j = 1,...,n, is the lower bound of j-th column; |
---|
| 583 | * u[0] is not used; |
---|
| 584 | * u[j], j = 1,...,n, is the upper bound of j-th column. |
---|
| 585 | * |
---|
| 586 | * On exit the arrays L, U, l, and u contain new actual bounds of rows |
---|
| 587 | * and column in the same locations. |
---|
| 588 | * |
---|
| 589 | * The parameters nrs and num specify an initial list of rows to be |
---|
| 590 | * processed: |
---|
| 591 | * |
---|
| 592 | * nrs is the number of rows in the initial list, 0 <= nrs <= m+1; |
---|
| 593 | * num[0] is not used; |
---|
| 594 | * num[1,...,nrs] are row numbers (0 means the objective row). |
---|
| 595 | * |
---|
| 596 | * The parameter max_pass specifies the maximal number of times that |
---|
| 597 | * each row can be processed, max_pass > 0. |
---|
| 598 | * |
---|
| 599 | * If no primal infeasibility is detected, the routine returns zero, |
---|
| 600 | * otherwise non-zero. */ |
---|
| 601 | |
---|
| 602 | static int basic_preprocessing(glp_prob *mip, double L[], double U[], |
---|
| 603 | double l[], double u[], int nrs, const int num[], int max_pass) |
---|
| 604 | { int m = mip->m; |
---|
| 605 | int n = mip->n; |
---|
| 606 | struct f_info f; |
---|
| 607 | int i, j, k, len, size, ret = 0; |
---|
| 608 | int *ind, *list, *mark, *pass; |
---|
| 609 | double *val, *lb, *ub; |
---|
| 610 | xassert(0 <= nrs && nrs <= m+1); |
---|
| 611 | xassert(max_pass > 0); |
---|
| 612 | /* allocate working arrays */ |
---|
| 613 | ind = xcalloc(1+n, sizeof(int)); |
---|
| 614 | list = xcalloc(1+m+1, sizeof(int)); |
---|
| 615 | mark = xcalloc(1+m+1, sizeof(int)); |
---|
| 616 | memset(&mark[0], 0, (m+1) * sizeof(int)); |
---|
| 617 | pass = xcalloc(1+m+1, sizeof(int)); |
---|
| 618 | memset(&pass[0], 0, (m+1) * sizeof(int)); |
---|
| 619 | val = xcalloc(1+n, sizeof(double)); |
---|
| 620 | lb = xcalloc(1+n, sizeof(double)); |
---|
| 621 | ub = xcalloc(1+n, sizeof(double)); |
---|
| 622 | /* initialize the list of rows to be processed */ |
---|
| 623 | size = 0; |
---|
| 624 | for (k = 1; k <= nrs; k++) |
---|
| 625 | { i = num[k]; |
---|
| 626 | xassert(0 <= i && i <= m); |
---|
| 627 | /* duplicate row numbers are not allowed */ |
---|
| 628 | xassert(!mark[i]); |
---|
| 629 | list[++size] = i, mark[i] = 1; |
---|
| 630 | } |
---|
| 631 | xassert(size == nrs); |
---|
| 632 | /* process rows in the list until it becomes empty */ |
---|
| 633 | while (size > 0) |
---|
| 634 | { /* get a next row from the list */ |
---|
| 635 | i = list[size--], mark[i] = 0; |
---|
| 636 | /* increase the row processing count */ |
---|
| 637 | pass[i]++; |
---|
| 638 | /* if the row is free, skip it */ |
---|
| 639 | if (L[i] == -DBL_MAX && U[i] == +DBL_MAX) continue; |
---|
| 640 | /* obtain coefficients of the row */ |
---|
| 641 | len = 0; |
---|
| 642 | if (i == 0) |
---|
| 643 | { for (j = 1; j <= n; j++) |
---|
| 644 | { GLPCOL *col = mip->col[j]; |
---|
| 645 | if (col->coef != 0.0) |
---|
| 646 | len++, ind[len] = j, val[len] = col->coef; |
---|
| 647 | } |
---|
| 648 | } |
---|
| 649 | else |
---|
| 650 | { GLPROW *row = mip->row[i]; |
---|
| 651 | GLPAIJ *aij; |
---|
| 652 | for (aij = row->ptr; aij != NULL; aij = aij->r_next) |
---|
| 653 | len++, ind[len] = aij->col->j, val[len] = aij->val; |
---|
| 654 | } |
---|
| 655 | /* determine lower and upper bounds of columns corresponding |
---|
| 656 | to non-zero row coefficients */ |
---|
| 657 | for (k = 1; k <= len; k++) |
---|
| 658 | j = ind[k], lb[k] = l[j], ub[k] = u[j]; |
---|
| 659 | /* prepare the row info to determine implied bounds */ |
---|
| 660 | prepare_row_info(len, val, lb, ub, &f); |
---|
| 661 | /* check and relax bounds of the row */ |
---|
| 662 | if (check_row_bounds(&f, &L[i], &U[i])) |
---|
| 663 | { /* the feasible region is empty */ |
---|
| 664 | ret = 1; |
---|
| 665 | goto done; |
---|
| 666 | } |
---|
| 667 | /* if the row became free, drop it */ |
---|
| 668 | if (L[i] == -DBL_MAX && U[i] == +DBL_MAX) continue; |
---|
| 669 | /* process columns having non-zero coefficients in the row */ |
---|
| 670 | for (k = 1; k <= len; k++) |
---|
| 671 | { GLPCOL *col; |
---|
| 672 | int flag, eff; |
---|
| 673 | double ll, uu; |
---|
| 674 | /* take a next column in the row */ |
---|
| 675 | j = ind[k], col = mip->col[j]; |
---|
| 676 | flag = col->kind != GLP_CV; |
---|
| 677 | /* check and tighten bounds of the column */ |
---|
| 678 | if (check_col_bounds(&f, len, val, L[i], U[i], lb, ub, |
---|
| 679 | flag, k, &ll, &uu)) |
---|
| 680 | { /* the feasible region is empty */ |
---|
| 681 | ret = 1; |
---|
| 682 | goto done; |
---|
| 683 | } |
---|
| 684 | /* check if change in the column bounds is efficient */ |
---|
| 685 | eff = check_efficiency(flag, l[j], u[j], ll, uu); |
---|
| 686 | /* set new actual bounds of the column */ |
---|
| 687 | l[j] = ll, u[j] = uu; |
---|
| 688 | /* if the change is efficient, add all rows affected by the |
---|
| 689 | corresponding column, to the list */ |
---|
| 690 | if (eff > 0) |
---|
| 691 | { GLPAIJ *aij; |
---|
| 692 | for (aij = col->ptr; aij != NULL; aij = aij->c_next) |
---|
| 693 | { int ii = aij->row->i; |
---|
| 694 | /* if the row was processed maximal number of times, |
---|
| 695 | skip it */ |
---|
| 696 | if (pass[ii] >= max_pass) continue; |
---|
| 697 | /* if the row is free, skip it */ |
---|
| 698 | if (L[ii] == -DBL_MAX && U[ii] == +DBL_MAX) continue; |
---|
| 699 | /* put the row into the list */ |
---|
| 700 | if (mark[ii] == 0) |
---|
| 701 | { xassert(size <= m); |
---|
| 702 | list[++size] = ii, mark[ii] = 1; |
---|
| 703 | } |
---|
| 704 | } |
---|
| 705 | } |
---|
| 706 | } |
---|
| 707 | } |
---|
| 708 | done: /* free working arrays */ |
---|
| 709 | xfree(ind); |
---|
| 710 | xfree(list); |
---|
| 711 | xfree(mark); |
---|
| 712 | xfree(pass); |
---|
| 713 | xfree(val); |
---|
| 714 | xfree(lb); |
---|
| 715 | xfree(ub); |
---|
| 716 | return ret; |
---|
| 717 | } |
---|
| 718 | |
---|
| 719 | /*********************************************************************** |
---|
| 720 | * NAME |
---|
| 721 | * |
---|
| 722 | * ios_preprocess_node - preprocess current subproblem |
---|
| 723 | * |
---|
| 724 | * SYNOPSIS |
---|
| 725 | * |
---|
| 726 | * #include "glpios.h" |
---|
| 727 | * int ios_preprocess_node(glp_tree *tree, int max_pass); |
---|
| 728 | * |
---|
| 729 | * DESCRIPTION |
---|
| 730 | * |
---|
| 731 | * The routine ios_preprocess_node performs basic preprocessing of the |
---|
| 732 | * current subproblem. |
---|
| 733 | * |
---|
| 734 | * RETURNS |
---|
| 735 | * |
---|
| 736 | * If no primal infeasibility is detected, the routine returns zero, |
---|
| 737 | * otherwise non-zero. */ |
---|
| 738 | |
---|
| 739 | int ios_preprocess_node(glp_tree *tree, int max_pass) |
---|
| 740 | { glp_prob *mip = tree->mip; |
---|
| 741 | int m = mip->m; |
---|
| 742 | int n = mip->n; |
---|
| 743 | int i, j, nrs, *num, ret = 0; |
---|
| 744 | double *L, *U, *l, *u; |
---|
| 745 | /* the current subproblem must exist */ |
---|
| 746 | xassert(tree->curr != NULL); |
---|
| 747 | /* determine original row bounds */ |
---|
| 748 | L = xcalloc(1+m, sizeof(double)); |
---|
| 749 | U = xcalloc(1+m, sizeof(double)); |
---|
| 750 | switch (mip->mip_stat) |
---|
| 751 | { case GLP_UNDEF: |
---|
| 752 | L[0] = -DBL_MAX, U[0] = +DBL_MAX; |
---|
| 753 | break; |
---|
| 754 | case GLP_FEAS: |
---|
| 755 | switch (mip->dir) |
---|
| 756 | { case GLP_MIN: |
---|
| 757 | L[0] = -DBL_MAX, U[0] = mip->mip_obj - mip->c0; |
---|
| 758 | break; |
---|
| 759 | case GLP_MAX: |
---|
| 760 | L[0] = mip->mip_obj - mip->c0, U[0] = +DBL_MAX; |
---|
| 761 | break; |
---|
| 762 | default: |
---|
| 763 | xassert(mip != mip); |
---|
| 764 | } |
---|
| 765 | break; |
---|
| 766 | default: |
---|
| 767 | xassert(mip != mip); |
---|
| 768 | } |
---|
| 769 | for (i = 1; i <= m; i++) |
---|
| 770 | { L[i] = glp_get_row_lb(mip, i); |
---|
| 771 | U[i] = glp_get_row_ub(mip, i); |
---|
| 772 | } |
---|
| 773 | /* determine original column bounds */ |
---|
| 774 | l = xcalloc(1+n, sizeof(double)); |
---|
| 775 | u = xcalloc(1+n, sizeof(double)); |
---|
| 776 | for (j = 1; j <= n; j++) |
---|
| 777 | { l[j] = glp_get_col_lb(mip, j); |
---|
| 778 | u[j] = glp_get_col_ub(mip, j); |
---|
| 779 | } |
---|
| 780 | /* build the initial list of rows to be analyzed */ |
---|
| 781 | nrs = m + 1; |
---|
| 782 | num = xcalloc(1+nrs, sizeof(int)); |
---|
| 783 | for (i = 1; i <= nrs; i++) num[i] = i - 1; |
---|
| 784 | /* perform basic preprocessing */ |
---|
| 785 | if (basic_preprocessing(mip , L, U, l, u, nrs, num, max_pass)) |
---|
| 786 | { ret = 1; |
---|
| 787 | goto done; |
---|
| 788 | } |
---|
| 789 | /* set new actual (relaxed) row bounds */ |
---|
| 790 | for (i = 1; i <= m; i++) |
---|
| 791 | { /* consider only non-active rows to keep dual feasibility */ |
---|
| 792 | if (glp_get_row_stat(mip, i) == GLP_BS) |
---|
| 793 | { if (L[i] == -DBL_MAX && U[i] == +DBL_MAX) |
---|
| 794 | glp_set_row_bnds(mip, i, GLP_FR, 0.0, 0.0); |
---|
| 795 | else if (U[i] == +DBL_MAX) |
---|
| 796 | glp_set_row_bnds(mip, i, GLP_LO, L[i], 0.0); |
---|
| 797 | else if (L[i] == -DBL_MAX) |
---|
| 798 | glp_set_row_bnds(mip, i, GLP_UP, 0.0, U[i]); |
---|
| 799 | } |
---|
| 800 | } |
---|
| 801 | /* set new actual (tightened) column bounds */ |
---|
| 802 | for (j = 1; j <= n; j++) |
---|
| 803 | { int type; |
---|
| 804 | if (l[j] == -DBL_MAX && u[j] == +DBL_MAX) |
---|
| 805 | type = GLP_FR; |
---|
| 806 | else if (u[j] == +DBL_MAX) |
---|
| 807 | type = GLP_LO; |
---|
| 808 | else if (l[j] == -DBL_MAX) |
---|
| 809 | type = GLP_UP; |
---|
| 810 | else if (l[j] != u[j]) |
---|
| 811 | type = GLP_DB; |
---|
| 812 | else |
---|
| 813 | type = GLP_FX; |
---|
| 814 | glp_set_col_bnds(mip, j, type, l[j], u[j]); |
---|
| 815 | } |
---|
| 816 | done: /* free working arrays and return */ |
---|
| 817 | xfree(L); |
---|
| 818 | xfree(U); |
---|
| 819 | xfree(l); |
---|
| 820 | xfree(u); |
---|
| 821 | xfree(num); |
---|
| 822 | return ret; |
---|
| 823 | } |
---|
| 824 | |
---|
| 825 | /* eof */ |
---|