[9] | 1 | /* glplib02.c (64-bit arithmetic) */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
| 7 | * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, |
---|
| 8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 9 | * E-mail: <mao@gnu.org>. |
---|
| 10 | * |
---|
| 11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 14 | * (at your option) any later version. |
---|
| 15 | * |
---|
| 16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 19 | * License for more details. |
---|
| 20 | * |
---|
| 21 | * You should have received a copy of the GNU General Public License |
---|
| 22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 23 | ***********************************************************************/ |
---|
| 24 | |
---|
| 25 | #include "glpenv.h" |
---|
| 26 | #include "glplib.h" |
---|
| 27 | |
---|
| 28 | /*********************************************************************** |
---|
| 29 | * NAME |
---|
| 30 | * |
---|
| 31 | * xlset - expand integer to long integer |
---|
| 32 | * |
---|
| 33 | * SYNOPSIS |
---|
| 34 | * |
---|
| 35 | * #include "glplib.h" |
---|
| 36 | * glp_long xlset(int x); |
---|
| 37 | * |
---|
| 38 | * RETURNS |
---|
| 39 | * |
---|
| 40 | * The routine xlset returns x expanded to long integer. */ |
---|
| 41 | |
---|
| 42 | glp_long xlset(int x) |
---|
| 43 | { glp_long t; |
---|
| 44 | t.lo = x, t.hi = (x >= 0 ? 0 : -1); |
---|
| 45 | return t; |
---|
| 46 | } |
---|
| 47 | |
---|
| 48 | /*********************************************************************** |
---|
| 49 | * NAME |
---|
| 50 | * |
---|
| 51 | * xlneg - negate long integer |
---|
| 52 | * |
---|
| 53 | * SYNOPSIS |
---|
| 54 | * |
---|
| 55 | * #include "glplib.h" |
---|
| 56 | * glp_long xlneg(glp_long x); |
---|
| 57 | * |
---|
| 58 | * RETURNS |
---|
| 59 | * |
---|
| 60 | * The routine xlneg returns the difference 0 - x. */ |
---|
| 61 | |
---|
| 62 | glp_long xlneg(glp_long x) |
---|
| 63 | { if (x.lo) |
---|
| 64 | x.lo = - x.lo, x.hi = ~x.hi; |
---|
| 65 | else |
---|
| 66 | x.hi = - x.hi; |
---|
| 67 | return x; |
---|
| 68 | } |
---|
| 69 | |
---|
| 70 | /*********************************************************************** |
---|
| 71 | * NAME |
---|
| 72 | * |
---|
| 73 | * xladd - add long integers |
---|
| 74 | * |
---|
| 75 | * SYNOPSIS |
---|
| 76 | * |
---|
| 77 | * #include "glplib.h" |
---|
| 78 | * glp_long xladd(glp_long x, glp_long y); |
---|
| 79 | * |
---|
| 80 | * RETURNS |
---|
| 81 | * |
---|
| 82 | * The routine xladd returns the sum x + y. */ |
---|
| 83 | |
---|
| 84 | glp_long xladd(glp_long x, glp_long y) |
---|
| 85 | { if ((unsigned int)x.lo <= 0xFFFFFFFF - (unsigned int)y.lo) |
---|
| 86 | x.lo += y.lo, x.hi += y.hi; |
---|
| 87 | else |
---|
| 88 | x.lo += y.lo, x.hi += y.hi + 1; |
---|
| 89 | return x; |
---|
| 90 | } |
---|
| 91 | |
---|
| 92 | /*********************************************************************** |
---|
| 93 | * NAME |
---|
| 94 | * |
---|
| 95 | * xlsub - subtract long integers |
---|
| 96 | * |
---|
| 97 | * SYNOPSIS |
---|
| 98 | * |
---|
| 99 | * #include "glplib.h" |
---|
| 100 | * glp_long xlsub(glp_long x, glp_long y); |
---|
| 101 | * |
---|
| 102 | * RETURNS |
---|
| 103 | * |
---|
| 104 | * The routine xlsub returns the difference x - y. */ |
---|
| 105 | |
---|
| 106 | glp_long xlsub(glp_long x, glp_long y) |
---|
| 107 | { return |
---|
| 108 | xladd(x, xlneg(y)); |
---|
| 109 | } |
---|
| 110 | |
---|
| 111 | /*********************************************************************** |
---|
| 112 | * NAME |
---|
| 113 | * |
---|
| 114 | * xlcmp - compare long integers |
---|
| 115 | * |
---|
| 116 | * SYNOPSIS |
---|
| 117 | * |
---|
| 118 | * #include "glplib.h" |
---|
| 119 | * int xlcmp(glp_long x, glp_long y); |
---|
| 120 | * |
---|
| 121 | * RETURNS |
---|
| 122 | * |
---|
| 123 | * The routine xlcmp returns the sign of the difference x - y. */ |
---|
| 124 | |
---|
| 125 | int xlcmp(glp_long x, glp_long y) |
---|
| 126 | { if (x.hi >= 0 && y.hi < 0) return +1; |
---|
| 127 | if (x.hi < 0 && y.hi >= 0) return -1; |
---|
| 128 | if ((unsigned int)x.hi < (unsigned int)y.hi) return -1; |
---|
| 129 | if ((unsigned int)x.hi > (unsigned int)y.hi) return +1; |
---|
| 130 | if ((unsigned int)x.lo < (unsigned int)y.lo) return -1; |
---|
| 131 | if ((unsigned int)x.lo > (unsigned int)y.lo) return +1; |
---|
| 132 | return 0; |
---|
| 133 | } |
---|
| 134 | |
---|
| 135 | /*********************************************************************** |
---|
| 136 | * NAME |
---|
| 137 | * |
---|
| 138 | * xlmul - multiply long integers |
---|
| 139 | * |
---|
| 140 | * SYNOPSIS |
---|
| 141 | * |
---|
| 142 | * #include "glplib.h" |
---|
| 143 | * glp_long xlmul(glp_long x, glp_long y); |
---|
| 144 | * |
---|
| 145 | * RETURNS |
---|
| 146 | * |
---|
| 147 | * The routine xlmul returns the product x * y. */ |
---|
| 148 | |
---|
| 149 | glp_long xlmul(glp_long x, glp_long y) |
---|
| 150 | { unsigned short xx[8], yy[4]; |
---|
| 151 | xx[4] = (unsigned short)x.lo; |
---|
| 152 | xx[5] = (unsigned short)(x.lo >> 16); |
---|
| 153 | xx[6] = (unsigned short)x.hi; |
---|
| 154 | xx[7] = (unsigned short)(x.hi >> 16); |
---|
| 155 | yy[0] = (unsigned short)y.lo; |
---|
| 156 | yy[1] = (unsigned short)(y.lo >> 16); |
---|
| 157 | yy[2] = (unsigned short)y.hi; |
---|
| 158 | yy[3] = (unsigned short)(y.hi >> 16); |
---|
| 159 | bigmul(4, 4, xx, yy); |
---|
| 160 | x.lo = (unsigned int)xx[0] | ((unsigned int)xx[1] << 16); |
---|
| 161 | x.hi = (unsigned int)xx[2] | ((unsigned int)xx[3] << 16); |
---|
| 162 | return x; |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | /*********************************************************************** |
---|
| 166 | * NAME |
---|
| 167 | * |
---|
| 168 | * xldiv - divide long integers |
---|
| 169 | * |
---|
| 170 | * SYNOPSIS |
---|
| 171 | * |
---|
| 172 | * #include "glplib.h" |
---|
| 173 | * glp_ldiv xldiv(glp_long x, glp_long y); |
---|
| 174 | * |
---|
| 175 | * RETURNS |
---|
| 176 | * |
---|
| 177 | * The routine xldiv returns a structure of type glp_ldiv containing |
---|
| 178 | * members quot (the quotient) and rem (the remainder), both of type |
---|
| 179 | * glp_long. */ |
---|
| 180 | |
---|
| 181 | glp_ldiv xldiv(glp_long x, glp_long y) |
---|
| 182 | { glp_ldiv t; |
---|
| 183 | int m, sx, sy; |
---|
| 184 | unsigned short xx[8], yy[4]; |
---|
| 185 | /* sx := sign(x) */ |
---|
| 186 | sx = (x.hi < 0); |
---|
| 187 | /* sy := sign(y) */ |
---|
| 188 | sy = (y.hi < 0); |
---|
| 189 | /* x := |x| */ |
---|
| 190 | if (sx) x = xlneg(x); |
---|
| 191 | /* y := |y| */ |
---|
| 192 | if (sy) y = xlneg(y); |
---|
| 193 | /* compute x div y and x mod y */ |
---|
| 194 | xx[0] = (unsigned short)x.lo; |
---|
| 195 | xx[1] = (unsigned short)(x.lo >> 16); |
---|
| 196 | xx[2] = (unsigned short)x.hi; |
---|
| 197 | xx[3] = (unsigned short)(x.hi >> 16); |
---|
| 198 | yy[0] = (unsigned short)y.lo; |
---|
| 199 | yy[1] = (unsigned short)(y.lo >> 16); |
---|
| 200 | yy[2] = (unsigned short)y.hi; |
---|
| 201 | yy[3] = (unsigned short)(y.hi >> 16); |
---|
| 202 | if (yy[3]) |
---|
| 203 | m = 4; |
---|
| 204 | else if (yy[2]) |
---|
| 205 | m = 3; |
---|
| 206 | else if (yy[1]) |
---|
| 207 | m = 2; |
---|
| 208 | else if (yy[0]) |
---|
| 209 | m = 1; |
---|
| 210 | else |
---|
| 211 | xerror("xldiv: divide by zero\n"); |
---|
| 212 | bigdiv(4 - m, m, xx, yy); |
---|
| 213 | /* remainder in x[0], x[1], ..., x[m-1] */ |
---|
| 214 | t.rem.lo = (unsigned int)xx[0], t.rem.hi = 0; |
---|
| 215 | if (m >= 2) t.rem.lo |= (unsigned int)xx[1] << 16; |
---|
| 216 | if (m >= 3) t.rem.hi = (unsigned int)xx[2]; |
---|
| 217 | if (m >= 4) t.rem.hi |= (unsigned int)xx[3] << 16; |
---|
| 218 | if (sx) t.rem = xlneg(t.rem); |
---|
| 219 | /* quotient in x[m], x[m+1], ..., x[4] */ |
---|
| 220 | t.quot.lo = (unsigned int)xx[m], t.quot.hi = 0; |
---|
| 221 | if (m <= 3) t.quot.lo |= (unsigned int)xx[m+1] << 16; |
---|
| 222 | if (m <= 2) t.quot.hi = (unsigned int)xx[m+2]; |
---|
| 223 | if (m <= 1) t.quot.hi |= (unsigned int)xx[m+3] << 16; |
---|
| 224 | if (sx ^ sy) t.quot = xlneg(t.quot); |
---|
| 225 | return t; |
---|
| 226 | } |
---|
| 227 | |
---|
| 228 | /*********************************************************************** |
---|
| 229 | * NAME |
---|
| 230 | * |
---|
| 231 | * xltod - convert long integer to double |
---|
| 232 | * |
---|
| 233 | * SYNOPSIS |
---|
| 234 | * |
---|
| 235 | * #include "glplib.h" |
---|
| 236 | * double xltod(glp_long x); |
---|
| 237 | * |
---|
| 238 | * RETURNS |
---|
| 239 | * |
---|
| 240 | * The routine xltod returns x converted to double. */ |
---|
| 241 | |
---|
| 242 | double xltod(glp_long x) |
---|
| 243 | { double s, z; |
---|
| 244 | if (x.hi >= 0) |
---|
| 245 | s = +1.0; |
---|
| 246 | else |
---|
| 247 | s = -1.0, x = xlneg(x); |
---|
| 248 | if (x.hi >= 0) |
---|
| 249 | z = 4294967296.0 * (double)x.hi + (double)(unsigned int)x.lo; |
---|
| 250 | else |
---|
| 251 | { xassert(x.hi == 0x80000000 && x.lo == 0x00000000); |
---|
| 252 | z = 9223372036854775808.0; /* 2^63 */ |
---|
| 253 | } |
---|
| 254 | return s * z; |
---|
| 255 | } |
---|
| 256 | |
---|
| 257 | char *xltoa(glp_long x, char *s) |
---|
| 258 | { /* convert long integer to character string */ |
---|
| 259 | static const char *d = "0123456789"; |
---|
| 260 | glp_ldiv t; |
---|
| 261 | int neg, len; |
---|
| 262 | if (x.hi >= 0) |
---|
| 263 | neg = 0; |
---|
| 264 | else |
---|
| 265 | neg = 1, x = xlneg(x); |
---|
| 266 | if (x.hi >= 0) |
---|
| 267 | { len = 0; |
---|
| 268 | while (!(x.hi == 0 && x.lo == 0)) |
---|
| 269 | { t = xldiv(x, xlset(10)); |
---|
| 270 | xassert(0 <= t.rem.lo && t.rem.lo <= 9); |
---|
| 271 | s[len++] = d[t.rem.lo]; |
---|
| 272 | x = t.quot; |
---|
| 273 | } |
---|
| 274 | if (len == 0) s[len++] = d[0]; |
---|
| 275 | if (neg) s[len++] = '-'; |
---|
| 276 | s[len] = '\0'; |
---|
| 277 | strrev(s); |
---|
| 278 | } |
---|
| 279 | else |
---|
| 280 | strcpy(s, "-9223372036854775808"); /* -2^63 */ |
---|
| 281 | return s; |
---|
| 282 | } |
---|
| 283 | |
---|
| 284 | /**********************************************************************/ |
---|
| 285 | |
---|
| 286 | #if 0 |
---|
| 287 | #include "glprng.h" |
---|
| 288 | |
---|
| 289 | #define N_TEST 1000000 |
---|
| 290 | /* number of tests */ |
---|
| 291 | |
---|
| 292 | static glp_long myrand(RNG *rand) |
---|
| 293 | { glp_long x; |
---|
| 294 | int k; |
---|
| 295 | k = rng_unif_rand(rand, 4); |
---|
| 296 | xassert(0 <= k && k <= 3); |
---|
| 297 | x.lo = rng_unif_rand(rand, 65536); |
---|
| 298 | if (k == 1 || k == 3) |
---|
| 299 | { x.lo <<= 16; |
---|
| 300 | x.lo += rng_unif_rand(rand, 65536); |
---|
| 301 | } |
---|
| 302 | if (k <= 1) |
---|
| 303 | x.hi = 0; |
---|
| 304 | else |
---|
| 305 | x.hi = rng_unif_rand(rand, 65536); |
---|
| 306 | if (k == 3) |
---|
| 307 | { x.hi <<= 16; |
---|
| 308 | x.hi += rng_unif_rand(rand, 65536); |
---|
| 309 | } |
---|
| 310 | if (rng_unif_rand(rand, 2)) x = xlneg(x); |
---|
| 311 | return x; |
---|
| 312 | } |
---|
| 313 | |
---|
| 314 | int main(void) |
---|
| 315 | { RNG *rand; |
---|
| 316 | glp_long x, y; |
---|
| 317 | glp_ldiv z; |
---|
| 318 | int test; |
---|
| 319 | rand = rng_create_rand(); |
---|
| 320 | for (test = 1; test <= N_TEST; test++) |
---|
| 321 | { x = myrand(rand); |
---|
| 322 | y = myrand(rand); |
---|
| 323 | if (y.lo == 0 && y.hi == 0) y.lo = 1; |
---|
| 324 | /* z.quot := x div y, z.rem := x mod y */ |
---|
| 325 | z = xldiv(x, y); |
---|
| 326 | /* x must be equal to y * z.quot + z.rem */ |
---|
| 327 | xassert(xlcmp(x, xladd(xlmul(y, z.quot), z.rem)) == 0); |
---|
| 328 | } |
---|
| 329 | xprintf("%d tests successfully passed\n", N_TEST); |
---|
| 330 | rng_delete_rand(rand); |
---|
| 331 | return 0; |
---|
| 332 | } |
---|
| 333 | #endif |
---|
| 334 | |
---|
| 335 | /* eof */ |
---|