[9] | 1 | /* glpmat.c */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
| 7 | * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, |
---|
| 8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 9 | * E-mail: <mao@gnu.org>. |
---|
| 10 | * |
---|
| 11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 14 | * (at your option) any later version. |
---|
| 15 | * |
---|
| 16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 19 | * License for more details. |
---|
| 20 | * |
---|
| 21 | * You should have received a copy of the GNU General Public License |
---|
| 22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 23 | ***********************************************************************/ |
---|
| 24 | |
---|
| 25 | #include "glpenv.h" |
---|
| 26 | #include "glpmat.h" |
---|
| 27 | #include "glpqmd.h" |
---|
| 28 | #include "amd/amd.h" |
---|
| 29 | #include "colamd/colamd.h" |
---|
| 30 | |
---|
| 31 | /*---------------------------------------------------------------------- |
---|
| 32 | -- check_fvs - check sparse vector in full-vector storage format. |
---|
| 33 | -- |
---|
| 34 | -- SYNOPSIS |
---|
| 35 | -- |
---|
| 36 | -- #include "glpmat.h" |
---|
| 37 | -- int check_fvs(int n, int nnz, int ind[], double vec[]); |
---|
| 38 | -- |
---|
| 39 | -- DESCRIPTION |
---|
| 40 | -- |
---|
| 41 | -- The routine check_fvs checks if a given vector of dimension n in |
---|
| 42 | -- full-vector storage format has correct representation. |
---|
| 43 | -- |
---|
| 44 | -- RETURNS |
---|
| 45 | -- |
---|
| 46 | -- The routine returns one of the following codes: |
---|
| 47 | -- |
---|
| 48 | -- 0 - the vector is correct; |
---|
| 49 | -- 1 - the number of elements (n) is negative; |
---|
| 50 | -- 2 - the number of non-zero elements (nnz) is negative; |
---|
| 51 | -- 3 - some element index is out of range; |
---|
| 52 | -- 4 - some element index is duplicate; |
---|
| 53 | -- 5 - some non-zero element is out of pattern. */ |
---|
| 54 | |
---|
| 55 | int check_fvs(int n, int nnz, int ind[], double vec[]) |
---|
| 56 | { int i, t, ret, *flag = NULL; |
---|
| 57 | /* check the number of elements */ |
---|
| 58 | if (n < 0) |
---|
| 59 | { ret = 1; |
---|
| 60 | goto done; |
---|
| 61 | } |
---|
| 62 | /* check the number of non-zero elements */ |
---|
| 63 | if (nnz < 0) |
---|
| 64 | { ret = 2; |
---|
| 65 | goto done; |
---|
| 66 | } |
---|
| 67 | /* check vector indices */ |
---|
| 68 | flag = xcalloc(1+n, sizeof(int)); |
---|
| 69 | for (i = 1; i <= n; i++) flag[i] = 0; |
---|
| 70 | for (t = 1; t <= nnz; t++) |
---|
| 71 | { i = ind[t]; |
---|
| 72 | if (!(1 <= i && i <= n)) |
---|
| 73 | { ret = 3; |
---|
| 74 | goto done; |
---|
| 75 | } |
---|
| 76 | if (flag[i]) |
---|
| 77 | { ret = 4; |
---|
| 78 | goto done; |
---|
| 79 | } |
---|
| 80 | flag[i] = 1; |
---|
| 81 | } |
---|
| 82 | /* check vector elements */ |
---|
| 83 | for (i = 1; i <= n; i++) |
---|
| 84 | { if (!flag[i] && vec[i] != 0.0) |
---|
| 85 | { ret = 5; |
---|
| 86 | goto done; |
---|
| 87 | } |
---|
| 88 | } |
---|
| 89 | /* the vector is ok */ |
---|
| 90 | ret = 0; |
---|
| 91 | done: if (flag != NULL) xfree(flag); |
---|
| 92 | return ret; |
---|
| 93 | } |
---|
| 94 | |
---|
| 95 | /*---------------------------------------------------------------------- |
---|
| 96 | -- check_pattern - check pattern of sparse matrix. |
---|
| 97 | -- |
---|
| 98 | -- SYNOPSIS |
---|
| 99 | -- |
---|
| 100 | -- #include "glpmat.h" |
---|
| 101 | -- int check_pattern(int m, int n, int A_ptr[], int A_ind[]); |
---|
| 102 | -- |
---|
| 103 | -- DESCRIPTION |
---|
| 104 | -- |
---|
| 105 | -- The routine check_pattern checks the pattern of a given mxn matrix |
---|
| 106 | -- in storage-by-rows format. |
---|
| 107 | -- |
---|
| 108 | -- RETURNS |
---|
| 109 | -- |
---|
| 110 | -- The routine returns one of the following codes: |
---|
| 111 | -- |
---|
| 112 | -- 0 - the pattern is correct; |
---|
| 113 | -- 1 - the number of rows (m) is negative; |
---|
| 114 | -- 2 - the number of columns (n) is negative; |
---|
| 115 | -- 3 - A_ptr[1] is not 1; |
---|
| 116 | -- 4 - some column index is out of range; |
---|
| 117 | -- 5 - some column indices are duplicate. */ |
---|
| 118 | |
---|
| 119 | int check_pattern(int m, int n, int A_ptr[], int A_ind[]) |
---|
| 120 | { int i, j, ptr, ret, *flag = NULL; |
---|
| 121 | /* check the number of rows */ |
---|
| 122 | if (m < 0) |
---|
| 123 | { ret = 1; |
---|
| 124 | goto done; |
---|
| 125 | } |
---|
| 126 | /* check the number of columns */ |
---|
| 127 | if (n < 0) |
---|
| 128 | { ret = 2; |
---|
| 129 | goto done; |
---|
| 130 | } |
---|
| 131 | /* check location A_ptr[1] */ |
---|
| 132 | if (A_ptr[1] != 1) |
---|
| 133 | { ret = 3; |
---|
| 134 | goto done; |
---|
| 135 | } |
---|
| 136 | /* check row patterns */ |
---|
| 137 | flag = xcalloc(1+n, sizeof(int)); |
---|
| 138 | for (j = 1; j <= n; j++) flag[j] = 0; |
---|
| 139 | for (i = 1; i <= m; i++) |
---|
| 140 | { /* check pattern of row i */ |
---|
| 141 | for (ptr = A_ptr[i]; ptr < A_ptr[i+1]; ptr++) |
---|
| 142 | { j = A_ind[ptr]; |
---|
| 143 | /* check column index */ |
---|
| 144 | if (!(1 <= j && j <= n)) |
---|
| 145 | { ret = 4; |
---|
| 146 | goto done; |
---|
| 147 | } |
---|
| 148 | /* check for duplication */ |
---|
| 149 | if (flag[j]) |
---|
| 150 | { ret = 5; |
---|
| 151 | goto done; |
---|
| 152 | } |
---|
| 153 | flag[j] = 1; |
---|
| 154 | } |
---|
| 155 | /* clear flags */ |
---|
| 156 | for (ptr = A_ptr[i]; ptr < A_ptr[i+1]; ptr++) |
---|
| 157 | { j = A_ind[ptr]; |
---|
| 158 | flag[j] = 0; |
---|
| 159 | } |
---|
| 160 | } |
---|
| 161 | /* the pattern is ok */ |
---|
| 162 | ret = 0; |
---|
| 163 | done: if (flag != NULL) xfree(flag); |
---|
| 164 | return ret; |
---|
| 165 | } |
---|
| 166 | |
---|
| 167 | /*---------------------------------------------------------------------- |
---|
| 168 | -- transpose - transpose sparse matrix. |
---|
| 169 | -- |
---|
| 170 | -- *Synopsis* |
---|
| 171 | -- |
---|
| 172 | -- #include "glpmat.h" |
---|
| 173 | -- void transpose(int m, int n, int A_ptr[], int A_ind[], |
---|
| 174 | -- double A_val[], int AT_ptr[], int AT_ind[], double AT_val[]); |
---|
| 175 | -- |
---|
| 176 | -- *Description* |
---|
| 177 | -- |
---|
| 178 | -- For a given mxn sparse matrix A the routine transpose builds a nxm |
---|
| 179 | -- sparse matrix A' which is a matrix transposed to A. |
---|
| 180 | -- |
---|
| 181 | -- The arrays A_ptr, A_ind, and A_val specify a given mxn matrix A to |
---|
| 182 | -- be transposed in storage-by-rows format. The parameter A_val can be |
---|
| 183 | -- NULL, in which case numeric values are not copied. The arrays A_ptr, |
---|
| 184 | -- A_ind, and A_val are not changed on exit. |
---|
| 185 | -- |
---|
| 186 | -- On entry the arrays AT_ptr, AT_ind, and AT_val must be allocated, |
---|
| 187 | -- but their content is ignored. On exit the routine stores a resultant |
---|
| 188 | -- nxm matrix A' in these arrays in storage-by-rows format. Note that |
---|
| 189 | -- if the parameter A_val is NULL, the array AT_val is not used. |
---|
| 190 | -- |
---|
| 191 | -- The routine transpose has a side effect that elements in rows of the |
---|
| 192 | -- resultant matrix A' follow in ascending their column indices. */ |
---|
| 193 | |
---|
| 194 | void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[], |
---|
| 195 | int AT_ptr[], int AT_ind[], double AT_val[]) |
---|
| 196 | { int i, j, t, beg, end, pos, len; |
---|
| 197 | /* determine row lengths of resultant matrix */ |
---|
| 198 | for (j = 1; j <= n; j++) AT_ptr[j] = 0; |
---|
| 199 | for (i = 1; i <= m; i++) |
---|
| 200 | { beg = A_ptr[i], end = A_ptr[i+1]; |
---|
| 201 | for (t = beg; t < end; t++) AT_ptr[A_ind[t]]++; |
---|
| 202 | } |
---|
| 203 | /* set up row pointers of resultant matrix */ |
---|
| 204 | pos = 1; |
---|
| 205 | for (j = 1; j <= n; j++) |
---|
| 206 | len = AT_ptr[j], pos += len, AT_ptr[j] = pos; |
---|
| 207 | AT_ptr[n+1] = pos; |
---|
| 208 | /* build resultant matrix */ |
---|
| 209 | for (i = m; i >= 1; i--) |
---|
| 210 | { beg = A_ptr[i], end = A_ptr[i+1]; |
---|
| 211 | for (t = beg; t < end; t++) |
---|
| 212 | { pos = --AT_ptr[A_ind[t]]; |
---|
| 213 | AT_ind[pos] = i; |
---|
| 214 | if (A_val != NULL) AT_val[pos] = A_val[t]; |
---|
| 215 | } |
---|
| 216 | } |
---|
| 217 | return; |
---|
| 218 | } |
---|
| 219 | |
---|
| 220 | /*---------------------------------------------------------------------- |
---|
| 221 | -- adat_symbolic - compute S = P*A*D*A'*P' (symbolic phase). |
---|
| 222 | -- |
---|
| 223 | -- *Synopsis* |
---|
| 224 | -- |
---|
| 225 | -- #include "glpmat.h" |
---|
| 226 | -- int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], |
---|
| 227 | -- int A_ind[], int S_ptr[]); |
---|
| 228 | -- |
---|
| 229 | -- *Description* |
---|
| 230 | -- |
---|
| 231 | -- The routine adat_symbolic implements the symbolic phase to compute |
---|
| 232 | -- symmetric matrix S = P*A*D*A'*P', where P is a permutation matrix, |
---|
| 233 | -- A is a given sparse matrix, D is a diagonal matrix, A' is a matrix |
---|
| 234 | -- transposed to A, P' is an inverse of P. |
---|
| 235 | -- |
---|
| 236 | -- The parameter m is the number of rows in A and the order of P. |
---|
| 237 | -- |
---|
| 238 | -- The parameter n is the number of columns in A and the order of D. |
---|
| 239 | -- |
---|
| 240 | -- The array P_per specifies permutation matrix P. It is not changed on |
---|
| 241 | -- exit. |
---|
| 242 | -- |
---|
| 243 | -- The arrays A_ptr and A_ind specify the pattern of matrix A. They are |
---|
| 244 | -- not changed on exit. |
---|
| 245 | -- |
---|
| 246 | -- On exit the routine stores the pattern of upper triangular part of |
---|
| 247 | -- matrix S without diagonal elements in the arrays S_ptr and S_ind in |
---|
| 248 | -- storage-by-rows format. The array S_ptr should be allocated on entry, |
---|
| 249 | -- however, its content is ignored. The array S_ind is allocated by the |
---|
| 250 | -- routine itself which returns a pointer to it. |
---|
| 251 | -- |
---|
| 252 | -- *Returns* |
---|
| 253 | -- |
---|
| 254 | -- The routine returns a pointer to the array S_ind. */ |
---|
| 255 | |
---|
| 256 | int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[], |
---|
| 257 | int S_ptr[]) |
---|
| 258 | { int i, j, t, ii, jj, tt, k, size, len; |
---|
| 259 | int *S_ind, *AT_ptr, *AT_ind, *ind, *map, *temp; |
---|
| 260 | /* build the pattern of A', which is a matrix transposed to A, to |
---|
| 261 | efficiently access A in column-wise manner */ |
---|
| 262 | AT_ptr = xcalloc(1+n+1, sizeof(int)); |
---|
| 263 | AT_ind = xcalloc(A_ptr[m+1], sizeof(int)); |
---|
| 264 | transpose(m, n, A_ptr, A_ind, NULL, AT_ptr, AT_ind, NULL); |
---|
| 265 | /* allocate the array S_ind */ |
---|
| 266 | size = A_ptr[m+1] - 1; |
---|
| 267 | if (size < m) size = m; |
---|
| 268 | S_ind = xcalloc(1+size, sizeof(int)); |
---|
| 269 | /* allocate and initialize working arrays */ |
---|
| 270 | ind = xcalloc(1+m, sizeof(int)); |
---|
| 271 | map = xcalloc(1+m, sizeof(int)); |
---|
| 272 | for (jj = 1; jj <= m; jj++) map[jj] = 0; |
---|
| 273 | /* compute pattern of S; note that symbolically S = B*B', where |
---|
| 274 | B = P*A, B' is matrix transposed to B */ |
---|
| 275 | S_ptr[1] = 1; |
---|
| 276 | for (ii = 1; ii <= m; ii++) |
---|
| 277 | { /* compute pattern of ii-th row of S */ |
---|
| 278 | len = 0; |
---|
| 279 | i = P_per[ii]; /* i-th row of A = ii-th row of B */ |
---|
| 280 | for (t = A_ptr[i]; t < A_ptr[i+1]; t++) |
---|
| 281 | { k = A_ind[t]; |
---|
| 282 | /* walk through k-th column of A */ |
---|
| 283 | for (tt = AT_ptr[k]; tt < AT_ptr[k+1]; tt++) |
---|
| 284 | { j = AT_ind[tt]; |
---|
| 285 | jj = P_per[m+j]; /* j-th row of A = jj-th row of B */ |
---|
| 286 | /* a[i,k] != 0 and a[j,k] != 0 ergo s[ii,jj] != 0 */ |
---|
| 287 | if (ii < jj && !map[jj]) ind[++len] = jj, map[jj] = 1; |
---|
| 288 | } |
---|
| 289 | } |
---|
| 290 | /* now (ind) is pattern of ii-th row of S */ |
---|
| 291 | S_ptr[ii+1] = S_ptr[ii] + len; |
---|
| 292 | /* at least (S_ptr[ii+1] - 1) locations should be available in |
---|
| 293 | the array S_ind */ |
---|
| 294 | if (S_ptr[ii+1] - 1 > size) |
---|
| 295 | { temp = S_ind; |
---|
| 296 | size += size; |
---|
| 297 | S_ind = xcalloc(1+size, sizeof(int)); |
---|
| 298 | memcpy(&S_ind[1], &temp[1], (S_ptr[ii] - 1) * sizeof(int)); |
---|
| 299 | xfree(temp); |
---|
| 300 | } |
---|
| 301 | xassert(S_ptr[ii+1] - 1 <= size); |
---|
| 302 | /* (ii-th row of S) := (ind) */ |
---|
| 303 | memcpy(&S_ind[S_ptr[ii]], &ind[1], len * sizeof(int)); |
---|
| 304 | /* clear the row pattern map */ |
---|
| 305 | for (t = 1; t <= len; t++) map[ind[t]] = 0; |
---|
| 306 | } |
---|
| 307 | /* free working arrays */ |
---|
| 308 | xfree(AT_ptr); |
---|
| 309 | xfree(AT_ind); |
---|
| 310 | xfree(ind); |
---|
| 311 | xfree(map); |
---|
| 312 | /* reallocate the array S_ind to free unused locations */ |
---|
| 313 | temp = S_ind; |
---|
| 314 | size = S_ptr[m+1] - 1; |
---|
| 315 | S_ind = xcalloc(1+size, sizeof(int)); |
---|
| 316 | memcpy(&S_ind[1], &temp[1], size * sizeof(int)); |
---|
| 317 | xfree(temp); |
---|
| 318 | return S_ind; |
---|
| 319 | } |
---|
| 320 | |
---|
| 321 | /*---------------------------------------------------------------------- |
---|
| 322 | -- adat_numeric - compute S = P*A*D*A'*P' (numeric phase). |
---|
| 323 | -- |
---|
| 324 | -- *Synopsis* |
---|
| 325 | -- |
---|
| 326 | -- #include "glpmat.h" |
---|
| 327 | -- void adat_numeric(int m, int n, int P_per[], |
---|
| 328 | -- int A_ptr[], int A_ind[], double A_val[], double D_diag[], |
---|
| 329 | -- int S_ptr[], int S_ind[], double S_val[], double S_diag[]); |
---|
| 330 | -- |
---|
| 331 | -- *Description* |
---|
| 332 | -- |
---|
| 333 | -- The routine adat_numeric implements the numeric phase to compute |
---|
| 334 | -- symmetric matrix S = P*A*D*A'*P', where P is a permutation matrix, |
---|
| 335 | -- A is a given sparse matrix, D is a diagonal matrix, A' is a matrix |
---|
| 336 | -- transposed to A, P' is an inverse of P. |
---|
| 337 | -- |
---|
| 338 | -- The parameter m is the number of rows in A and the order of P. |
---|
| 339 | -- |
---|
| 340 | -- The parameter n is the number of columns in A and the order of D. |
---|
| 341 | -- |
---|
| 342 | -- The matrix P is specified in the array P_per, which is not changed |
---|
| 343 | -- on exit. |
---|
| 344 | -- |
---|
| 345 | -- The matrix A is specified in the arrays A_ptr, A_ind, and A_val in |
---|
| 346 | -- storage-by-rows format. These arrays are not changed on exit. |
---|
| 347 | -- |
---|
| 348 | -- Diagonal elements of the matrix D are specified in the array D_diag, |
---|
| 349 | -- where D_diag[0] is not used, D_diag[i] = d[i,i] for i = 1, ..., n. |
---|
| 350 | -- The array D_diag is not changed on exit. |
---|
| 351 | -- |
---|
| 352 | -- The pattern of the upper triangular part of the matrix S without |
---|
| 353 | -- diagonal elements (previously computed by the routine adat_symbolic) |
---|
| 354 | -- is specified in the arrays S_ptr and S_ind, which are not changed on |
---|
| 355 | -- exit. Numeric values of non-diagonal elements of S are stored in |
---|
| 356 | -- corresponding locations of the array S_val, and values of diagonal |
---|
| 357 | -- elements of S are stored in locations S_diag[1], ..., S_diag[n]. */ |
---|
| 358 | |
---|
| 359 | void adat_numeric(int m, int n, int P_per[], |
---|
| 360 | int A_ptr[], int A_ind[], double A_val[], double D_diag[], |
---|
| 361 | int S_ptr[], int S_ind[], double S_val[], double S_diag[]) |
---|
| 362 | { int i, j, t, ii, jj, tt, beg, end, beg1, end1, k; |
---|
| 363 | double sum, *work; |
---|
| 364 | work = xcalloc(1+n, sizeof(double)); |
---|
| 365 | for (j = 1; j <= n; j++) work[j] = 0.0; |
---|
| 366 | /* compute S = B*D*B', where B = P*A, B' is a matrix transposed |
---|
| 367 | to B */ |
---|
| 368 | for (ii = 1; ii <= m; ii++) |
---|
| 369 | { i = P_per[ii]; /* i-th row of A = ii-th row of B */ |
---|
| 370 | /* (work) := (i-th row of A) */ |
---|
| 371 | beg = A_ptr[i], end = A_ptr[i+1]; |
---|
| 372 | for (t = beg; t < end; t++) |
---|
| 373 | work[A_ind[t]] = A_val[t]; |
---|
| 374 | /* compute ii-th row of S */ |
---|
| 375 | beg = S_ptr[ii], end = S_ptr[ii+1]; |
---|
| 376 | for (t = beg; t < end; t++) |
---|
| 377 | { jj = S_ind[t]; |
---|
| 378 | j = P_per[jj]; /* j-th row of A = jj-th row of B */ |
---|
| 379 | /* s[ii,jj] := sum a[i,k] * d[k,k] * a[j,k] */ |
---|
| 380 | sum = 0.0; |
---|
| 381 | beg1 = A_ptr[j], end1 = A_ptr[j+1]; |
---|
| 382 | for (tt = beg1; tt < end1; tt++) |
---|
| 383 | { k = A_ind[tt]; |
---|
| 384 | sum += work[k] * D_diag[k] * A_val[tt]; |
---|
| 385 | } |
---|
| 386 | S_val[t] = sum; |
---|
| 387 | } |
---|
| 388 | /* s[ii,ii] := sum a[i,k] * d[k,k] * a[i,k] */ |
---|
| 389 | sum = 0.0; |
---|
| 390 | beg = A_ptr[i], end = A_ptr[i+1]; |
---|
| 391 | for (t = beg; t < end; t++) |
---|
| 392 | { k = A_ind[t]; |
---|
| 393 | sum += A_val[t] * D_diag[k] * A_val[t]; |
---|
| 394 | work[k] = 0.0; |
---|
| 395 | } |
---|
| 396 | S_diag[ii] = sum; |
---|
| 397 | } |
---|
| 398 | xfree(work); |
---|
| 399 | return; |
---|
| 400 | } |
---|
| 401 | |
---|
| 402 | /*---------------------------------------------------------------------- |
---|
| 403 | -- min_degree - minimum degree ordering. |
---|
| 404 | -- |
---|
| 405 | -- *Synopsis* |
---|
| 406 | -- |
---|
| 407 | -- #include "glpmat.h" |
---|
| 408 | -- void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]); |
---|
| 409 | -- |
---|
| 410 | -- *Description* |
---|
| 411 | -- |
---|
| 412 | -- The routine min_degree uses the minimum degree ordering algorithm |
---|
| 413 | -- to find a permutation matrix P for a given sparse symmetric positive |
---|
| 414 | -- matrix A which minimizes the number of non-zeros in upper triangular |
---|
| 415 | -- factor U for Cholesky factorization P*A*P' = U'*U. |
---|
| 416 | -- |
---|
| 417 | -- The parameter n is the order of matrices A and P. |
---|
| 418 | -- |
---|
| 419 | -- The pattern of the given matrix A is specified on entry in the arrays |
---|
| 420 | -- A_ptr and A_ind in storage-by-rows format. Only the upper triangular |
---|
| 421 | -- part without diagonal elements (which all are assumed to be non-zero) |
---|
| 422 | -- should be specified as if A were upper triangular. The arrays A_ptr |
---|
| 423 | -- and A_ind are not changed on exit. |
---|
| 424 | -- |
---|
| 425 | -- The permutation matrix P is stored by the routine in the array P_per |
---|
| 426 | -- on exit. |
---|
| 427 | -- |
---|
| 428 | -- *Algorithm* |
---|
| 429 | -- |
---|
| 430 | -- The routine min_degree is based on some subroutines from the package |
---|
| 431 | -- SPARSPAK (see comments in the module glpqmd). */ |
---|
| 432 | |
---|
| 433 | void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]) |
---|
| 434 | { int i, j, ne, t, pos, len; |
---|
| 435 | int *xadj, *adjncy, *deg, *marker, *rchset, *nbrhd, *qsize, |
---|
| 436 | *qlink, nofsub; |
---|
| 437 | /* determine number of non-zeros in complete pattern */ |
---|
| 438 | ne = A_ptr[n+1] - 1; |
---|
| 439 | ne += ne; |
---|
| 440 | /* allocate working arrays */ |
---|
| 441 | xadj = xcalloc(1+n+1, sizeof(int)); |
---|
| 442 | adjncy = xcalloc(1+ne, sizeof(int)); |
---|
| 443 | deg = xcalloc(1+n, sizeof(int)); |
---|
| 444 | marker = xcalloc(1+n, sizeof(int)); |
---|
| 445 | rchset = xcalloc(1+n, sizeof(int)); |
---|
| 446 | nbrhd = xcalloc(1+n, sizeof(int)); |
---|
| 447 | qsize = xcalloc(1+n, sizeof(int)); |
---|
| 448 | qlink = xcalloc(1+n, sizeof(int)); |
---|
| 449 | /* determine row lengths in complete pattern */ |
---|
| 450 | for (i = 1; i <= n; i++) xadj[i] = 0; |
---|
| 451 | for (i = 1; i <= n; i++) |
---|
| 452 | { for (t = A_ptr[i]; t < A_ptr[i+1]; t++) |
---|
| 453 | { j = A_ind[t]; |
---|
| 454 | xassert(i < j && j <= n); |
---|
| 455 | xadj[i]++, xadj[j]++; |
---|
| 456 | } |
---|
| 457 | } |
---|
| 458 | /* set up row pointers for complete pattern */ |
---|
| 459 | pos = 1; |
---|
| 460 | for (i = 1; i <= n; i++) |
---|
| 461 | len = xadj[i], pos += len, xadj[i] = pos; |
---|
| 462 | xadj[n+1] = pos; |
---|
| 463 | xassert(pos - 1 == ne); |
---|
| 464 | /* construct complete pattern */ |
---|
| 465 | for (i = 1; i <= n; i++) |
---|
| 466 | { for (t = A_ptr[i]; t < A_ptr[i+1]; t++) |
---|
| 467 | { j = A_ind[t]; |
---|
| 468 | adjncy[--xadj[i]] = j, adjncy[--xadj[j]] = i; |
---|
| 469 | } |
---|
| 470 | } |
---|
| 471 | /* call the main minimimum degree ordering routine */ |
---|
| 472 | genqmd(&n, xadj, adjncy, P_per, P_per + n, deg, marker, rchset, |
---|
| 473 | nbrhd, qsize, qlink, &nofsub); |
---|
| 474 | /* make sure that permutation matrix P is correct */ |
---|
| 475 | for (i = 1; i <= n; i++) |
---|
| 476 | { j = P_per[i]; |
---|
| 477 | xassert(1 <= j && j <= n); |
---|
| 478 | xassert(P_per[n+j] == i); |
---|
| 479 | } |
---|
| 480 | /* free working arrays */ |
---|
| 481 | xfree(xadj); |
---|
| 482 | xfree(adjncy); |
---|
| 483 | xfree(deg); |
---|
| 484 | xfree(marker); |
---|
| 485 | xfree(rchset); |
---|
| 486 | xfree(nbrhd); |
---|
| 487 | xfree(qsize); |
---|
| 488 | xfree(qlink); |
---|
| 489 | return; |
---|
| 490 | } |
---|
| 491 | |
---|
| 492 | /**********************************************************************/ |
---|
| 493 | |
---|
| 494 | void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[]) |
---|
| 495 | { /* approximate minimum degree ordering (AMD) */ |
---|
| 496 | int k, ret; |
---|
| 497 | double Control[AMD_CONTROL], Info[AMD_INFO]; |
---|
| 498 | /* get the default parameters */ |
---|
| 499 | amd_defaults(Control); |
---|
| 500 | #if 0 |
---|
| 501 | /* and print them */ |
---|
| 502 | amd_control(Control); |
---|
| 503 | #endif |
---|
| 504 | /* make all indices 0-based */ |
---|
| 505 | for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]--; |
---|
| 506 | for (k = 1; k <= n+1; k++) A_ptr[k]--; |
---|
| 507 | /* call the ordering routine */ |
---|
| 508 | ret = amd_order(n, &A_ptr[1], &A_ind[1], &P_per[1], Control, Info) |
---|
| 509 | ; |
---|
| 510 | #if 0 |
---|
| 511 | amd_info(Info); |
---|
| 512 | #endif |
---|
| 513 | xassert(ret == AMD_OK || ret == AMD_OK_BUT_JUMBLED); |
---|
| 514 | /* retsore 1-based indices */ |
---|
| 515 | for (k = 1; k <= n+1; k++) A_ptr[k]++; |
---|
| 516 | for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]++; |
---|
| 517 | /* patch up permutation matrix */ |
---|
| 518 | memset(&P_per[n+1], 0, n * sizeof(int)); |
---|
| 519 | for (k = 1; k <= n; k++) |
---|
| 520 | { P_per[k]++; |
---|
| 521 | xassert(1 <= P_per[k] && P_per[k] <= n); |
---|
| 522 | xassert(P_per[n+P_per[k]] == 0); |
---|
| 523 | P_per[n+P_per[k]] = k; |
---|
| 524 | } |
---|
| 525 | return; |
---|
| 526 | } |
---|
| 527 | |
---|
| 528 | /**********************************************************************/ |
---|
| 529 | |
---|
| 530 | static void *allocate(size_t n, size_t size) |
---|
| 531 | { void *ptr; |
---|
| 532 | ptr = xcalloc(n, size); |
---|
| 533 | memset(ptr, 0, n * size); |
---|
| 534 | return ptr; |
---|
| 535 | } |
---|
| 536 | |
---|
| 537 | static void release(void *ptr) |
---|
| 538 | { xfree(ptr); |
---|
| 539 | return; |
---|
| 540 | } |
---|
| 541 | |
---|
| 542 | void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[]) |
---|
| 543 | { /* approximate minimum degree ordering (SYMAMD) */ |
---|
| 544 | int k, ok; |
---|
| 545 | int stats[COLAMD_STATS]; |
---|
| 546 | /* make all indices 0-based */ |
---|
| 547 | for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]--; |
---|
| 548 | for (k = 1; k <= n+1; k++) A_ptr[k]--; |
---|
| 549 | /* call the ordering routine */ |
---|
| 550 | ok = symamd(n, &A_ind[1], &A_ptr[1], &P_per[1], NULL, stats, |
---|
| 551 | allocate, release); |
---|
| 552 | #if 0 |
---|
| 553 | symamd_report(stats); |
---|
| 554 | #endif |
---|
| 555 | xassert(ok); |
---|
| 556 | /* restore 1-based indices */ |
---|
| 557 | for (k = 1; k <= n+1; k++) A_ptr[k]++; |
---|
| 558 | for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]++; |
---|
| 559 | /* patch up permutation matrix */ |
---|
| 560 | memset(&P_per[n+1], 0, n * sizeof(int)); |
---|
| 561 | for (k = 1; k <= n; k++) |
---|
| 562 | { P_per[k]++; |
---|
| 563 | xassert(1 <= P_per[k] && P_per[k] <= n); |
---|
| 564 | xassert(P_per[n+P_per[k]] == 0); |
---|
| 565 | P_per[n+P_per[k]] = k; |
---|
| 566 | } |
---|
| 567 | return; |
---|
| 568 | } |
---|
| 569 | |
---|
| 570 | /*---------------------------------------------------------------------- |
---|
| 571 | -- chol_symbolic - compute Cholesky factorization (symbolic phase). |
---|
| 572 | -- |
---|
| 573 | -- *Synopsis* |
---|
| 574 | -- |
---|
| 575 | -- #include "glpmat.h" |
---|
| 576 | -- int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]); |
---|
| 577 | -- |
---|
| 578 | -- *Description* |
---|
| 579 | -- |
---|
| 580 | -- The routine chol_symbolic implements the symbolic phase of Cholesky |
---|
| 581 | -- factorization A = U'*U, where A is a given sparse symmetric positive |
---|
| 582 | -- definite matrix, U is a resultant upper triangular factor, U' is a |
---|
| 583 | -- matrix transposed to U. |
---|
| 584 | -- |
---|
| 585 | -- The parameter n is the order of matrices A and U. |
---|
| 586 | -- |
---|
| 587 | -- The pattern of the given matrix A is specified on entry in the arrays |
---|
| 588 | -- A_ptr and A_ind in storage-by-rows format. Only the upper triangular |
---|
| 589 | -- part without diagonal elements (which all are assumed to be non-zero) |
---|
| 590 | -- should be specified as if A were upper triangular. The arrays A_ptr |
---|
| 591 | -- and A_ind are not changed on exit. |
---|
| 592 | -- |
---|
| 593 | -- The pattern of the matrix U without diagonal elements (which all are |
---|
| 594 | -- assumed to be non-zero) is stored on exit from the routine in the |
---|
| 595 | -- arrays U_ptr and U_ind in storage-by-rows format. The array U_ptr |
---|
| 596 | -- should be allocated on entry, however, its content is ignored. The |
---|
| 597 | -- array U_ind is allocated by the routine which returns a pointer to it |
---|
| 598 | -- on exit. |
---|
| 599 | -- |
---|
| 600 | -- *Returns* |
---|
| 601 | -- |
---|
| 602 | -- The routine returns a pointer to the array U_ind. |
---|
| 603 | -- |
---|
| 604 | -- *Method* |
---|
| 605 | -- |
---|
| 606 | -- The routine chol_symbolic computes the pattern of the matrix U in a |
---|
| 607 | -- row-wise manner. No pivoting is used. |
---|
| 608 | -- |
---|
| 609 | -- It is known that to compute the pattern of row k of the matrix U we |
---|
| 610 | -- need to merge the pattern of row k of the matrix A and the patterns |
---|
| 611 | -- of each row i of U, where u[i,k] is non-zero (these rows are already |
---|
| 612 | -- computed and placed above row k). |
---|
| 613 | -- |
---|
| 614 | -- However, to reduce the number of rows to be merged the routine uses |
---|
| 615 | -- an advanced algorithm proposed in: |
---|
| 616 | -- |
---|
| 617 | -- D.J.Rose, R.E.Tarjan, and G.S.Lueker. Algorithmic aspects of vertex |
---|
| 618 | -- elimination on graphs. SIAM J. Comput. 5, 1976, 266-83. |
---|
| 619 | -- |
---|
| 620 | -- The authors of the cited paper show that we have the same result if |
---|
| 621 | -- we merge row k of the matrix A and such rows of the matrix U (among |
---|
| 622 | -- rows 1, ..., k-1) whose leftmost non-diagonal non-zero element is |
---|
| 623 | -- placed in k-th column. This feature signficantly reduces the number |
---|
| 624 | -- of rows to be merged, especially on the final steps, where rows of |
---|
| 625 | -- the matrix U become quite dense. |
---|
| 626 | -- |
---|
| 627 | -- To determine rows, which should be merged on k-th step, for a fixed |
---|
| 628 | -- time the routine uses linked lists of row numbers of the matrix U. |
---|
| 629 | -- Location head[k] contains the number of a first row, whose leftmost |
---|
| 630 | -- non-diagonal non-zero element is placed in column k, and location |
---|
| 631 | -- next[i] contains the number of a next row with the same property as |
---|
| 632 | -- row i. */ |
---|
| 633 | |
---|
| 634 | int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]) |
---|
| 635 | { int i, j, k, t, len, size, beg, end, min_j, *U_ind, *head, *next, |
---|
| 636 | *ind, *map, *temp; |
---|
| 637 | /* initially we assume that on computing the pattern of U fill-in |
---|
| 638 | will double the number of non-zeros in A */ |
---|
| 639 | size = A_ptr[n+1] - 1; |
---|
| 640 | if (size < n) size = n; |
---|
| 641 | size += size; |
---|
| 642 | U_ind = xcalloc(1+size, sizeof(int)); |
---|
| 643 | /* allocate and initialize working arrays */ |
---|
| 644 | head = xcalloc(1+n, sizeof(int)); |
---|
| 645 | for (i = 1; i <= n; i++) head[i] = 0; |
---|
| 646 | next = xcalloc(1+n, sizeof(int)); |
---|
| 647 | ind = xcalloc(1+n, sizeof(int)); |
---|
| 648 | map = xcalloc(1+n, sizeof(int)); |
---|
| 649 | for (j = 1; j <= n; j++) map[j] = 0; |
---|
| 650 | /* compute the pattern of matrix U */ |
---|
| 651 | U_ptr[1] = 1; |
---|
| 652 | for (k = 1; k <= n; k++) |
---|
| 653 | { /* compute the pattern of k-th row of U, which is the union of |
---|
| 654 | k-th row of A and those rows of U (among 1, ..., k-1) whose |
---|
| 655 | leftmost non-diagonal non-zero is placed in k-th column */ |
---|
| 656 | /* (ind) := (k-th row of A) */ |
---|
| 657 | len = A_ptr[k+1] - A_ptr[k]; |
---|
| 658 | memcpy(&ind[1], &A_ind[A_ptr[k]], len * sizeof(int)); |
---|
| 659 | for (t = 1; t <= len; t++) |
---|
| 660 | { j = ind[t]; |
---|
| 661 | xassert(k < j && j <= n); |
---|
| 662 | map[j] = 1; |
---|
| 663 | } |
---|
| 664 | /* walk through rows of U whose leftmost non-diagonal non-zero |
---|
| 665 | is placed in k-th column */ |
---|
| 666 | for (i = head[k]; i != 0; i = next[i]) |
---|
| 667 | { /* (ind) := (ind) union (i-th row of U) */ |
---|
| 668 | beg = U_ptr[i], end = U_ptr[i+1]; |
---|
| 669 | for (t = beg; t < end; t++) |
---|
| 670 | { j = U_ind[t]; |
---|
| 671 | if (j > k && !map[j]) ind[++len] = j, map[j] = 1; |
---|
| 672 | } |
---|
| 673 | } |
---|
| 674 | /* now (ind) is the pattern of k-th row of U */ |
---|
| 675 | U_ptr[k+1] = U_ptr[k] + len; |
---|
| 676 | /* at least (U_ptr[k+1] - 1) locations should be available in |
---|
| 677 | the array U_ind */ |
---|
| 678 | if (U_ptr[k+1] - 1 > size) |
---|
| 679 | { temp = U_ind; |
---|
| 680 | size += size; |
---|
| 681 | U_ind = xcalloc(1+size, sizeof(int)); |
---|
| 682 | memcpy(&U_ind[1], &temp[1], (U_ptr[k] - 1) * sizeof(int)); |
---|
| 683 | xfree(temp); |
---|
| 684 | } |
---|
| 685 | xassert(U_ptr[k+1] - 1 <= size); |
---|
| 686 | /* (k-th row of U) := (ind) */ |
---|
| 687 | memcpy(&U_ind[U_ptr[k]], &ind[1], len * sizeof(int)); |
---|
| 688 | /* determine column index of leftmost non-diagonal non-zero in |
---|
| 689 | k-th row of U and clear the row pattern map */ |
---|
| 690 | min_j = n + 1; |
---|
| 691 | for (t = 1; t <= len; t++) |
---|
| 692 | { j = ind[t], map[j] = 0; |
---|
| 693 | if (min_j > j) min_j = j; |
---|
| 694 | } |
---|
| 695 | /* include k-th row into corresponding linked list */ |
---|
| 696 | if (min_j <= n) next[k] = head[min_j], head[min_j] = k; |
---|
| 697 | } |
---|
| 698 | /* free working arrays */ |
---|
| 699 | xfree(head); |
---|
| 700 | xfree(next); |
---|
| 701 | xfree(ind); |
---|
| 702 | xfree(map); |
---|
| 703 | /* reallocate the array U_ind to free unused locations */ |
---|
| 704 | temp = U_ind; |
---|
| 705 | size = U_ptr[n+1] - 1; |
---|
| 706 | U_ind = xcalloc(1+size, sizeof(int)); |
---|
| 707 | memcpy(&U_ind[1], &temp[1], size * sizeof(int)); |
---|
| 708 | xfree(temp); |
---|
| 709 | return U_ind; |
---|
| 710 | } |
---|
| 711 | |
---|
| 712 | /*---------------------------------------------------------------------- |
---|
| 713 | -- chol_numeric - compute Cholesky factorization (numeric phase). |
---|
| 714 | -- |
---|
| 715 | -- *Synopsis* |
---|
| 716 | -- |
---|
| 717 | -- #include "glpmat.h" |
---|
| 718 | -- int chol_numeric(int n, |
---|
| 719 | -- int A_ptr[], int A_ind[], double A_val[], double A_diag[], |
---|
| 720 | -- int U_ptr[], int U_ind[], double U_val[], double U_diag[]); |
---|
| 721 | -- |
---|
| 722 | -- *Description* |
---|
| 723 | -- |
---|
| 724 | -- The routine chol_symbolic implements the numeric phase of Cholesky |
---|
| 725 | -- factorization A = U'*U, where A is a given sparse symmetric positive |
---|
| 726 | -- definite matrix, U is a resultant upper triangular factor, U' is a |
---|
| 727 | -- matrix transposed to U. |
---|
| 728 | -- |
---|
| 729 | -- The parameter n is the order of matrices A and U. |
---|
| 730 | -- |
---|
| 731 | -- Upper triangular part of the matrix A without diagonal elements is |
---|
| 732 | -- specified in the arrays A_ptr, A_ind, and A_val in storage-by-rows |
---|
| 733 | -- format. Diagonal elements of A are specified in the array A_diag, |
---|
| 734 | -- where A_diag[0] is not used, A_diag[i] = a[i,i] for i = 1, ..., n. |
---|
| 735 | -- The arrays A_ptr, A_ind, A_val, and A_diag are not changed on exit. |
---|
| 736 | -- |
---|
| 737 | -- The pattern of the matrix U without diagonal elements (previously |
---|
| 738 | -- computed with the routine chol_symbolic) is specified in the arrays |
---|
| 739 | -- U_ptr and U_ind, which are not changed on exit. Numeric values of |
---|
| 740 | -- non-diagonal elements of U are stored in corresponding locations of |
---|
| 741 | -- the array U_val, and values of diagonal elements of U are stored in |
---|
| 742 | -- locations U_diag[1], ..., U_diag[n]. |
---|
| 743 | -- |
---|
| 744 | -- *Returns* |
---|
| 745 | -- |
---|
| 746 | -- The routine returns the number of non-positive diagonal elements of |
---|
| 747 | -- the matrix U which have been replaced by a huge positive number (see |
---|
| 748 | -- the method description below). Zero return code means the matrix A |
---|
| 749 | -- has been successfully factorized. |
---|
| 750 | -- |
---|
| 751 | -- *Method* |
---|
| 752 | -- |
---|
| 753 | -- The routine chol_numeric computes the matrix U in a row-wise manner |
---|
| 754 | -- using standard gaussian elimination technique. No pivoting is used. |
---|
| 755 | -- |
---|
| 756 | -- Initially the routine sets U = A, and before k-th elimination step |
---|
| 757 | -- the matrix U is the following: |
---|
| 758 | -- |
---|
| 759 | -- 1 k n |
---|
| 760 | -- 1 x x x x x x x x x x |
---|
| 761 | -- . x x x x x x x x x |
---|
| 762 | -- . . x x x x x x x x |
---|
| 763 | -- . . . x x x x x x x |
---|
| 764 | -- k . . . . * * * * * * |
---|
| 765 | -- . . . . * * * * * * |
---|
| 766 | -- . . . . * * * * * * |
---|
| 767 | -- . . . . * * * * * * |
---|
| 768 | -- . . . . * * * * * * |
---|
| 769 | -- n . . . . * * * * * * |
---|
| 770 | -- |
---|
| 771 | -- where 'x' are elements of already computed rows, '*' are elements of |
---|
| 772 | -- the active submatrix. (Note that the lower triangular part of the |
---|
| 773 | -- active submatrix being symmetric is not stored and diagonal elements |
---|
| 774 | -- are stored separately in the array U_diag.) |
---|
| 775 | -- |
---|
| 776 | -- The matrix A is assumed to be positive definite. However, if it is |
---|
| 777 | -- close to semi-definite, on some elimination step a pivot u[k,k] may |
---|
| 778 | -- happen to be non-positive due to round-off errors. In this case the |
---|
| 779 | -- routine uses a technique proposed in: |
---|
| 780 | -- |
---|
| 781 | -- S.J.Wright. The Cholesky factorization in interior-point and barrier |
---|
| 782 | -- methods. Preprint MCS-P600-0596, Mathematics and Computer Science |
---|
| 783 | -- Division, Argonne National Laboratory, Argonne, Ill., May 1996. |
---|
| 784 | -- |
---|
| 785 | -- The routine just replaces non-positive u[k,k] by a huge positive |
---|
| 786 | -- number. This involves non-diagonal elements in k-th row of U to be |
---|
| 787 | -- close to zero that, in turn, involves k-th component of a solution |
---|
| 788 | -- vector to be close to zero. Note, however, that this technique works |
---|
| 789 | -- only if the system A*x = b is consistent. */ |
---|
| 790 | |
---|
| 791 | int chol_numeric(int n, |
---|
| 792 | int A_ptr[], int A_ind[], double A_val[], double A_diag[], |
---|
| 793 | int U_ptr[], int U_ind[], double U_val[], double U_diag[]) |
---|
| 794 | { int i, j, k, t, t1, beg, end, beg1, end1, count = 0; |
---|
| 795 | double ukk, uki, *work; |
---|
| 796 | work = xcalloc(1+n, sizeof(double)); |
---|
| 797 | for (j = 1; j <= n; j++) work[j] = 0.0; |
---|
| 798 | /* U := (upper triangle of A) */ |
---|
| 799 | /* note that the upper traingle of A is a subset of U */ |
---|
| 800 | for (i = 1; i <= n; i++) |
---|
| 801 | { beg = A_ptr[i], end = A_ptr[i+1]; |
---|
| 802 | for (t = beg; t < end; t++) |
---|
| 803 | j = A_ind[t], work[j] = A_val[t]; |
---|
| 804 | beg = U_ptr[i], end = U_ptr[i+1]; |
---|
| 805 | for (t = beg; t < end; t++) |
---|
| 806 | j = U_ind[t], U_val[t] = work[j], work[j] = 0.0; |
---|
| 807 | U_diag[i] = A_diag[i]; |
---|
| 808 | } |
---|
| 809 | /* main elimination loop */ |
---|
| 810 | for (k = 1; k <= n; k++) |
---|
| 811 | { /* transform k-th row of U */ |
---|
| 812 | ukk = U_diag[k]; |
---|
| 813 | if (ukk > 0.0) |
---|
| 814 | U_diag[k] = ukk = sqrt(ukk); |
---|
| 815 | else |
---|
| 816 | U_diag[k] = ukk = DBL_MAX, count++; |
---|
| 817 | /* (work) := (transformed k-th row) */ |
---|
| 818 | beg = U_ptr[k], end = U_ptr[k+1]; |
---|
| 819 | for (t = beg; t < end; t++) |
---|
| 820 | work[U_ind[t]] = (U_val[t] /= ukk); |
---|
| 821 | /* transform other rows of U */ |
---|
| 822 | for (t = beg; t < end; t++) |
---|
| 823 | { i = U_ind[t]; |
---|
| 824 | xassert(i > k); |
---|
| 825 | /* (i-th row) := (i-th row) - u[k,i] * (k-th row) */ |
---|
| 826 | uki = work[i]; |
---|
| 827 | beg1 = U_ptr[i], end1 = U_ptr[i+1]; |
---|
| 828 | for (t1 = beg1; t1 < end1; t1++) |
---|
| 829 | U_val[t1] -= uki * work[U_ind[t1]]; |
---|
| 830 | U_diag[i] -= uki * uki; |
---|
| 831 | } |
---|
| 832 | /* (work) := 0 */ |
---|
| 833 | for (t = beg; t < end; t++) |
---|
| 834 | work[U_ind[t]] = 0.0; |
---|
| 835 | } |
---|
| 836 | xfree(work); |
---|
| 837 | return count; |
---|
| 838 | } |
---|
| 839 | |
---|
| 840 | /*---------------------------------------------------------------------- |
---|
| 841 | -- u_solve - solve upper triangular system U*x = b. |
---|
| 842 | -- |
---|
| 843 | -- *Synopsis* |
---|
| 844 | -- |
---|
| 845 | -- #include "glpmat.h" |
---|
| 846 | -- void u_solve(int n, int U_ptr[], int U_ind[], double U_val[], |
---|
| 847 | -- double U_diag[], double x[]); |
---|
| 848 | -- |
---|
| 849 | -- *Description* |
---|
| 850 | -- |
---|
| 851 | -- The routine u_solve solves an linear system U*x = b, where U is an |
---|
| 852 | -- upper triangular matrix. |
---|
| 853 | -- |
---|
| 854 | -- The parameter n is the order of matrix U. |
---|
| 855 | -- |
---|
| 856 | -- The matrix U without diagonal elements is specified in the arrays |
---|
| 857 | -- U_ptr, U_ind, and U_val in storage-by-rows format. Diagonal elements |
---|
| 858 | -- of U are specified in the array U_diag, where U_diag[0] is not used, |
---|
| 859 | -- U_diag[i] = u[i,i] for i = 1, ..., n. All these four arrays are not |
---|
| 860 | -- changed on exit. |
---|
| 861 | -- |
---|
| 862 | -- The right-hand side vector b is specified on entry in the array x, |
---|
| 863 | -- where x[0] is not used, and x[i] = b[i] for i = 1, ..., n. On exit |
---|
| 864 | -- the routine stores computed components of the vector of unknowns x |
---|
| 865 | -- in the array x in the same manner. */ |
---|
| 866 | |
---|
| 867 | void u_solve(int n, int U_ptr[], int U_ind[], double U_val[], |
---|
| 868 | double U_diag[], double x[]) |
---|
| 869 | { int i, t, beg, end; |
---|
| 870 | double temp; |
---|
| 871 | for (i = n; i >= 1; i--) |
---|
| 872 | { temp = x[i]; |
---|
| 873 | beg = U_ptr[i], end = U_ptr[i+1]; |
---|
| 874 | for (t = beg; t < end; t++) |
---|
| 875 | temp -= U_val[t] * x[U_ind[t]]; |
---|
| 876 | xassert(U_diag[i] != 0.0); |
---|
| 877 | x[i] = temp / U_diag[i]; |
---|
| 878 | } |
---|
| 879 | return; |
---|
| 880 | } |
---|
| 881 | |
---|
| 882 | /*---------------------------------------------------------------------- |
---|
| 883 | -- ut_solve - solve lower triangular system U'*x = b. |
---|
| 884 | -- |
---|
| 885 | -- *Synopsis* |
---|
| 886 | -- |
---|
| 887 | -- #include "glpmat.h" |
---|
| 888 | -- void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[], |
---|
| 889 | -- double U_diag[], double x[]); |
---|
| 890 | -- |
---|
| 891 | -- *Description* |
---|
| 892 | -- |
---|
| 893 | -- The routine ut_solve solves an linear system U'*x = b, where U is a |
---|
| 894 | -- matrix transposed to an upper triangular matrix. |
---|
| 895 | -- |
---|
| 896 | -- The parameter n is the order of matrix U. |
---|
| 897 | -- |
---|
| 898 | -- The matrix U without diagonal elements is specified in the arrays |
---|
| 899 | -- U_ptr, U_ind, and U_val in storage-by-rows format. Diagonal elements |
---|
| 900 | -- of U are specified in the array U_diag, where U_diag[0] is not used, |
---|
| 901 | -- U_diag[i] = u[i,i] for i = 1, ..., n. All these four arrays are not |
---|
| 902 | -- changed on exit. |
---|
| 903 | -- |
---|
| 904 | -- The right-hand side vector b is specified on entry in the array x, |
---|
| 905 | -- where x[0] is not used, and x[i] = b[i] for i = 1, ..., n. On exit |
---|
| 906 | -- the routine stores computed components of the vector of unknowns x |
---|
| 907 | -- in the array x in the same manner. */ |
---|
| 908 | |
---|
| 909 | void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[], |
---|
| 910 | double U_diag[], double x[]) |
---|
| 911 | { int i, t, beg, end; |
---|
| 912 | double temp; |
---|
| 913 | for (i = 1; i <= n; i++) |
---|
| 914 | { xassert(U_diag[i] != 0.0); |
---|
| 915 | temp = (x[i] /= U_diag[i]); |
---|
| 916 | if (temp == 0.0) continue; |
---|
| 917 | beg = U_ptr[i], end = U_ptr[i+1]; |
---|
| 918 | for (t = beg; t < end; t++) |
---|
| 919 | x[U_ind[t]] -= U_val[t] * temp; |
---|
| 920 | } |
---|
| 921 | return; |
---|
| 922 | } |
---|
| 923 | |
---|
| 924 | /* eof */ |
---|