1 | /* glpnet01.c (permutations for zero-free diagonal) */ |
---|
2 | |
---|
3 | /*********************************************************************** |
---|
4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
5 | * |
---|
6 | * This code is the result of translation of the Fortran subroutines |
---|
7 | * MC21A and MC21B associated with the following paper: |
---|
8 | * |
---|
9 | * I.S.Duff, Algorithm 575: Permutations for zero-free diagonal, ACM |
---|
10 | * Trans. on Math. Softw. 7 (1981), 387-390. |
---|
11 | * |
---|
12 | * Use of ACM Algorithms is subject to the ACM Software Copyright and |
---|
13 | * License Agreement. See <http://www.acm.org/publications/policies>. |
---|
14 | * |
---|
15 | * The translation was made by Andrew Makhorin <mao@gnu.org>. |
---|
16 | * |
---|
17 | * GLPK is free software: you can redistribute it and/or modify it |
---|
18 | * under the terms of the GNU General Public License as published by |
---|
19 | * the Free Software Foundation, either version 3 of the License, or |
---|
20 | * (at your option) any later version. |
---|
21 | * |
---|
22 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
23 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
24 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
25 | * License for more details. |
---|
26 | * |
---|
27 | * You should have received a copy of the GNU General Public License |
---|
28 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
29 | ***********************************************************************/ |
---|
30 | |
---|
31 | #include "glpnet.h" |
---|
32 | |
---|
33 | /*********************************************************************** |
---|
34 | * NAME |
---|
35 | * |
---|
36 | * mc21a - permutations for zero-free diagonal |
---|
37 | * |
---|
38 | * SYNOPSIS |
---|
39 | * |
---|
40 | * #include "glpnet.h" |
---|
41 | * int mc21a(int n, const int icn[], const int ip[], const int lenr[], |
---|
42 | * int iperm[], int pr[], int arp[], int cv[], int out[]); |
---|
43 | * |
---|
44 | * DESCRIPTION |
---|
45 | * |
---|
46 | * Given the pattern of nonzeros of a sparse matrix, the routine mc21a |
---|
47 | * attempts to find a permutation of its rows that makes the matrix have |
---|
48 | * no zeros on its diagonal. |
---|
49 | * |
---|
50 | * INPUT PARAMETERS |
---|
51 | * |
---|
52 | * n order of matrix. |
---|
53 | * |
---|
54 | * icn array containing the column indices of the non-zeros. Those |
---|
55 | * belonging to a single row must be contiguous but the ordering |
---|
56 | * of column indices within each row is unimportant and wasted |
---|
57 | * space between rows is permitted. |
---|
58 | * |
---|
59 | * ip ip[i], i = 1,2,...,n, is the position in array icn of the |
---|
60 | * first column index of a non-zero in row i. |
---|
61 | * |
---|
62 | * lenr lenr[i], i = 1,2,...,n, is the number of non-zeros in row i. |
---|
63 | * |
---|
64 | * OUTPUT PARAMETER |
---|
65 | * |
---|
66 | * iperm contains permutation to make diagonal have the smallest |
---|
67 | * number of zeros on it. Elements (iperm[i], i), i = 1,2,...,n, |
---|
68 | * are non-zero at the end of the algorithm unless the matrix is |
---|
69 | * structurally singular. In this case, (iperm[i], i) will be |
---|
70 | * zero for n - numnz entries. |
---|
71 | * |
---|
72 | * WORKING ARRAYS |
---|
73 | * |
---|
74 | * pr working array of length [1+n], where pr[0] is not used. |
---|
75 | * pr[i] is the previous row to i in the depth first search. |
---|
76 | * |
---|
77 | * arp working array of length [1+n], where arp[0] is not used. |
---|
78 | * arp[i] is one less than the number of non-zeros in row i which |
---|
79 | * have not been scanned when looking for a cheap assignment. |
---|
80 | * |
---|
81 | * cv working array of length [1+n], where cv[0] is not used. |
---|
82 | * cv[i] is the most recent row extension at which column i was |
---|
83 | * visited. |
---|
84 | * |
---|
85 | * out working array of length [1+n], where out[0] is not used. |
---|
86 | * out[i] is one less than the number of non-zeros in row i |
---|
87 | * which have not been scanned during one pass through the main |
---|
88 | * loop. |
---|
89 | * |
---|
90 | * RETURNS |
---|
91 | * |
---|
92 | * The routine mc21a returns numnz, the number of non-zeros on diagonal |
---|
93 | * of permuted matrix. */ |
---|
94 | |
---|
95 | int mc21a(int n, const int icn[], const int ip[], const int lenr[], |
---|
96 | int iperm[], int pr[], int arp[], int cv[], int out[]) |
---|
97 | { int i, ii, in1, in2, j, j1, jord, k, kk, numnz; |
---|
98 | /* Initialization of arrays. */ |
---|
99 | for (i = 1; i <= n; i++) |
---|
100 | { arp[i] = lenr[i] - 1; |
---|
101 | cv[i] = iperm[i] = 0; |
---|
102 | } |
---|
103 | numnz = 0; |
---|
104 | /* Main loop. */ |
---|
105 | /* Each pass round this loop either results in a new assignment |
---|
106 | or gives a row with no assignment. */ |
---|
107 | for (jord = 1; jord <= n; jord++) |
---|
108 | { j = jord; |
---|
109 | pr[j] = -1; |
---|
110 | for (k = 1; k <= jord; k++) |
---|
111 | { /* Look for a cheap assignment. */ |
---|
112 | in1 = arp[j]; |
---|
113 | if (in1 >= 0) |
---|
114 | { in2 = ip[j] + lenr[j] - 1; |
---|
115 | in1 = in2 - in1; |
---|
116 | for (ii = in1; ii <= in2; ii++) |
---|
117 | { i = icn[ii]; |
---|
118 | if (iperm[i] == 0) goto L110; |
---|
119 | } |
---|
120 | /* No cheap assignment in row. */ |
---|
121 | arp[j] = -1; |
---|
122 | } |
---|
123 | /* Begin looking for assignment chain starting with row j.*/ |
---|
124 | out[j] = lenr[j] - 1; |
---|
125 | /* Inner loop. Extends chain by one or backtracks. */ |
---|
126 | for (kk = 1; kk <= jord; kk++) |
---|
127 | { in1 = out[j]; |
---|
128 | if (in1 >= 0) |
---|
129 | { in2 = ip[j] + lenr[j] - 1; |
---|
130 | in1 = in2 - in1; |
---|
131 | /* Forward scan. */ |
---|
132 | for (ii = in1; ii <= in2; ii++) |
---|
133 | { i = icn[ii]; |
---|
134 | if (cv[i] != jord) |
---|
135 | { /* Column i has not yet been accessed during |
---|
136 | this pass. */ |
---|
137 | j1 = j; |
---|
138 | j = iperm[i]; |
---|
139 | cv[i] = jord; |
---|
140 | pr[j] = j1; |
---|
141 | out[j1] = in2 - ii - 1; |
---|
142 | goto L100; |
---|
143 | } |
---|
144 | } |
---|
145 | } |
---|
146 | /* Backtracking step. */ |
---|
147 | j = pr[j]; |
---|
148 | if (j == -1) goto L130; |
---|
149 | } |
---|
150 | L100: ; |
---|
151 | } |
---|
152 | L110: /* New assignment is made. */ |
---|
153 | iperm[i] = j; |
---|
154 | arp[j] = in2 - ii - 1; |
---|
155 | numnz++; |
---|
156 | for (k = 1; k <= jord; k++) |
---|
157 | { j = pr[j]; |
---|
158 | if (j == -1) break; |
---|
159 | ii = ip[j] + lenr[j] - out[j] - 2; |
---|
160 | i = icn[ii]; |
---|
161 | iperm[i] = j; |
---|
162 | } |
---|
163 | L130: ; |
---|
164 | } |
---|
165 | /* If matrix is structurally singular, we now complete the |
---|
166 | permutation iperm. */ |
---|
167 | if (numnz < n) |
---|
168 | { for (i = 1; i <= n; i++) |
---|
169 | arp[i] = 0; |
---|
170 | k = 0; |
---|
171 | for (i = 1; i <= n; i++) |
---|
172 | { if (iperm[i] == 0) |
---|
173 | out[++k] = i; |
---|
174 | else |
---|
175 | arp[iperm[i]] = i; |
---|
176 | } |
---|
177 | k = 0; |
---|
178 | for (i = 1; i <= n; i++) |
---|
179 | { if (arp[i] == 0) |
---|
180 | iperm[out[++k]] = i; |
---|
181 | } |
---|
182 | } |
---|
183 | return numnz; |
---|
184 | } |
---|
185 | |
---|
186 | /**********************************************************************/ |
---|
187 | |
---|
188 | #if 0 |
---|
189 | #include "glplib.h" |
---|
190 | |
---|
191 | int sing; |
---|
192 | |
---|
193 | void ranmat(int m, int n, int icn[], int iptr[], int nnnp1, int *knum, |
---|
194 | int iw[]); |
---|
195 | |
---|
196 | void fa01bs(int max, int *nrand); |
---|
197 | |
---|
198 | int main(void) |
---|
199 | { /* test program for the routine mc21a */ |
---|
200 | /* these runs on random matrices cause all possible statements in |
---|
201 | mc21a to be executed */ |
---|
202 | int i, iold, j, j1, j2, jj, knum, l, licn, n, nov4, num, numnz; |
---|
203 | int ip[1+21], icn[1+1000], iperm[1+20], lenr[1+20], iw1[1+80]; |
---|
204 | licn = 1000; |
---|
205 | /* run on random matrices of orders 1 through 20 */ |
---|
206 | for (n = 1; n <= 20; n++) |
---|
207 | { nov4 = n / 4; |
---|
208 | if (nov4 < 1) nov4 = 1; |
---|
209 | L10: fa01bs(nov4, &l); |
---|
210 | knum = l * n; |
---|
211 | /* knum is requested number of non-zeros in random matrix */ |
---|
212 | if (knum > licn) goto L10; |
---|
213 | /* if sing is false, matrix is guaranteed structurally |
---|
214 | non-singular */ |
---|
215 | sing = ((n / 2) * 2 == n); |
---|
216 | /* call to subroutine to generate random matrix */ |
---|
217 | ranmat(n, n, icn, ip, n+1, &knum, iw1); |
---|
218 | /* knum is now actual number of non-zeros in random matrix */ |
---|
219 | if (knum > licn) goto L10; |
---|
220 | xprintf("n = %2d; nz = %4d; sing = %d\n", n, knum, sing); |
---|
221 | /* set up array of row lengths */ |
---|
222 | for (i = 1; i <= n; i++) |
---|
223 | lenr[i] = ip[i+1] - ip[i]; |
---|
224 | /* call to mc21a */ |
---|
225 | numnz = mc21a(n, icn, ip, lenr, iperm, &iw1[0], &iw1[n], |
---|
226 | &iw1[n+n], &iw1[n+n+n]); |
---|
227 | /* testing to see if there are numnz non-zeros on the diagonal |
---|
228 | of the permuted matrix. */ |
---|
229 | num = 0; |
---|
230 | for (i = 1; i <= n; i++) |
---|
231 | { iold = iperm[i]; |
---|
232 | j1 = ip[iold]; |
---|
233 | j2 = j1 + lenr[iold] - 1; |
---|
234 | if (j2 < j1) continue; |
---|
235 | for (jj = j1; jj <= j2; jj++) |
---|
236 | { j = icn[jj]; |
---|
237 | if (j == i) |
---|
238 | { num++; |
---|
239 | break; |
---|
240 | } |
---|
241 | } |
---|
242 | } |
---|
243 | if (num != numnz) |
---|
244 | xprintf("Failure in mc21a, numnz = %d instead of %d\n", |
---|
245 | numnz, num); |
---|
246 | } |
---|
247 | return 0; |
---|
248 | } |
---|
249 | |
---|
250 | void ranmat(int m, int n, int icn[], int iptr[], int nnnp1, int *knum, |
---|
251 | int iw[]) |
---|
252 | { /* subroutine to generate random matrix */ |
---|
253 | int i, ii, inum, j, lrow, matnum; |
---|
254 | inum = (*knum / n) * 2; |
---|
255 | if (inum > n-1) inum = n-1; |
---|
256 | matnum = 1; |
---|
257 | /* each pass through this loop generates a row of the matrix */ |
---|
258 | for (j = 1; j <= m; j++) |
---|
259 | { iptr[j] = matnum; |
---|
260 | if (!(sing || j > n)) |
---|
261 | icn[matnum++] = j; |
---|
262 | if (n == 1) continue; |
---|
263 | for (i = 1; i <= n; i++) iw[i] = 0; |
---|
264 | if (!sing) iw[j] = 1; |
---|
265 | fa01bs(inum, &lrow); |
---|
266 | lrow--; |
---|
267 | if (lrow == 0) continue; |
---|
268 | /* lrow off-diagonal non-zeros in row j of the matrix */ |
---|
269 | for (ii = 1; ii <= lrow; ii++) |
---|
270 | { for (;;) |
---|
271 | { fa01bs(n, &i); |
---|
272 | if (iw[i] != 1) break; |
---|
273 | } |
---|
274 | iw[i] = 1; |
---|
275 | icn[matnum++] = i; |
---|
276 | } |
---|
277 | } |
---|
278 | for (i = m+1; i <= nnnp1; i++) |
---|
279 | iptr[i] = matnum; |
---|
280 | *knum = matnum - 1; |
---|
281 | return; |
---|
282 | } |
---|
283 | |
---|
284 | double g = 1431655765.0; |
---|
285 | |
---|
286 | double fa01as(int i) |
---|
287 | { /* random number generator */ |
---|
288 | g = fmod(g * 9228907.0, 4294967296.0); |
---|
289 | if (i >= 0) |
---|
290 | return g / 4294967296.0; |
---|
291 | else |
---|
292 | return 2.0 * g / 4294967296.0 - 1.0; |
---|
293 | } |
---|
294 | |
---|
295 | void fa01bs(int max, int *nrand) |
---|
296 | { *nrand = (int)(fa01as(1) * (double)max) + 1; |
---|
297 | return; |
---|
298 | } |
---|
299 | #endif |
---|
300 | |
---|
301 | /* eof */ |
---|