[9] | 1 | /* glpnet06.c (out-of-kilter algorithm) */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
| 7 | * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, |
---|
| 8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 9 | * E-mail: <mao@gnu.org>. |
---|
| 10 | * |
---|
| 11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 14 | * (at your option) any later version. |
---|
| 15 | * |
---|
| 16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 19 | * License for more details. |
---|
| 20 | * |
---|
| 21 | * You should have received a copy of the GNU General Public License |
---|
| 22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 23 | ***********************************************************************/ |
---|
| 24 | |
---|
| 25 | #include "glpenv.h" |
---|
| 26 | #include "glpnet.h" |
---|
| 27 | |
---|
| 28 | /*********************************************************************** |
---|
| 29 | * NAME |
---|
| 30 | * |
---|
| 31 | * okalg - out-of-kilter algorithm |
---|
| 32 | * |
---|
| 33 | * SYNOPSIS |
---|
| 34 | * |
---|
| 35 | * #include "glpnet.h" |
---|
| 36 | * int okalg(int nv, int na, const int tail[], const int head[], |
---|
| 37 | * const int low[], const int cap[], const int cost[], int x[], |
---|
| 38 | * int pi[]); |
---|
| 39 | * |
---|
| 40 | * DESCRIPTION |
---|
| 41 | * |
---|
| 42 | * The routine okalg implements the out-of-kilter algorithm to find a |
---|
| 43 | * minimal-cost circulation in the specified flow network. |
---|
| 44 | * |
---|
| 45 | * INPUT PARAMETERS |
---|
| 46 | * |
---|
| 47 | * nv is the number of nodes, nv >= 0. |
---|
| 48 | * |
---|
| 49 | * na is the number of arcs, na >= 0. |
---|
| 50 | * |
---|
| 51 | * tail[a], a = 1,...,na, is the index of tail node of arc a. |
---|
| 52 | * |
---|
| 53 | * head[a], a = 1,...,na, is the index of head node of arc a. |
---|
| 54 | * |
---|
| 55 | * low[a], a = 1,...,na, is an lower bound to the flow through arc a. |
---|
| 56 | * |
---|
| 57 | * cap[a], a = 1,...,na, is an upper bound to the flow through arc a, |
---|
| 58 | * which is the capacity of the arc. |
---|
| 59 | * |
---|
| 60 | * cost[a], a = 1,...,na, is a per-unit cost of the flow through arc a. |
---|
| 61 | * |
---|
| 62 | * NOTES |
---|
| 63 | * |
---|
| 64 | * 1. Multiple arcs are allowed, but self-loops are not allowed. |
---|
| 65 | * |
---|
| 66 | * 2. It is required that 0 <= low[a] <= cap[a] for all arcs. |
---|
| 67 | * |
---|
| 68 | * 3. Arc costs may have any sign. |
---|
| 69 | * |
---|
| 70 | * OUTPUT PARAMETERS |
---|
| 71 | * |
---|
| 72 | * x[a], a = 1,...,na, is optimal value of the flow through arc a. |
---|
| 73 | * |
---|
| 74 | * pi[i], i = 1,...,nv, is Lagrange multiplier for flow conservation |
---|
| 75 | * equality constraint corresponding to node i (the node potential). |
---|
| 76 | * |
---|
| 77 | * RETURNS |
---|
| 78 | * |
---|
| 79 | * 0 optimal circulation found; |
---|
| 80 | * |
---|
| 81 | * 1 there is no feasible circulation; |
---|
| 82 | * |
---|
| 83 | * 2 integer overflow occured; |
---|
| 84 | * |
---|
| 85 | * 3 optimality test failed (logic error). |
---|
| 86 | * |
---|
| 87 | * REFERENCES |
---|
| 88 | * |
---|
| 89 | * L.R.Ford, Jr., and D.R.Fulkerson, "Flows in Networks," The RAND |
---|
| 90 | * Corp., Report R-375-PR (August 1962), Chap. III "Minimal Cost Flow |
---|
| 91 | * Problems," pp.113-26. */ |
---|
| 92 | |
---|
| 93 | static int overflow(int u, int v) |
---|
| 94 | { /* check for integer overflow on computing u + v */ |
---|
| 95 | if (u > 0 && v > 0 && u + v < 0) return 1; |
---|
| 96 | if (u < 0 && v < 0 && u + v > 0) return 1; |
---|
| 97 | return 0; |
---|
| 98 | } |
---|
| 99 | |
---|
| 100 | int okalg(int nv, int na, const int tail[], const int head[], |
---|
| 101 | const int low[], const int cap[], const int cost[], int x[], |
---|
| 102 | int pi[]) |
---|
| 103 | { int a, aok, delta, i, j, k, lambda, pos1, pos2, s, t, temp, ret, |
---|
| 104 | *ptr, *arc, *link, *list; |
---|
| 105 | /* sanity checks */ |
---|
| 106 | xassert(nv >= 0); |
---|
| 107 | xassert(na >= 0); |
---|
| 108 | for (a = 1; a <= na; a++) |
---|
| 109 | { i = tail[a], j = head[a]; |
---|
| 110 | xassert(1 <= i && i <= nv); |
---|
| 111 | xassert(1 <= j && j <= nv); |
---|
| 112 | xassert(i != j); |
---|
| 113 | xassert(0 <= low[a] && low[a] <= cap[a]); |
---|
| 114 | } |
---|
| 115 | /* allocate working arrays */ |
---|
| 116 | ptr = xcalloc(1+nv+1, sizeof(int)); |
---|
| 117 | arc = xcalloc(1+na+na, sizeof(int)); |
---|
| 118 | link = xcalloc(1+nv, sizeof(int)); |
---|
| 119 | list = xcalloc(1+nv, sizeof(int)); |
---|
| 120 | /* ptr[i] := (degree of node i) */ |
---|
| 121 | for (i = 1; i <= nv; i++) |
---|
| 122 | ptr[i] = 0; |
---|
| 123 | for (a = 1; a <= na; a++) |
---|
| 124 | { ptr[tail[a]]++; |
---|
| 125 | ptr[head[a]]++; |
---|
| 126 | } |
---|
| 127 | /* initialize arc pointers */ |
---|
| 128 | ptr[1]++; |
---|
| 129 | for (i = 1; i < nv; i++) |
---|
| 130 | ptr[i+1] += ptr[i]; |
---|
| 131 | ptr[nv+1] = ptr[nv]; |
---|
| 132 | /* build arc lists */ |
---|
| 133 | for (a = 1; a <= na; a++) |
---|
| 134 | { arc[--ptr[tail[a]]] = a; |
---|
| 135 | arc[--ptr[head[a]]] = a; |
---|
| 136 | } |
---|
| 137 | xassert(ptr[1] == 1); |
---|
| 138 | xassert(ptr[nv+1] == na+na+1); |
---|
| 139 | /* now the indices of arcs incident to node i are stored in |
---|
| 140 | locations arc[ptr[i]], arc[ptr[i]+1], ..., arc[ptr[i+1]-1] */ |
---|
| 141 | /* initialize arc flows and node potentials */ |
---|
| 142 | for (a = 1; a <= na; a++) |
---|
| 143 | x[a] = 0; |
---|
| 144 | for (i = 1; i <= nv; i++) |
---|
| 145 | pi[i] = 0; |
---|
| 146 | loop: /* main loop starts here */ |
---|
| 147 | /* find out-of-kilter arc */ |
---|
| 148 | aok = 0; |
---|
| 149 | for (a = 1; a <= na; a++) |
---|
| 150 | { i = tail[a], j = head[a]; |
---|
| 151 | if (overflow(cost[a], pi[i] - pi[j])) |
---|
| 152 | { ret = 2; |
---|
| 153 | goto done; |
---|
| 154 | } |
---|
| 155 | lambda = cost[a] + (pi[i] - pi[j]); |
---|
| 156 | if (x[a] < low[a] || lambda < 0 && x[a] < cap[a]) |
---|
| 157 | { /* arc a = i->j is out of kilter, and we need to increase |
---|
| 158 | the flow through this arc */ |
---|
| 159 | aok = a, s = j, t = i; |
---|
| 160 | break; |
---|
| 161 | } |
---|
| 162 | if (x[a] > cap[a] || lambda > 0 && x[a] > low[a]) |
---|
| 163 | { /* arc a = i->j is out of kilter, and we need to decrease |
---|
| 164 | the flow through this arc */ |
---|
| 165 | aok = a, s = i, t = j; |
---|
| 166 | break; |
---|
| 167 | } |
---|
| 168 | } |
---|
| 169 | if (aok == 0) |
---|
| 170 | { /* all arcs are in kilter */ |
---|
| 171 | /* check for feasibility */ |
---|
| 172 | for (a = 1; a <= na; a++) |
---|
| 173 | { if (!(low[a] <= x[a] && x[a] <= cap[a])) |
---|
| 174 | { ret = 3; |
---|
| 175 | goto done; |
---|
| 176 | } |
---|
| 177 | } |
---|
| 178 | for (i = 1; i <= nv; i++) |
---|
| 179 | { temp = 0; |
---|
| 180 | for (k = ptr[i]; k < ptr[i+1]; k++) |
---|
| 181 | { a = arc[k]; |
---|
| 182 | if (tail[a] == i) |
---|
| 183 | { /* a is outgoing arc */ |
---|
| 184 | temp += x[a]; |
---|
| 185 | } |
---|
| 186 | else if (head[a] == i) |
---|
| 187 | { /* a is incoming arc */ |
---|
| 188 | temp -= x[a]; |
---|
| 189 | } |
---|
| 190 | else |
---|
| 191 | xassert(a != a); |
---|
| 192 | } |
---|
| 193 | if (temp != 0) |
---|
| 194 | { ret = 3; |
---|
| 195 | goto done; |
---|
| 196 | } |
---|
| 197 | } |
---|
| 198 | /* check for optimality */ |
---|
| 199 | for (a = 1; a <= na; a++) |
---|
| 200 | { i = tail[a], j = head[a]; |
---|
| 201 | lambda = cost[a] + (pi[i] - pi[j]); |
---|
| 202 | if (lambda > 0 && x[a] != low[a] || |
---|
| 203 | lambda < 0 && x[a] != cap[a]) |
---|
| 204 | { ret = 3; |
---|
| 205 | goto done; |
---|
| 206 | } |
---|
| 207 | } |
---|
| 208 | /* current circulation is optimal */ |
---|
| 209 | ret = 0; |
---|
| 210 | goto done; |
---|
| 211 | } |
---|
| 212 | /* now we need to find a cycle (t, a, s, ..., t), which allows |
---|
| 213 | increasing the flow along it, where a is the out-of-kilter arc |
---|
| 214 | just found */ |
---|
| 215 | /* link[i] = 0 means that node i is not labelled yet; |
---|
| 216 | link[i] = a means that arc a immediately precedes node i */ |
---|
| 217 | /* initially only node s is labelled */ |
---|
| 218 | for (i = 1; i <= nv; i++) |
---|
| 219 | link[i] = 0; |
---|
| 220 | link[s] = aok, list[1] = s, pos1 = pos2 = 1; |
---|
| 221 | /* breadth first search */ |
---|
| 222 | while (pos1 <= pos2) |
---|
| 223 | { /* dequeue node i */ |
---|
| 224 | i = list[pos1++]; |
---|
| 225 | /* consider all arcs incident to node i */ |
---|
| 226 | for (k = ptr[i]; k < ptr[i+1]; k++) |
---|
| 227 | { a = arc[k]; |
---|
| 228 | if (tail[a] == i) |
---|
| 229 | { /* a = i->j is a forward arc from s to t */ |
---|
| 230 | j = head[a]; |
---|
| 231 | /* if node j has been labelled, skip the arc */ |
---|
| 232 | if (link[j] != 0) continue; |
---|
| 233 | /* if the arc does not allow increasing the flow through |
---|
| 234 | it, skip the arc */ |
---|
| 235 | if (x[a] >= cap[a]) continue; |
---|
| 236 | if (overflow(cost[a], pi[i] - pi[j])) |
---|
| 237 | { ret = 2; |
---|
| 238 | goto done; |
---|
| 239 | } |
---|
| 240 | lambda = cost[a] + (pi[i] - pi[j]); |
---|
| 241 | if (lambda > 0 && x[a] >= low[a]) continue; |
---|
| 242 | } |
---|
| 243 | else if (head[a] == i) |
---|
| 244 | { /* a = i<-j is a backward arc from s to t */ |
---|
| 245 | j = tail[a]; |
---|
| 246 | /* if node j has been labelled, skip the arc */ |
---|
| 247 | if (link[j] != 0) continue; |
---|
| 248 | /* if the arc does not allow decreasing the flow through |
---|
| 249 | it, skip the arc */ |
---|
| 250 | if (x[a] <= low[a]) continue; |
---|
| 251 | if (overflow(cost[a], pi[j] - pi[i])) |
---|
| 252 | { ret = 2; |
---|
| 253 | goto done; |
---|
| 254 | } |
---|
| 255 | lambda = cost[a] + (pi[j] - pi[i]); |
---|
| 256 | if (lambda < 0 && x[a] <= cap[a]) continue; |
---|
| 257 | } |
---|
| 258 | else |
---|
| 259 | xassert(a != a); |
---|
| 260 | /* label node j and enqueue it */ |
---|
| 261 | link[j] = a, list[++pos2] = j; |
---|
| 262 | /* check for breakthrough */ |
---|
| 263 | if (j == t) goto brkt; |
---|
| 264 | } |
---|
| 265 | } |
---|
| 266 | /* NONBREAKTHROUGH */ |
---|
| 267 | /* consider all arcs, whose one endpoint is labelled and other is |
---|
| 268 | not, and determine maximal change of node potentials */ |
---|
| 269 | delta = 0; |
---|
| 270 | for (a = 1; a <= na; a++) |
---|
| 271 | { i = tail[a], j = head[a]; |
---|
| 272 | if (link[i] != 0 && link[j] == 0) |
---|
| 273 | { /* a = i->j, where node i is labelled, node j is not */ |
---|
| 274 | if (overflow(cost[a], pi[i] - pi[j])) |
---|
| 275 | { ret = 2; |
---|
| 276 | goto done; |
---|
| 277 | } |
---|
| 278 | lambda = cost[a] + (pi[i] - pi[j]); |
---|
| 279 | if (x[a] <= cap[a] && lambda > 0) |
---|
| 280 | if (delta == 0 || delta > + lambda) delta = + lambda; |
---|
| 281 | } |
---|
| 282 | else if (link[i] == 0 && link[j] != 0) |
---|
| 283 | { /* a = j<-i, where node j is labelled, node i is not */ |
---|
| 284 | if (overflow(cost[a], pi[i] - pi[j])) |
---|
| 285 | { ret = 2; |
---|
| 286 | goto done; |
---|
| 287 | } |
---|
| 288 | lambda = cost[a] + (pi[i] - pi[j]); |
---|
| 289 | if (x[a] >= low[a] && lambda < 0) |
---|
| 290 | if (delta == 0 || delta > - lambda) delta = - lambda; |
---|
| 291 | } |
---|
| 292 | } |
---|
| 293 | if (delta == 0) |
---|
| 294 | { /* there is no feasible circulation */ |
---|
| 295 | ret = 1; |
---|
| 296 | goto done; |
---|
| 297 | } |
---|
| 298 | /* increase potentials of all unlabelled nodes */ |
---|
| 299 | for (i = 1; i <= nv; i++) |
---|
| 300 | { if (link[i] == 0) |
---|
| 301 | { if (overflow(pi[i], delta)) |
---|
| 302 | { ret = 2; |
---|
| 303 | goto done; |
---|
| 304 | } |
---|
| 305 | pi[i] += delta; |
---|
| 306 | } |
---|
| 307 | } |
---|
| 308 | goto loop; |
---|
| 309 | brkt: /* BREAKTHROUGH */ |
---|
| 310 | /* walk through arcs of the cycle (t, a, s, ..., t) found in the |
---|
| 311 | reverse order and determine maximal change of the flow */ |
---|
| 312 | delta = 0; |
---|
| 313 | for (j = t;; j = i) |
---|
| 314 | { /* arc a immediately precedes node j in the cycle */ |
---|
| 315 | a = link[j]; |
---|
| 316 | if (head[a] == j) |
---|
| 317 | { /* a = i->j is a forward arc of the cycle */ |
---|
| 318 | i = tail[a]; |
---|
| 319 | lambda = cost[a] + (pi[i] - pi[j]); |
---|
| 320 | if (lambda > 0 && x[a] < low[a]) |
---|
| 321 | { /* x[a] may be increased until its lower bound */ |
---|
| 322 | temp = low[a] - x[a]; |
---|
| 323 | } |
---|
| 324 | else if (lambda <= 0 && x[a] < cap[a]) |
---|
| 325 | { /* x[a] may be increased until its upper bound */ |
---|
| 326 | temp = cap[a] - x[a]; |
---|
| 327 | } |
---|
| 328 | else |
---|
| 329 | xassert(a != a); |
---|
| 330 | } |
---|
| 331 | else if (tail[a] == j) |
---|
| 332 | { /* a = i<-j is a backward arc of the cycle */ |
---|
| 333 | i = head[a]; |
---|
| 334 | lambda = cost[a] + (pi[j] - pi[i]); |
---|
| 335 | if (lambda < 0 && x[a] > cap[a]) |
---|
| 336 | { /* x[a] may be decreased until its upper bound */ |
---|
| 337 | temp = x[a] - cap[a]; |
---|
| 338 | } |
---|
| 339 | else if (lambda >= 0 && x[a] > low[a]) |
---|
| 340 | { /* x[a] may be decreased until its lower bound */ |
---|
| 341 | temp = x[a] - low[a]; |
---|
| 342 | } |
---|
| 343 | else |
---|
| 344 | xassert(a != a); |
---|
| 345 | } |
---|
| 346 | else |
---|
| 347 | xassert(a != a); |
---|
| 348 | if (delta == 0 || delta > temp) delta = temp; |
---|
| 349 | /* check for end of the cycle */ |
---|
| 350 | if (i == t) break; |
---|
| 351 | } |
---|
| 352 | xassert(delta > 0); |
---|
| 353 | /* increase the flow along the cycle */ |
---|
| 354 | for (j = t;; j = i) |
---|
| 355 | { /* arc a immediately precedes node j in the cycle */ |
---|
| 356 | a = link[j]; |
---|
| 357 | if (head[a] == j) |
---|
| 358 | { /* a = i->j is a forward arc of the cycle */ |
---|
| 359 | i = tail[a]; |
---|
| 360 | /* overflow cannot occur */ |
---|
| 361 | x[a] += delta; |
---|
| 362 | } |
---|
| 363 | else if (tail[a] == j) |
---|
| 364 | { /* a = i<-j is a backward arc of the cycle */ |
---|
| 365 | i = head[a]; |
---|
| 366 | /* overflow cannot occur */ |
---|
| 367 | x[a] -= delta; |
---|
| 368 | } |
---|
| 369 | else |
---|
| 370 | xassert(a != a); |
---|
| 371 | /* check for end of the cycle */ |
---|
| 372 | if (i == t) break; |
---|
| 373 | } |
---|
| 374 | goto loop; |
---|
| 375 | done: /* free working arrays */ |
---|
| 376 | xfree(ptr); |
---|
| 377 | xfree(arc); |
---|
| 378 | xfree(link); |
---|
| 379 | xfree(list); |
---|
| 380 | return ret; |
---|
| 381 | } |
---|
| 382 | |
---|
| 383 | /* eof */ |
---|