/* glptsp.c */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, * Moscow Aviation Institute, Moscow, Russia. All rights reserved. * E-mail: . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #define _GLPSTD_ERRNO #define _GLPSTD_STDIO #include "glpenv.h" #include "glptsp.h" #define xfault xerror /*---------------------------------------------------------------------- -- tsp_read_data - read TSP instance data. -- -- *Synopsis* -- -- #include "glptsp.h" -- TSP *tsp_read_data(char *fname); -- -- *Description* -- -- The routine tsp_read_data reads a TSP (or related problem) instance -- data from the text file, whose name is the character string fname. -- -- For detailed description of the format recognized by the routine see -- the report: G.Reinelt, TSPLIB 95. -- -- *Returns* -- -- If no error occurred, the routine tsp_read_data returns a pointer to -- the TSP instance data block, which contains loaded data. In the case -- of error the routine prints an error message and returns NULL. */ struct dsa { /* dynamic storage area used by the routine tsp_read_data */ char *fname; /* name of the input text file */ FILE *fp; /* stream assigned to the input text file */ int seqn; /* line sequential number */ int c; /* current character */ char token[255+1]; /* current token */ }; static int get_char(struct dsa *dsa) { dsa->c = fgetc(dsa->fp); if (ferror(dsa->fp)) { xprintf("%s:%d: read error - %s\n", dsa->fname, dsa->seqn, strerror(errno)); return 1; } if (feof(dsa->fp)) dsa->c = EOF; else if (dsa->c == '\n') dsa->seqn++; else if (isspace(dsa->c)) dsa->c = ' '; else if (iscntrl(dsa->c)) { xprintf("%s:%d: invalid control character 0x%02X\n", dsa->fname, dsa->seqn, dsa->c); return 1; } return 0; } static int skip_spaces(struct dsa *dsa, int across) { while (dsa->c == ' ' || (across && dsa->c == '\n')) if (get_char(dsa)) return 1; return 0; } static int scan_keyword(struct dsa *dsa) { int len = 0; if (skip_spaces(dsa, 0)) return 1; dsa->token[0] = '\0'; while (isalnum(dsa->c) || dsa->c == '_') { if (len == 31) { xprintf("%s:%d: keyword `%s...' too long\n", dsa->fname, dsa->seqn, dsa->token); return 1; } dsa->token[len++] = (char)dsa->c, dsa->token[len] = '\0'; if (get_char(dsa)) return 1; } if (len == 0) { xprintf("%s:%d: missing keyword\n", dsa->fname, dsa->seqn); return 1; } return 0; } static int check_colon(struct dsa *dsa) { if (skip_spaces(dsa, 0)) return 1; if (dsa->c != ':') { xprintf("%s:%d: missing colon after `%s'\n", dsa->fname, dsa->seqn, dsa->token); return 1; } if (get_char(dsa)) return 1; return 0; } static int scan_token(struct dsa *dsa, int across) { int len = 0; if (skip_spaces(dsa, across)) return 1; dsa->token[0] = '\0'; while (!(dsa->c == EOF || dsa->c == '\n' || dsa->c == ' ')) { if (len == 255) { dsa->token[31] = '\0'; xprintf("%s:%d: token `%s...' too long\n", dsa->fname, dsa->seqn, dsa->token); return 1; } dsa->token[len++] = (char)dsa->c, dsa->token[len] = '\0'; if (get_char(dsa)) return 1; } return 0; } static int check_newline(struct dsa *dsa) { if (skip_spaces(dsa, 0)) return 1; if (!(dsa->c == EOF || dsa->c == '\n')) { xprintf("%s:%d: extra symbols detected\n", dsa->fname, dsa->seqn); return 1; } if (get_char(dsa)) return 1; return 0; } static int scan_comment(struct dsa *dsa) { int len = 0; if (skip_spaces(dsa, 0)) return 1; dsa->token[0] = '\0'; while (!(dsa->c == EOF || dsa->c == '\n')) { if (len == 255) { xprintf("%s:%d: comment too long\n", dsa->fname, dsa->seqn) ; return 1; } dsa->token[len++] = (char)dsa->c, dsa->token[len] = '\0'; if (get_char(dsa)) return 1; } return 0; } static int scan_integer(struct dsa *dsa, int across, int *val) { if (scan_token(dsa, across)) return 1; if (strlen(dsa->token) == 0) { xprintf("%s:%d: missing integer\n", dsa->fname, dsa->seqn); return 1; } if (str2int(dsa->token, val)) { xprintf("%s:%d: integer `%s' invalid\n", dsa->fname, dsa->seqn , dsa->token); return 1; } return 0; } static int scan_number(struct dsa *dsa, int across, double *val) { if (scan_token(dsa, across)) return 1; if (strlen(dsa->token) == 0) { xprintf("%s:%d: missing number\n", dsa->fname, dsa->seqn); return 1; } if (str2num(dsa->token, val)) { xprintf("%s:%d: number `%s' invalid\n", dsa->fname, dsa->seqn, dsa->token); return 1; } return 0; } TSP *tsp_read_data(char *fname) { struct dsa _dsa, *dsa = &_dsa; TSP *tsp = NULL; dsa->fname = fname; xprintf("tsp_read_data: reading TSP data from `%s'...\n", dsa->fname); dsa->fp = fopen(dsa->fname, "r"); if (dsa->fp == NULL) { xprintf("tsp_read_data: unable to open `%s' - %s\n", dsa->fname, strerror(errno)); goto fail; } tsp = xmalloc(sizeof(TSP)); tsp->name = NULL; tsp->type = TSP_UNDEF; tsp->comment = NULL; tsp->dimension = 0; tsp->edge_weight_type = TSP_UNDEF; tsp->edge_weight_format = TSP_UNDEF; tsp->display_data_type = TSP_UNDEF; tsp->node_x_coord = NULL; tsp->node_y_coord = NULL; tsp->dply_x_coord = NULL; tsp->dply_y_coord = NULL; tsp->tour = NULL; tsp->edge_weight = NULL; dsa->seqn = 1; if (get_char(dsa)) goto fail; loop: if (scan_keyword(dsa)) goto fail; if (strcmp(dsa->token, "NAME") == 0) { if (tsp->name != NULL) { xprintf("%s:%d: NAME entry multiply defined\n", dsa->fname, dsa->seqn); goto fail; } if (check_colon(dsa)) goto fail; if (scan_token(dsa, 0)) goto fail; if (strlen(dsa->token) == 0) { xprintf("%s:%d: NAME entry incomplete\n", dsa->fname, dsa->seqn); goto fail; } tsp->name = xmalloc(strlen(dsa->token) + 1); strcpy(tsp->name, dsa->token); xprintf("tsp_read_data: NAME: %s\n", tsp->name); if (check_newline(dsa)) goto fail; } else if (strcmp(dsa->token, "TYPE") == 0) { if (tsp->type != TSP_UNDEF) { xprintf("%s:%d: TYPE entry multiply defined\n", dsa->fname, dsa->seqn); goto fail; } if (check_colon(dsa)) goto fail; if (scan_keyword(dsa)) goto fail; if (strcmp(dsa->token, "TSP") == 0) tsp->type = TSP_TSP; else if (strcmp(dsa->token, "ATSP") == 0) tsp->type = TSP_ATSP; else if (strcmp(dsa->token, "TOUR") == 0) tsp->type = TSP_TOUR; else { xprintf("%s:%d: data type `%s' not recognized\n", dsa->fname, dsa->seqn, dsa->token); goto fail; } xprintf("tsp_read_data: TYPE: %s\n", dsa->token); if (check_newline(dsa)) goto fail; } else if (strcmp(dsa->token, "COMMENT") == 0) { if (tsp->comment != NULL) { xprintf("%s:%d: COMMENT entry multiply defined\n", dsa->fname, dsa->seqn); goto fail; } if (check_colon(dsa)) goto fail; if (scan_comment(dsa)) goto fail; tsp->comment = xmalloc(strlen(dsa->token) + 1); strcpy(tsp->comment, dsa->token); xprintf("tsp_read_data: COMMENT: %s\n", tsp->comment); if (check_newline(dsa)) goto fail; } else if (strcmp(dsa->token, "DIMENSION") == 0) { if (tsp->dimension != 0) { xprintf("%s:%d: DIMENSION entry multiply defined\n", dsa->fname, dsa->seqn); goto fail; } if (check_colon(dsa)) goto fail; if (scan_integer(dsa, 0, &tsp->dimension)) goto fail; if (tsp->dimension < 1) { xprintf("%s:%d: invalid dimension\n", dsa->fname, dsa->seqn); goto fail; } xprintf("tsp_read_data: DIMENSION: %d\n", tsp->dimension); if (check_newline(dsa)) goto fail; } else if (strcmp(dsa->token, "EDGE_WEIGHT_TYPE") == 0) { if (tsp->edge_weight_type != TSP_UNDEF) { xprintf("%s:%d: EDGE_WEIGHT_TYPE entry multiply defined\n", dsa->fname, dsa->seqn); goto fail; } if (check_colon(dsa)) goto fail; if (scan_keyword(dsa)) goto fail; if (strcmp(dsa->token, "GEO") == 0) tsp->edge_weight_type = TSP_GEO; else if (strcmp(dsa->token, "EUC_2D") == 0) tsp->edge_weight_type = TSP_EUC_2D; else if (strcmp(dsa->token, "ATT") == 0) tsp->edge_weight_type = TSP_ATT; else if (strcmp(dsa->token, "EXPLICIT") == 0) tsp->edge_weight_type = TSP_EXPLICIT; else if (strcmp(dsa->token, "CEIL_2D") == 0) tsp->edge_weight_type = TSP_CEIL_2D; else { xprintf("%s:%d: edge weight type `%s' not recognized\n", dsa->fname, dsa->seqn, dsa->token); goto fail; } xprintf("tsp_read_data: EDGE_WEIGHT_TYPE: %s\n", dsa->token); if (check_newline(dsa)) goto fail; } else if (strcmp(dsa->token, "EDGE_WEIGHT_FORMAT") == 0) { if (tsp->edge_weight_format != TSP_UNDEF) { xprintf( "%s:%d: EDGE_WEIGHT_FORMAT entry multiply defined\n", dsa->fname, dsa->seqn); goto fail; } if (check_colon(dsa)) goto fail; if (scan_keyword(dsa)) goto fail; if (strcmp(dsa->token, "UPPER_ROW") == 0) tsp->edge_weight_format = TSP_UPPER_ROW; else if (strcmp(dsa->token, "FULL_MATRIX") == 0) tsp->edge_weight_format = TSP_FULL_MATRIX; else if (strcmp(dsa->token, "FUNCTION") == 0) tsp->edge_weight_format = TSP_FUNCTION; else if (strcmp(dsa->token, "LOWER_DIAG_ROW") == 0) tsp->edge_weight_format = TSP_LOWER_DIAG_ROW; else { xprintf("%s:%d: edge weight format `%s' not recognized\n", dsa->fname, dsa->seqn, dsa->token); goto fail; } xprintf("tsp_read_data: EDGE_WEIGHT_FORMAT: %s\n", dsa->token); if (check_newline(dsa)) goto fail; } else if (strcmp(dsa->token, "DISPLAY_DATA_TYPE") == 0) { if (tsp->display_data_type != TSP_UNDEF) { xprintf("%s:%d: DISPLAY_DATA_TYPE entry multiply defined\n", dsa->fname, dsa->seqn); goto fail; } if (check_colon(dsa)) goto fail; if (scan_keyword(dsa)) goto fail; if (strcmp(dsa->token, "COORD_DISPLAY") == 0) tsp->display_data_type = TSP_COORD_DISPLAY; else if (strcmp(dsa->token, "TWOD_DISPLAY") == 0) tsp->display_data_type = TSP_TWOD_DISPLAY; else { xprintf("%s:%d: display data type `%s' not recognized\n", dsa->fname, dsa->seqn, dsa->token); goto fail; } xprintf("tsp_read_data: DISPLAY_DATA_TYPE: %s\n", dsa->token); if (check_newline(dsa)) goto fail; } else if (strcmp(dsa->token, "NODE_COORD_SECTION") == 0) { int n = tsp->dimension, k, node; if (n == 0) { xprintf("%s:%d: DIMENSION entry not specified\n", dsa->fname, dsa->seqn); goto fail; } if (tsp->node_x_coord != NULL) { xprintf("%s:%d: NODE_COORD_SECTION multiply specified\n", dsa->fname, dsa->seqn); goto fail; } if (check_newline(dsa)) goto fail; tsp->node_x_coord = xcalloc(1+n, sizeof(double)); tsp->node_y_coord = xcalloc(1+n, sizeof(double)); for (node = 1; node <= n; node++) tsp->node_x_coord[node] = tsp->node_y_coord[node] = DBL_MAX; for (k = 1; k <= n; k++) { if (scan_integer(dsa, 0, &node)) goto fail; if (!(1 <= node && node <= n)) { xprintf("%s:%d: invalid node number %d\n", dsa->fname, dsa->seqn, node); goto fail; } if (tsp->node_x_coord[node] != DBL_MAX) { xprintf("%s:%d: node number %d multiply specified\n", dsa->fname, dsa->seqn, node); goto fail; } if (scan_number(dsa, 0, &tsp->node_x_coord[node])) goto fail; if (scan_number(dsa, 0, &tsp->node_y_coord[node])) goto fail; if (check_newline(dsa)) goto fail; } } else if (strcmp(dsa->token, "DISPLAY_DATA_SECTION") == 0) { int n = tsp->dimension, k, node; if (n == 0) { xprintf("%s:%d: DIMENSION entry not specified\n", dsa->fname, dsa->seqn); goto fail; } if (tsp->dply_x_coord != NULL) { xprintf("%s:%d: DISPLAY_DATA_SECTION multiply specified\n", dsa->fname, dsa->seqn); goto fail; } if (check_newline(dsa)) goto fail; tsp->dply_x_coord = xcalloc(1+n, sizeof(double)); tsp->dply_y_coord = xcalloc(1+n, sizeof(double)); for (node = 1; node <= n; node++) tsp->dply_x_coord[node] = tsp->dply_y_coord[node] = DBL_MAX; for (k = 1; k <= n; k++) { if (scan_integer(dsa, 0, &node)) goto fail; if (!(1 <= node && node <= n)) { xprintf("%s:%d: invalid node number %d\n", dsa->fname, dsa->seqn, node); goto fail; } if (tsp->dply_x_coord[node] != DBL_MAX) { xprintf("%s:%d: node number %d multiply specified\n", dsa->fname, dsa->seqn, node); goto fail; } if (scan_number(dsa, 0, &tsp->dply_x_coord[node])) goto fail; if (scan_number(dsa, 0, &tsp->dply_y_coord[node])) goto fail; if (check_newline(dsa)) goto fail; } } else if (strcmp(dsa->token, "TOUR_SECTION") == 0) { int n = tsp->dimension, k, node; if (n == 0) { xprintf("%s:%d: DIMENSION entry not specified\n", dsa->fname, dsa->seqn); goto fail; } if (tsp->tour != NULL) { xprintf("%s:%d: TOUR_SECTION multiply specified\n", dsa->fname, dsa->seqn); goto fail; } if (check_newline(dsa)) goto fail; tsp->tour = xcalloc(1+n, sizeof(int)); for (k = 1; k <= n; k++) { if (scan_integer(dsa, 1, &node)) goto fail; if (!(1 <= node && node <= n)) { xprintf("%s:%d: invalid node number %d\n", dsa->fname, dsa->seqn, node); goto fail; } tsp->tour[k] = node; } if (scan_integer(dsa, 1, &node)) goto fail; if (node != -1) { xprintf("%s:%d: extra node(s) detected\n", dsa->fname, dsa->seqn); goto fail; } if (check_newline(dsa)) goto fail; } else if (strcmp(dsa->token, "EDGE_WEIGHT_SECTION") == 0) { int n = tsp->dimension, i, j, temp; if (n == 0) { xprintf("%s:%d: DIMENSION entry not specified\n", dsa->fname, dsa->seqn); goto fail; } if (tsp->edge_weight_format == TSP_UNDEF) { xprintf("%s:%d: EDGE_WEIGHT_FORMAT entry not specified\n", dsa->fname, dsa->seqn); goto fail; } if (tsp->edge_weight != NULL) { xprintf("%s:%d: EDGE_WEIGHT_SECTION multiply specified\n", dsa->fname, dsa->seqn); goto fail; } if (check_newline(dsa)) goto fail; tsp->edge_weight = xcalloc(1+n*n, sizeof(int)); switch (tsp->edge_weight_format) { case TSP_FULL_MATRIX: for (i = 1; i <= n; i++) { for (j = 1; j <= n; j++) { if (scan_integer(dsa, 1, &temp)) goto fail; tsp->edge_weight[(i - 1) * n + j] = temp; } } break; case TSP_UPPER_ROW: for (i = 1; i <= n; i++) { tsp->edge_weight[(i - 1) * n + i] = 0; for (j = i + 1; j <= n; j++) { if (scan_integer(dsa, 1, &temp)) goto fail; tsp->edge_weight[(i - 1) * n + j] = temp; tsp->edge_weight[(j - 1) * n + i] = temp; } } break; case TSP_LOWER_DIAG_ROW: for (i = 1; i <= n; i++) { for (j = 1; j <= i; j++) { if (scan_integer(dsa, 1, &temp)) goto fail; tsp->edge_weight[(i - 1) * n + j] = temp; tsp->edge_weight[(j - 1) * n + i] = temp; } } break; default: goto fail; } if (check_newline(dsa)) goto fail; } else if (strcmp(dsa->token, "EOF") == 0) { if (check_newline(dsa)) goto fail; goto done; } else { xprintf("%s:%d: keyword `%s' not recognized\n", dsa->fname, dsa->seqn, dsa->token); goto fail; } goto loop; done: xprintf("tsp_read_data: %d lines were read\n", dsa->seqn-1); fclose(dsa->fp); return tsp; fail: if (tsp != NULL) { if (tsp->name != NULL) xfree(tsp->name); if (tsp->comment != NULL) xfree(tsp->comment); if (tsp->node_x_coord != NULL) xfree(tsp->node_x_coord); if (tsp->node_y_coord != NULL) xfree(tsp->node_y_coord); if (tsp->dply_x_coord != NULL) xfree(tsp->dply_x_coord); if (tsp->dply_y_coord != NULL) xfree(tsp->dply_y_coord); if (tsp->tour != NULL) xfree(tsp->tour); if (tsp->edge_weight != NULL) xfree(tsp->edge_weight); xfree(tsp); } if (dsa->fp != NULL) fclose(dsa->fp); return NULL; } /*---------------------------------------------------------------------- -- tsp_free_data - free TSP instance data. -- -- *Synopsis* -- -- #include "glptsp.h" -- void tsp_free_data(TSP *tsp); -- -- *Description* -- -- The routine tsp_free_data frees all the memory allocated to the TSP -- instance data block, which the parameter tsp points to. */ void tsp_free_data(TSP *tsp) { if (tsp->name != NULL) xfree(tsp->name); if (tsp->comment != NULL) xfree(tsp->comment); if (tsp->node_x_coord != NULL) xfree(tsp->node_x_coord); if (tsp->node_y_coord != NULL) xfree(tsp->node_y_coord); if (tsp->dply_x_coord != NULL) xfree(tsp->dply_x_coord); if (tsp->dply_y_coord != NULL) xfree(tsp->dply_y_coord); if (tsp->tour != NULL) xfree(tsp->tour); if (tsp->edge_weight != NULL) xfree(tsp->edge_weight); xfree(tsp); return; } /*---------------------------------------------------------------------- -- tsp_distance - compute distance between two nodes. -- -- *Synopsis* -- -- #include "glptsp.h" -- int tsp_distance(TSP *tsp, int i, int j); -- -- *Description* -- -- The routine tsp_distance computes the distance between i-th and j-th -- nodes for the TSP instance, which tsp points to. -- -- *Returns* -- -- The routine tsp_distance returns the computed distance. */ #define nint(x) ((int)((x) + 0.5)) static double rad(double x) { /* convert input coordinate to longitude/latitude, in radians */ double pi = 3.141592, deg, min; deg = (int)x; min = x - deg; return pi * (deg + 5.0 * min / 3.0) / 180.0; } int tsp_distance(TSP *tsp, int i, int j) { int n = tsp->dimension, dij; if (!(tsp->type == TSP_TSP || tsp->type == TSP_ATSP)) xfault("tsp_distance: invalid TSP instance\n"); if (!(1 <= i && i <= n && 1 <= j && j <= n)) xfault("tsp_distance: node number out of range\n"); switch (tsp->edge_weight_type) { case TSP_UNDEF: xfault("tsp_distance: edge weight type not specified\n"); case TSP_EXPLICIT: if (tsp->edge_weight == NULL) xfault("tsp_distance: edge weights not specified\n"); dij = tsp->edge_weight[(i - 1) * n + j]; break; case TSP_EUC_2D: if (tsp->node_x_coord == NULL || tsp->node_y_coord == NULL) xfault("tsp_distance: node coordinates not specified\n"); { double xd, yd; xd = tsp->node_x_coord[i] - tsp->node_x_coord[j]; yd = tsp->node_y_coord[i] - tsp->node_y_coord[j]; dij = nint(sqrt(xd * xd + yd * yd)); } break; case TSP_CEIL_2D: if (tsp->node_x_coord == NULL || tsp->node_y_coord == NULL) xfault("tsp_distance: node coordinates not specified\n"); { double xd, yd; xd = tsp->node_x_coord[i] - tsp->node_x_coord[j]; yd = tsp->node_y_coord[i] - tsp->node_y_coord[j]; dij = (int)ceil(sqrt(xd * xd + yd * yd)); } break; case TSP_GEO: if (tsp->node_x_coord == NULL || tsp->node_y_coord == NULL) xfault("tsp_distance: node coordinates not specified\n"); { double rrr = 6378.388; double latitude_i = rad(tsp->node_x_coord[i]); double latitude_j = rad(tsp->node_x_coord[j]); double longitude_i = rad(tsp->node_y_coord[i]); double longitude_j = rad(tsp->node_y_coord[j]); double q1 = cos(longitude_i - longitude_j); double q2 = cos(latitude_i - latitude_j); double q3 = cos(latitude_i + latitude_j); dij = (int)(rrr * acos(0.5 * ((1.0 + q1) * q2 - (1.0 - q1) *q3)) + 1.0); } break; case TSP_ATT: if (tsp->node_x_coord == NULL || tsp->node_y_coord == NULL) xfault("tsp_distance: node coordinates not specified\n"); { int tij; double xd, yd, rij; xd = tsp->node_x_coord[i] - tsp->node_x_coord[j]; yd = tsp->node_y_coord[i] - tsp->node_y_coord[j]; rij = sqrt((xd * xd + yd * yd) / 10.0); tij = nint(rij); if (tij < rij) dij = tij + 1; else dij = tij; } break; default: xassert(tsp->edge_weight_type != tsp->edge_weight_type); } return dij; } /* eof */