| 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- | 
|---|
| 2 | * | 
|---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. | 
|---|
| 4 | * | 
|---|
| 5 | * Copyright (C) 2003-2010 | 
|---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport | 
|---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). | 
|---|
| 8 | * | 
|---|
| 9 | * Permission to use, modify and distribute this software is granted | 
|---|
| 10 | * provided that this copyright notice appears in all copies. For | 
|---|
| 11 | * precise terms see the accompanying LICENSE file. | 
|---|
| 12 | * | 
|---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, | 
|---|
| 14 | * express or implied, and with no claim as to its suitability for any | 
|---|
| 15 | * purpose. | 
|---|
| 16 | * | 
|---|
| 17 | */ | 
|---|
| 18 |  | 
|---|
| 19 | namespace lemon { | 
|---|
| 20 | /** | 
|---|
| 21 | [PAGE]sec_basics[PAGE] Basic Concepts | 
|---|
| 22 |  | 
|---|
| 23 | Throughout the tutorial we are working with the \ref lemon namespace. | 
|---|
| 24 | To save a lot of typing, we assume that a | 
|---|
| 25 |  | 
|---|
| 26 | \code | 
|---|
| 27 | using namespace lemon; | 
|---|
| 28 | \endcode | 
|---|
| 29 |  | 
|---|
| 30 | directive is added to the code at the beginning. | 
|---|
| 31 |  | 
|---|
| 32 | [SEC]sec_digraphs[SEC] Directed Graphs | 
|---|
| 33 |  | 
|---|
| 34 | The core features of LEMON are the data structures, algorithms and auxiliary | 
|---|
| 35 | tools that make it possible to represent graphs and working with them easily | 
|---|
| 36 | and efficiently. | 
|---|
| 37 | This section tells you how to work with a directed graph (\e digraph, | 
|---|
| 38 | for short) in LEMON. Here we use \ref ListDigraph, the most versatile | 
|---|
| 39 | digraph structure. (The library also provides other digraph types, | 
|---|
| 40 | see \ref sec_graph_structures "later".) | 
|---|
| 41 |  | 
|---|
| 42 | For using \ref ListDigraph, you must include the header file | 
|---|
| 43 | \ref list_graph.h like this: | 
|---|
| 44 |  | 
|---|
| 45 | \code | 
|---|
| 46 | #include <lemon/list_graph.h> | 
|---|
| 47 | \endcode | 
|---|
| 48 |  | 
|---|
| 49 | The default constructor of the class creates an empty digraph. | 
|---|
| 50 |  | 
|---|
| 51 | \code | 
|---|
| 52 | ListDigraph g; | 
|---|
| 53 | \endcode | 
|---|
| 54 |  | 
|---|
| 55 | The nodes and the arcs of a graph are identified by two data types called | 
|---|
| 56 | \ref concepts::Digraph::Node "ListDigraph::Node" and \ref concepts::Digraph::Arc | 
|---|
| 57 | "ListDigraph::Arc". You can add new items to the graph using the member | 
|---|
| 58 | functions \ref ListDigraph::addNode() "addNode()" and | 
|---|
| 59 | \ref ListDigraph::addArc() "addArc()", like this: | 
|---|
| 60 |  | 
|---|
| 61 | \code | 
|---|
| 62 | ListDigraph::Node x = g.addNode(); | 
|---|
| 63 | ListDigraph::Node y = g.addNode(); | 
|---|
| 64 | ListDigraph::Node z = g.addNode(); | 
|---|
| 65 |  | 
|---|
| 66 | g.addArc(x,y); | 
|---|
| 67 | g.addArc(y,z); | 
|---|
| 68 | g.addArc(z,x); | 
|---|
| 69 | \endcode | 
|---|
| 70 |  | 
|---|
| 71 | Of course, \ref ListDigraph::addArc() "addArc()" also returns the created arc: | 
|---|
| 72 |  | 
|---|
| 73 | \code | 
|---|
| 74 | ListDigraph::Arc arc = g.addArc(x,z); | 
|---|
| 75 | \endcode | 
|---|
| 76 |  | 
|---|
| 77 | Parallel and loop arcs are also supported. | 
|---|
| 78 |  | 
|---|
| 79 | \code | 
|---|
| 80 | ListDigraph::Arc parallel = g.addArc(x,y); | 
|---|
| 81 | ListDigraph::Arc loop = g.addArc(x,x); | 
|---|
| 82 | \endcode | 
|---|
| 83 |  | 
|---|
| 84 | \note Using ListDigraph, you can also remove nodes or arcs with the | 
|---|
| 85 | \ref ListDigraph::erase() "erase()" function. Moreover, this class provides | 
|---|
| 86 | several other operations, see its \ref ListDigraph "documentation" for more | 
|---|
| 87 | information. | 
|---|
| 88 | However, not all graph structures support the addition and deletion | 
|---|
| 89 | of graph items (see \ref sec_graph_concepts). | 
|---|
| 90 |  | 
|---|
| 91 | Two important member functions of the directed graphs are | 
|---|
| 92 | \ref concepts::Digraph::source() "source()" | 
|---|
| 93 | and \ref concepts::Digraph::target() "target()". | 
|---|
| 94 | They give back the two end nodes of an arc (as \c Node objects). | 
|---|
| 95 |  | 
|---|
| 96 | \code | 
|---|
| 97 | if (g.source(loop) == g.target(loop)) | 
|---|
| 98 | std::cout << "This is a loop arc" << std::endl; | 
|---|
| 99 | \endcode | 
|---|
| 100 |  | 
|---|
| 101 | Each graph item has a non-negative integer identifier, which can be obtained | 
|---|
| 102 | using the \ref concepts::Digraph::id() "id()" function of the graph structure. | 
|---|
| 103 | These identifiers are unique with respect to a certain item type in a graph, | 
|---|
| 104 | but a node and an arc may have the same id. | 
|---|
| 105 |  | 
|---|
| 106 | \code | 
|---|
| 107 | std::cout << "Arc " << g.id(arc) << " goes from node " | 
|---|
| 108 | << g.id(g.source(arc)) << " to node " << g.id(g.target(arc)) << std::endl; | 
|---|
| 109 | \endcode | 
|---|
| 110 |  | 
|---|
| 111 | \note In fact, the \c Node and \c Arc types are typically simple wrapper | 
|---|
| 112 | classes for a single \c int value, which is the identifier of the item. | 
|---|
| 113 |  | 
|---|
| 114 |  | 
|---|
| 115 | [SEC]sec_digraph_it[SEC] Iterators | 
|---|
| 116 |  | 
|---|
| 117 | Let us assume you want to list the elements of the graph. For this purpose, | 
|---|
| 118 | the graph structures provide several \e iterators. For example, the following | 
|---|
| 119 | code will count the number of nodes in a graph. | 
|---|
| 120 |  | 
|---|
| 121 | \code | 
|---|
| 122 | int cnt = 0; | 
|---|
| 123 | for (ListDigraph::NodeIt n(g); n != INVALID; ++n) | 
|---|
| 124 | cnt++; | 
|---|
| 125 | std::cout << "Number of nodes: " << cnt << std::endl; | 
|---|
| 126 | \endcode | 
|---|
| 127 |  | 
|---|
| 128 | \ref concepts::Digraph::NodeIt "ListDigraph::NodeIt" | 
|---|
| 129 | is an iterator class that lists the nodes. | 
|---|
| 130 | The name of an iterator type starts with a name that refers to | 
|---|
| 131 | the iterated objects and ends with 'It'. | 
|---|
| 132 |  | 
|---|
| 133 | Using \ref concepts::Digraph::NodeIt "NodeIt", you must give | 
|---|
| 134 | the graph object to the constructor and the iterator will be set | 
|---|
| 135 | to the first node. The next node is obtained by the prefix ++ | 
|---|
| 136 | operator. If there are no more nodes in the graph, the iterator will | 
|---|
| 137 | be set to \ref INVALID, which is exploited in the stop condition of | 
|---|
| 138 | the loop. | 
|---|
| 139 |  | 
|---|
| 140 | \note \ref INVALID is a constant in the \ref lemon namespace, which converts to | 
|---|
| 141 | and compares with each and every iterator and graph item type. | 
|---|
| 142 | Thus, you can even assign \ref INVALID to a \c Node or \c Arc object. | 
|---|
| 143 |  | 
|---|
| 144 | The iterators convert to the corresponding item types. | 
|---|
| 145 | For example, the identifiers of the nodes can be printed like this. | 
|---|
| 146 |  | 
|---|
| 147 | \code | 
|---|
| 148 | for (ListDigraph::NodeIt n(g); n != INVALID; ++n) | 
|---|
| 149 | std::cout << g.id(n) << std::endl; | 
|---|
| 150 | \endcode | 
|---|
| 151 |  | 
|---|
| 152 | As an other example, the following code adds a full graph to the | 
|---|
| 153 | existing nodes. | 
|---|
| 154 |  | 
|---|
| 155 | \code | 
|---|
| 156 | for (ListDigraph::NodeIt u(g); u != INVALID; ++u) | 
|---|
| 157 | for (ListDigraph::NodeIt v(g); v != INVALID; ++v) | 
|---|
| 158 | if (u != v) g.addArc(u, v); | 
|---|
| 159 | \endcode | 
|---|
| 160 |  | 
|---|
| 161 | \note Contrary to the iterators in the C++ Standard Template Library (STL), | 
|---|
| 162 | LEMON iterators are convertible to the corresponding | 
|---|
| 163 | item types without having to use \c %operator*(). This is not confusing, | 
|---|
| 164 | since the program context always indicates whether we refer to the iterator | 
|---|
| 165 | or to the graph item (they do not have conflicting functionalities). | 
|---|
| 166 |  | 
|---|
| 167 | The graph items are also ordered by the 'less than' operator (with respect to | 
|---|
| 168 | their integer identifiers). For example, this code will add only one of the | 
|---|
| 169 | opposite arcs. | 
|---|
| 170 |  | 
|---|
| 171 | \code | 
|---|
| 172 | for (ListDigraph::NodeIt u(g); u != INVALID; ++u) | 
|---|
| 173 | for (ListDigraph::NodeIt v(g); v != INVALID; ++v) | 
|---|
| 174 | if (u < v) g.addArc(u, v); | 
|---|
| 175 | \endcode | 
|---|
| 176 |  | 
|---|
| 177 | \warning The order in which the iterators visit the items is | 
|---|
| 178 | undefined. The only thing you may assume that they will list the items | 
|---|
| 179 | in the same order until the graph is not changed. | 
|---|
| 180 |  | 
|---|
| 181 | Similarly, \ref concepts::Digraph::ArcIt "ListDigraph::ArcIt" | 
|---|
| 182 | lists the arcs. Its usage is the same as of | 
|---|
| 183 | \ref concepts::Digraph::NodeIt "ListDigraph::NodeIt". | 
|---|
| 184 |  | 
|---|
| 185 | \code | 
|---|
| 186 | int cnt = 0; | 
|---|
| 187 | for (ListDigraph::ArcIt a(g); a != INVALID; ++a) | 
|---|
| 188 | cnt++; | 
|---|
| 189 | std::cout << "Number of arcs: " << cnt << std::endl; | 
|---|
| 190 | \endcode | 
|---|
| 191 |  | 
|---|
| 192 | Finally, you can also list the arcs starting from or arriving at a | 
|---|
| 193 | certain node with | 
|---|
| 194 | \ref concepts::Digraph::OutArcIt "ListDigraph::OutArcIt" | 
|---|
| 195 | and | 
|---|
| 196 | \ref concepts::Digraph::InArcIt "ListDigraph::InArcIt". | 
|---|
| 197 | Their usage is the same, but you must also give the node to the constructor. | 
|---|
| 198 |  | 
|---|
| 199 | \code | 
|---|
| 200 | int cnt = 0; | 
|---|
| 201 | for (ListDigraph::OutArcIt a(g, x); a != INVALID; ++a) | 
|---|
| 202 | cnt++; | 
|---|
| 203 | std::cout << "Number of arcs leaving the node 'x': " << cnt << std::endl; | 
|---|
| 204 | \endcode | 
|---|
| 205 |  | 
|---|
| 206 | \note LEMON provides functions for counting the nodes and arcs of a digraph: | 
|---|
| 207 | \ref countNodes(), \ref countArcs(), \ref countInArcs(), \ref countOutArcs(). | 
|---|
| 208 | Using them is not just simpler than the above loops, but they could be much | 
|---|
| 209 | faster, since several graph types support constant time item counting. | 
|---|
| 210 |  | 
|---|
| 211 |  | 
|---|
| 212 | [SEC]sec_digraph_maps[SEC] Maps | 
|---|
| 213 |  | 
|---|
| 214 | The concept of "maps" is another fundamental part of LEMON. They allow assigning | 
|---|
| 215 | values of any type to the nodes or arcs of a graph. The standard maps | 
|---|
| 216 | provided by the graph structures have a couple of nice properties. | 
|---|
| 217 |  | 
|---|
| 218 | - \e Fast. Accessing (reading/writing) the values is as fast as a | 
|---|
| 219 | simple vector reading/writing. | 
|---|
| 220 | - \e Dynamic. Whenever you need, you | 
|---|
| 221 | can allocate new maps in your code, just as a local variable. So when you | 
|---|
| 222 | leave its scope, it will be de-allocated automatically. | 
|---|
| 223 | - \e Automatic. If you add new nodes or arcs to the graph, the storage of the | 
|---|
| 224 | existing maps will automatically expanded and the new slots will be | 
|---|
| 225 | initialized. On the removal of an item, the corresponding values in the maps | 
|---|
| 226 | are properly destructed. | 
|---|
| 227 |  | 
|---|
| 228 | By principle, the graph classes represent only the pure structure of | 
|---|
| 229 | the graph (i.e. the nodes and arcs and their connections). | 
|---|
| 230 | All data that are assigned to the items of the graph (e.g. node labels, | 
|---|
| 231 | arc costs or capacities) must be stored separately using maps. | 
|---|
| 232 |  | 
|---|
| 233 | \note These maps must not be confused with \c std::map, since they provide | 
|---|
| 234 | O(1) time access to the elements instead of O(log n). | 
|---|
| 235 |  | 
|---|
| 236 | So, if you want to assign \c int values to each node, you have to allocate a | 
|---|
| 237 | \ref concepts::Digraph::NodeMap "NodeMap<int>". | 
|---|
| 238 |  | 
|---|
| 239 | \code | 
|---|
| 240 | ListDigraph::NodeMap<int> map(g); | 
|---|
| 241 | \endcode | 
|---|
| 242 |  | 
|---|
| 243 | As you see, the graph you want to assign a map is given to the | 
|---|
| 244 | constructor. Then you can access its element as if it were a vector. | 
|---|
| 245 |  | 
|---|
| 246 | \code | 
|---|
| 247 | map[x] = 2; | 
|---|
| 248 | map[y] = 3; | 
|---|
| 249 | map[z] = map[x] + map[y]; | 
|---|
| 250 | \endcode | 
|---|
| 251 |  | 
|---|
| 252 | Any kind of data can be assigned to the graph items (assuming that the type | 
|---|
| 253 | has a default constructor). | 
|---|
| 254 |  | 
|---|
| 255 | \code | 
|---|
| 256 | ListDigraph::NodeMap<std::string> name(g); | 
|---|
| 257 | name[x] = "Node A"; | 
|---|
| 258 | name[y] = "Node B"; | 
|---|
| 259 | \endcode | 
|---|
| 260 |  | 
|---|
| 261 | As a more complex example, let us create a map that assigns \c char labels | 
|---|
| 262 | to the nodes. | 
|---|
| 263 |  | 
|---|
| 264 | \code | 
|---|
| 265 | ListDigraph::NodeMap<char> label(g); | 
|---|
| 266 | char ch = 'A'; | 
|---|
| 267 | for (ListDigraph::NodeIt n(g); n != INVALID; ++n) | 
|---|
| 268 | label[n] = ch++; | 
|---|
| 269 | \endcode | 
|---|
| 270 |  | 
|---|
| 271 | When you create a map, you can also give an initial value of the elements | 
|---|
| 272 | as a second parameter. For example, the following code puts the number | 
|---|
| 273 | of outgoing arcs for each node in a map. | 
|---|
| 274 |  | 
|---|
| 275 | \code | 
|---|
| 276 | ListDigraph::NodeMap<int> out_deg(g, 0); | 
|---|
| 277 | for (ListDigraph::ArcIt a(g); a != INVALID; ++a) | 
|---|
| 278 | out_deg[g.source(a)]++; | 
|---|
| 279 | \endcode | 
|---|
| 280 |  | 
|---|
| 281 | \warning The initial value will apply to the currently existing items only. If | 
|---|
| 282 | you add new nodes/arcs to the graph, then the corresponding values in the | 
|---|
| 283 | map will be initialized with the default constructor of the | 
|---|
| 284 | type. | 
|---|
| 285 |  | 
|---|
| 286 |  | 
|---|
| 287 | [SEC]sec_naming_conv[SEC] Naming Conventions | 
|---|
| 288 |  | 
|---|
| 289 | In LEMON, there are some naming conventions you might already notice | 
|---|
| 290 | in the above examples. | 
|---|
| 291 |  | 
|---|
| 292 | The name of a source file is written lowercase and the words are separated with | 
|---|
| 293 | underscores (e.g. \ref list_graph.h). All header files are located in the | 
|---|
| 294 | \c %lemon subdirectory, so you can include them like this. | 
|---|
| 295 |  | 
|---|
| 296 | \code | 
|---|
| 297 | #include <lemon/header_file.h> | 
|---|
| 298 | \endcode | 
|---|
| 299 |  | 
|---|
| 300 | The name of a class or any type looks like the following | 
|---|
| 301 | (e.g. \ref ListDigraph, \ref concepts::Digraph::Node "Node", | 
|---|
| 302 | \ref concepts::Digraph::NodeIt "NodeIt" etc.). | 
|---|
| 303 |  | 
|---|
| 304 | \code | 
|---|
| 305 | AllWordsCapitalizedWithoutUnderscores | 
|---|
| 306 | \endcode | 
|---|
| 307 |  | 
|---|
| 308 | The name of a function looks like the following | 
|---|
| 309 | (e.g. \ref concepts::Digraph::source() "source()", | 
|---|
| 310 | \ref concepts::Digraph::source() "target()", | 
|---|
| 311 | \ref countNodes(), \ref countArcs() etc.). | 
|---|
| 312 |  | 
|---|
| 313 | \code | 
|---|
| 314 | firstWordLowerCaseRestCapitalizedWithoutUnderscores | 
|---|
| 315 | \endcode | 
|---|
| 316 |  | 
|---|
| 317 | The names of constants and macros look like the following | 
|---|
| 318 | (e.g. \ref INVALID). | 
|---|
| 319 |  | 
|---|
| 320 | \code | 
|---|
| 321 | ALL_UPPER_CASE_WITH_UNDERSCORES | 
|---|
| 322 | \endcode | 
|---|
| 323 |  | 
|---|
| 324 | For more details, see \ref coding_style. | 
|---|
| 325 |  | 
|---|
| 326 | [TRAILER] | 
|---|
| 327 | */ | 
|---|
| 328 | } | 
|---|