/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_ADAPTORS_H #define LEMON_ADAPTORS_H /// \ingroup graph_adaptors /// \file /// \brief Adaptor classes for digraphs and graphs /// /// This file contains several useful adaptors for digraphs and graphs. #include #include #include #include #include #include #include namespace lemon { #ifdef _MSC_VER #define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED #else #define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED #endif template class DigraphAdaptorBase { public: typedef DGR Digraph; typedef DigraphAdaptorBase Adaptor; protected: DGR* _digraph; DigraphAdaptorBase() : _digraph(0) { } void initialize(DGR& digraph) { _digraph = &digraph; } public: DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { } typedef typename DGR::Node Node; typedef typename DGR::Arc Arc; void first(Node& i) const { _digraph->first(i); } void first(Arc& i) const { _digraph->first(i); } void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); } void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); } void next(Node& i) const { _digraph->next(i); } void next(Arc& i) const { _digraph->next(i); } void nextIn(Arc& i) const { _digraph->nextIn(i); } void nextOut(Arc& i) const { _digraph->nextOut(i); } Node source(const Arc& a) const { return _digraph->source(a); } Node target(const Arc& a) const { return _digraph->target(a); } typedef NodeNumTagIndicator NodeNumTag; int nodeNum() const { return _digraph->nodeNum(); } typedef ArcNumTagIndicator ArcNumTag; int arcNum() const { return _digraph->arcNum(); } typedef FindArcTagIndicator FindArcTag; Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { return _digraph->findArc(u, v, prev); } Node addNode() { return _digraph->addNode(); } Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); } void erase(const Node& n) { _digraph->erase(n); } void erase(const Arc& a) { _digraph->erase(a); } void clear() { _digraph->clear(); } int id(const Node& n) const { return _digraph->id(n); } int id(const Arc& a) const { return _digraph->id(a); } Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); } int maxNodeId() const { return _digraph->maxNodeId(); } int maxArcId() const { return _digraph->maxArcId(); } typedef typename ItemSetTraits::ItemNotifier NodeNotifier; NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } typedef typename ItemSetTraits::ItemNotifier ArcNotifier; ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); } template class NodeMap : public DGR::template NodeMap { public: typedef typename DGR::template NodeMap Parent; explicit NodeMap(const Adaptor& adaptor) : Parent(*adaptor._digraph) {} NodeMap(const Adaptor& adaptor, const V& value) : Parent(*adaptor._digraph, value) { } private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class ArcMap : public DGR::template ArcMap { public: typedef typename DGR::template ArcMap Parent; explicit ArcMap(const DigraphAdaptorBase& adaptor) : Parent(*adaptor._digraph) {} ArcMap(const DigraphAdaptorBase& adaptor, const V& value) : Parent(*adaptor._digraph, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; }; template class GraphAdaptorBase { public: typedef GR Graph; protected: GR* _graph; GraphAdaptorBase() : _graph(0) {} void initialize(GR& graph) { _graph = &graph; } public: GraphAdaptorBase(GR& graph) : _graph(&graph) {} typedef typename GR::Node Node; typedef typename GR::Arc Arc; typedef typename GR::Edge Edge; void first(Node& i) const { _graph->first(i); } void first(Arc& i) const { _graph->first(i); } void first(Edge& i) const { _graph->first(i); } void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); } void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); } void firstInc(Edge &i, bool &d, const Node &n) const { _graph->firstInc(i, d, n); } void next(Node& i) const { _graph->next(i); } void next(Arc& i) const { _graph->next(i); } void next(Edge& i) const { _graph->next(i); } void nextIn(Arc& i) const { _graph->nextIn(i); } void nextOut(Arc& i) const { _graph->nextOut(i); } void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); } Node u(const Edge& e) const { return _graph->u(e); } Node v(const Edge& e) const { return _graph->v(e); } Node source(const Arc& a) const { return _graph->source(a); } Node target(const Arc& a) const { return _graph->target(a); } typedef NodeNumTagIndicator NodeNumTag; int nodeNum() const { return _graph->nodeNum(); } typedef ArcNumTagIndicator ArcNumTag; int arcNum() const { return _graph->arcNum(); } typedef EdgeNumTagIndicator EdgeNumTag; int edgeNum() const { return _graph->edgeNum(); } typedef FindArcTagIndicator FindArcTag; Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { return _graph->findArc(u, v, prev); } typedef FindEdgeTagIndicator FindEdgeTag; Edge findEdge(const Node& u, const Node& v, const Edge& prev = INVALID) const { return _graph->findEdge(u, v, prev); } Node addNode() { return _graph->addNode(); } Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); } void erase(const Node& i) { _graph->erase(i); } void erase(const Edge& i) { _graph->erase(i); } void clear() { _graph->clear(); } bool direction(const Arc& a) const { return _graph->direction(a); } Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); } int id(const Node& v) const { return _graph->id(v); } int id(const Arc& a) const { return _graph->id(a); } int id(const Edge& e) const { return _graph->id(e); } Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } Arc arcFromId(int ix) const { return _graph->arcFromId(ix); } Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); } int maxNodeId() const { return _graph->maxNodeId(); } int maxArcId() const { return _graph->maxArcId(); } int maxEdgeId() const { return _graph->maxEdgeId(); } typedef typename ItemSetTraits::ItemNotifier NodeNotifier; NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } typedef typename ItemSetTraits::ItemNotifier ArcNotifier; ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } typedef typename ItemSetTraits::ItemNotifier EdgeNotifier; EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); } template class NodeMap : public GR::template NodeMap { public: typedef typename GR::template NodeMap Parent; explicit NodeMap(const GraphAdaptorBase& adapter) : Parent(*adapter._graph) {} NodeMap(const GraphAdaptorBase& adapter, const V& value) : Parent(*adapter._graph, value) {} private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class ArcMap : public GR::template ArcMap { public: typedef typename GR::template ArcMap Parent; explicit ArcMap(const GraphAdaptorBase& adapter) : Parent(*adapter._graph) {} ArcMap(const GraphAdaptorBase& adapter, const V& value) : Parent(*adapter._graph, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class EdgeMap : public GR::template EdgeMap { public: typedef typename GR::template EdgeMap Parent; explicit EdgeMap(const GraphAdaptorBase& adapter) : Parent(*adapter._graph) {} EdgeMap(const GraphAdaptorBase& adapter, const V& value) : Parent(*adapter._graph, value) {} private: EdgeMap& operator=(const EdgeMap& cmap) { return operator=(cmap); } template EdgeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; }; template class ReverseDigraphBase : public DigraphAdaptorBase { public: typedef DGR Digraph; typedef DigraphAdaptorBase Parent; protected: ReverseDigraphBase() : Parent() { } public: typedef typename Parent::Node Node; typedef typename Parent::Arc Arc; void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); } void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); } void nextIn(Arc& a) const { Parent::nextOut(a); } void nextOut(Arc& a) const { Parent::nextIn(a); } Node source(const Arc& a) const { return Parent::target(a); } Node target(const Arc& a) const { return Parent::source(a); } Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); } typedef FindArcTagIndicator FindArcTag; Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { return Parent::findArc(v, u, prev); } }; /// \ingroup graph_adaptors /// /// \brief Adaptor class for reversing the orientation of the arcs in /// a digraph. /// /// ReverseDigraph can be used for reversing the arcs in a digraph. /// It conforms to the \ref concepts::Digraph "Digraph" concept. /// /// The adapted digraph can also be modified through this adaptor /// by adding or removing nodes or arcs, unless the \c GR template /// parameter is set to be \c const. /// /// \tparam DGR The type of the adapted digraph. /// It must conform to the \ref concepts::Digraph "Digraph" concept. /// It can also be specified to be \c const. /// /// \note The \c Node and \c Arc types of this adaptor and the adapted /// digraph are convertible to each other. template #ifdef DOXYGEN class ReverseDigraph { #else class ReverseDigraph : public DigraphAdaptorExtender > { #endif public: /// The type of the adapted digraph. typedef DGR Digraph; typedef DigraphAdaptorExtender > Parent; protected: ReverseDigraph() { } public: /// \brief Constructor /// /// Creates a reverse digraph adaptor for the given digraph. explicit ReverseDigraph(DGR& digraph) { Parent::initialize(digraph); } }; /// \brief Returns a read-only ReverseDigraph adaptor /// /// This function just returns a read-only \ref ReverseDigraph adaptor. /// \ingroup graph_adaptors /// \relates ReverseDigraph template ReverseDigraph reverseDigraph(const DGR& digraph) { return ReverseDigraph(digraph); } template class SubDigraphBase : public DigraphAdaptorBase { public: typedef DGR Digraph; typedef NF NodeFilterMap; typedef AF ArcFilterMap; typedef SubDigraphBase Adaptor; typedef DigraphAdaptorBase Parent; protected: NF* _node_filter; AF* _arc_filter; SubDigraphBase() : Parent(), _node_filter(0), _arc_filter(0) { } void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { Parent::initialize(digraph); _node_filter = &node_filter; _arc_filter = &arc_filter; } public: typedef typename Parent::Node Node; typedef typename Parent::Arc Arc; void first(Node& i) const { Parent::first(i); while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); } void first(Arc& i) const { Parent::first(i); while (i != INVALID && (!(*_arc_filter)[i] || !(*_node_filter)[Parent::source(i)] || !(*_node_filter)[Parent::target(i)])) Parent::next(i); } void firstIn(Arc& i, const Node& n) const { Parent::firstIn(i, n); while (i != INVALID && (!(*_arc_filter)[i] || !(*_node_filter)[Parent::source(i)])) Parent::nextIn(i); } void firstOut(Arc& i, const Node& n) const { Parent::firstOut(i, n); while (i != INVALID && (!(*_arc_filter)[i] || !(*_node_filter)[Parent::target(i)])) Parent::nextOut(i); } void next(Node& i) const { Parent::next(i); while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); } void next(Arc& i) const { Parent::next(i); while (i != INVALID && (!(*_arc_filter)[i] || !(*_node_filter)[Parent::source(i)] || !(*_node_filter)[Parent::target(i)])) Parent::next(i); } void nextIn(Arc& i) const { Parent::nextIn(i); while (i != INVALID && (!(*_arc_filter)[i] || !(*_node_filter)[Parent::source(i)])) Parent::nextIn(i); } void nextOut(Arc& i) const { Parent::nextOut(i); while (i != INVALID && (!(*_arc_filter)[i] || !(*_node_filter)[Parent::target(i)])) Parent::nextOut(i); } void status(const Node& n, bool v) const { _node_filter->set(n, v); } void status(const Arc& a, bool v) const { _arc_filter->set(a, v); } bool status(const Node& n) const { return (*_node_filter)[n]; } bool status(const Arc& a) const { return (*_arc_filter)[a]; } typedef False NodeNumTag; typedef False ArcNumTag; typedef FindArcTagIndicator FindArcTag; Arc findArc(const Node& source, const Node& target, const Arc& prev = INVALID) const { if (!(*_node_filter)[source] || !(*_node_filter)[target]) { return INVALID; } Arc arc = Parent::findArc(source, target, prev); while (arc != INVALID && !(*_arc_filter)[arc]) { arc = Parent::findArc(source, target, arc); } return arc; } public: template class NodeMap : public SubMapExtender, LEMON_SCOPE_FIX(DigraphAdaptorBase, NodeMap)> { public: typedef V Value; typedef SubMapExtender, LEMON_SCOPE_FIX(DigraphAdaptorBase, NodeMap)> Parent; NodeMap(const SubDigraphBase& adaptor) : Parent(adaptor) {} NodeMap(const SubDigraphBase& adaptor, const V& value) : Parent(adaptor, value) {} private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class ArcMap : public SubMapExtender, LEMON_SCOPE_FIX(DigraphAdaptorBase, ArcMap)> { public: typedef V Value; typedef SubMapExtender, LEMON_SCOPE_FIX(DigraphAdaptorBase, ArcMap)> Parent; ArcMap(const SubDigraphBase& adaptor) : Parent(adaptor) {} ArcMap(const SubDigraphBase& adaptor, const V& value) : Parent(adaptor, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; }; template class SubDigraphBase : public DigraphAdaptorBase { public: typedef DGR Digraph; typedef NF NodeFilterMap; typedef AF ArcFilterMap; typedef SubDigraphBase Adaptor; typedef DigraphAdaptorBase Parent; protected: NF* _node_filter; AF* _arc_filter; SubDigraphBase() : Parent(), _node_filter(0), _arc_filter(0) { } void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { Parent::initialize(digraph); _node_filter = &node_filter; _arc_filter = &arc_filter; } public: typedef typename Parent::Node Node; typedef typename Parent::Arc Arc; void first(Node& i) const { Parent::first(i); while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); } void first(Arc& i) const { Parent::first(i); while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); } void firstIn(Arc& i, const Node& n) const { Parent::firstIn(i, n); while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); } void firstOut(Arc& i, const Node& n) const { Parent::firstOut(i, n); while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); } void next(Node& i) const { Parent::next(i); while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); } void next(Arc& i) const { Parent::next(i); while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); } void nextIn(Arc& i) const { Parent::nextIn(i); while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); } void nextOut(Arc& i) const { Parent::nextOut(i); while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); } void status(const Node& n, bool v) const { _node_filter->set(n, v); } void status(const Arc& a, bool v) const { _arc_filter->set(a, v); } bool status(const Node& n) const { return (*_node_filter)[n]; } bool status(const Arc& a) const { return (*_arc_filter)[a]; } typedef False NodeNumTag; typedef False ArcNumTag; typedef FindArcTagIndicator FindArcTag; Arc findArc(const Node& source, const Node& target, const Arc& prev = INVALID) const { if (!(*_node_filter)[source] || !(*_node_filter)[target]) { return INVALID; } Arc arc = Parent::findArc(source, target, prev); while (arc != INVALID && !(*_arc_filter)[arc]) { arc = Parent::findArc(source, target, arc); } return arc; } template class NodeMap : public SubMapExtender, LEMON_SCOPE_FIX(DigraphAdaptorBase, NodeMap)> { public: typedef V Value; typedef SubMapExtender, LEMON_SCOPE_FIX(DigraphAdaptorBase, NodeMap)> Parent; NodeMap(const SubDigraphBase& adaptor) : Parent(adaptor) {} NodeMap(const SubDigraphBase& adaptor, const V& value) : Parent(adaptor, value) {} private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class ArcMap : public SubMapExtender, LEMON_SCOPE_FIX(DigraphAdaptorBase, ArcMap)> { public: typedef V Value; typedef SubMapExtender, LEMON_SCOPE_FIX(DigraphAdaptorBase, ArcMap)> Parent; ArcMap(const SubDigraphBase& adaptor) : Parent(adaptor) {} ArcMap(const SubDigraphBase& adaptor, const V& value) : Parent(adaptor, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; }; /// \ingroup graph_adaptors /// /// \brief Adaptor class for hiding nodes and arcs in a digraph /// /// SubDigraph can be used for hiding nodes and arcs in a digraph. /// A \c bool node map and a \c bool arc map must be specified, which /// define the filters for nodes and arcs. /// Only the nodes and arcs with \c true filter value are /// shown in the subdigraph. The arcs that are incident to hidden /// nodes are also filtered out. /// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept. /// /// The adapted digraph can also be modified through this adaptor /// by adding or removing nodes or arcs, unless the \c GR template /// parameter is set to be \c const. /// /// \tparam DGR The type of the adapted digraph. /// It must conform to the \ref concepts::Digraph "Digraph" concept. /// It can also be specified to be \c const. /// \tparam NF The type of the node filter map. /// It must be a \c bool (or convertible) node map of the /// adapted digraph. The default type is /// \ref concepts::Digraph::NodeMap "DGR::NodeMap". /// \tparam AF The type of the arc filter map. /// It must be \c bool (or convertible) arc map of the /// adapted digraph. The default type is /// \ref concepts::Digraph::ArcMap "DGR::ArcMap". /// /// \note The \c Node and \c Arc types of this adaptor and the adapted /// digraph are convertible to each other. /// /// \see FilterNodes /// \see FilterArcs #ifdef DOXYGEN template class SubDigraph { #else template, typename AF = typename DGR::template ArcMap > class SubDigraph : public DigraphAdaptorExtender > { #endif public: /// The type of the adapted digraph. typedef DGR Digraph; /// The type of the node filter map. typedef NF NodeFilterMap; /// The type of the arc filter map. typedef AF ArcFilterMap; typedef DigraphAdaptorExtender > Parent; typedef typename Parent::Node Node; typedef typename Parent::Arc Arc; protected: SubDigraph() { } public: /// \brief Constructor /// /// Creates a subdigraph for the given digraph with the /// given node and arc filter maps. SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) { Parent::initialize(digraph, node_filter, arc_filter); } /// \brief Sets the status of the given node /// /// This function sets the status of the given node. /// It is done by simply setting the assigned value of \c n /// to \c v in the node filter map. void status(const Node& n, bool v) const { Parent::status(n, v); } /// \brief Sets the status of the given arc /// /// This function sets the status of the given arc. /// It is done by simply setting the assigned value of \c a /// to \c v in the arc filter map. void status(const Arc& a, bool v) const { Parent::status(a, v); } /// \brief Returns the status of the given node /// /// This function returns the status of the given node. /// It is \c true if the given node is enabled (i.e. not hidden). bool status(const Node& n) const { return Parent::status(n); } /// \brief Returns the status of the given arc /// /// This function returns the status of the given arc. /// It is \c true if the given arc is enabled (i.e. not hidden). bool status(const Arc& a) const { return Parent::status(a); } /// \brief Disables the given node /// /// This function disables the given node in the subdigraph, /// so the iteration jumps over it. /// It is the same as \ref status() "status(n, false)". void disable(const Node& n) const { Parent::status(n, false); } /// \brief Disables the given arc /// /// This function disables the given arc in the subdigraph, /// so the iteration jumps over it. /// It is the same as \ref status() "status(a, false)". void disable(const Arc& a) const { Parent::status(a, false); } /// \brief Enables the given node /// /// This function enables the given node in the subdigraph. /// It is the same as \ref status() "status(n, true)". void enable(const Node& n) const { Parent::status(n, true); } /// \brief Enables the given arc /// /// This function enables the given arc in the subdigraph. /// It is the same as \ref status() "status(a, true)". void enable(const Arc& a) const { Parent::status(a, true); } }; /// \brief Returns a read-only SubDigraph adaptor /// /// This function just returns a read-only \ref SubDigraph adaptor. /// \ingroup graph_adaptors /// \relates SubDigraph template SubDigraph subDigraph(const DGR& digraph, NF& node_filter, AF& arc_filter) { return SubDigraph (digraph, node_filter, arc_filter); } template SubDigraph subDigraph(const DGR& digraph, const NF& node_filter, AF& arc_filter) { return SubDigraph (digraph, node_filter, arc_filter); } template SubDigraph subDigraph(const DGR& digraph, NF& node_filter, const AF& arc_filter) { return SubDigraph (digraph, node_filter, arc_filter); } template SubDigraph subDigraph(const DGR& digraph, const NF& node_filter, const AF& arc_filter) { return SubDigraph (digraph, node_filter, arc_filter); } template class SubGraphBase : public GraphAdaptorBase { public: typedef GR Graph; typedef NF NodeFilterMap; typedef EF EdgeFilterMap; typedef SubGraphBase Adaptor; typedef GraphAdaptorBase Parent; protected: NF* _node_filter; EF* _edge_filter; SubGraphBase() : Parent(), _node_filter(0), _edge_filter(0) { } void initialize(GR& graph, NF& node_filter, EF& edge_filter) { Parent::initialize(graph); _node_filter = &node_filter; _edge_filter = &edge_filter; } public: typedef typename Parent::Node Node; typedef typename Parent::Arc Arc; typedef typename Parent::Edge Edge; void first(Node& i) const { Parent::first(i); while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); } void first(Arc& i) const { Parent::first(i); while (i!=INVALID && (!(*_edge_filter)[i] || !(*_node_filter)[Parent::source(i)] || !(*_node_filter)[Parent::target(i)])) Parent::next(i); } void first(Edge& i) const { Parent::first(i); while (i!=INVALID && (!(*_edge_filter)[i] || !(*_node_filter)[Parent::u(i)] || !(*_node_filter)[Parent::v(i)])) Parent::next(i); } void firstIn(Arc& i, const Node& n) const { Parent::firstIn(i, n); while (i!=INVALID && (!(*_edge_filter)[i] || !(*_node_filter)[Parent::source(i)])) Parent::nextIn(i); } void firstOut(Arc& i, const Node& n) const { Parent::firstOut(i, n); while (i!=INVALID && (!(*_edge_filter)[i] || !(*_node_filter)[Parent::target(i)])) Parent::nextOut(i); } void firstInc(Edge& i, bool& d, const Node& n) const { Parent::firstInc(i, d, n); while (i!=INVALID && (!(*_edge_filter)[i] || !(*_node_filter)[Parent::u(i)] || !(*_node_filter)[Parent::v(i)])) Parent::nextInc(i, d); } void next(Node& i) const { Parent::next(i); while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); } void next(Arc& i) const { Parent::next(i); while (i!=INVALID && (!(*_edge_filter)[i] || !(*_node_filter)[Parent::source(i)] || !(*_node_filter)[Parent::target(i)])) Parent::next(i); } void next(Edge& i) const { Parent::next(i); while (i!=INVALID && (!(*_edge_filter)[i] || !(*_node_filter)[Parent::u(i)] || !(*_node_filter)[Parent::v(i)])) Parent::next(i); } void nextIn(Arc& i) const { Parent::nextIn(i); while (i!=INVALID && (!(*_edge_filter)[i] || !(*_node_filter)[Parent::source(i)])) Parent::nextIn(i); } void nextOut(Arc& i) const { Parent::nextOut(i); while (i!=INVALID && (!(*_edge_filter)[i] || !(*_node_filter)[Parent::target(i)])) Parent::nextOut(i); } void nextInc(Edge& i, bool& d) const { Parent::nextInc(i, d); while (i!=INVALID && (!(*_edge_filter)[i] || !(*_node_filter)[Parent::u(i)] || !(*_node_filter)[Parent::v(i)])) Parent::nextInc(i, d); } void status(const Node& n, bool v) const { _node_filter->set(n, v); } void status(const Edge& e, bool v) const { _edge_filter->set(e, v); } bool status(const Node& n) const { return (*_node_filter)[n]; } bool status(const Edge& e) const { return (*_edge_filter)[e]; } typedef False NodeNumTag; typedef False ArcNumTag; typedef False EdgeNumTag; typedef FindArcTagIndicator FindArcTag; Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { if (!(*_node_filter)[u] || !(*_node_filter)[v]) { return INVALID; } Arc arc = Parent::findArc(u, v, prev); while (arc != INVALID && !(*_edge_filter)[arc]) { arc = Parent::findArc(u, v, arc); } return arc; } typedef FindEdgeTagIndicator FindEdgeTag; Edge findEdge(const Node& u, const Node& v, const Edge& prev = INVALID) const { if (!(*_node_filter)[u] || !(*_node_filter)[v]) { return INVALID; } Edge edge = Parent::findEdge(u, v, prev); while (edge != INVALID && !(*_edge_filter)[edge]) { edge = Parent::findEdge(u, v, edge); } return edge; } template class NodeMap : public SubMapExtender, LEMON_SCOPE_FIX(GraphAdaptorBase, NodeMap)> { public: typedef V Value; typedef SubMapExtender, LEMON_SCOPE_FIX(GraphAdaptorBase, NodeMap)> Parent; NodeMap(const SubGraphBase& adaptor) : Parent(adaptor) {} NodeMap(const SubGraphBase& adaptor, const V& value) : Parent(adaptor, value) {} private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class ArcMap : public SubMapExtender, LEMON_SCOPE_FIX(GraphAdaptorBase, ArcMap)> { public: typedef V Value; typedef SubMapExtender, LEMON_SCOPE_FIX(GraphAdaptorBase, ArcMap)> Parent; ArcMap(const SubGraphBase& adaptor) : Parent(adaptor) {} ArcMap(const SubGraphBase& adaptor, const V& value) : Parent(adaptor, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class EdgeMap : public SubMapExtender, LEMON_SCOPE_FIX(GraphAdaptorBase, EdgeMap)> { public: typedef V Value; typedef SubMapExtender, LEMON_SCOPE_FIX(GraphAdaptorBase, EdgeMap)> Parent; EdgeMap(const SubGraphBase& adaptor) : Parent(adaptor) {} EdgeMap(const SubGraphBase& adaptor, const V& value) : Parent(adaptor, value) {} private: EdgeMap& operator=(const EdgeMap& cmap) { return operator=(cmap); } template EdgeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; }; template class SubGraphBase : public GraphAdaptorBase { public: typedef GR Graph; typedef NF NodeFilterMap; typedef EF EdgeFilterMap; typedef SubGraphBase Adaptor; typedef GraphAdaptorBase Parent; protected: NF* _node_filter; EF* _edge_filter; SubGraphBase() : Parent(), _node_filter(0), _edge_filter(0) { } void initialize(GR& graph, NF& node_filter, EF& edge_filter) { Parent::initialize(graph); _node_filter = &node_filter; _edge_filter = &edge_filter; } public: typedef typename Parent::Node Node; typedef typename Parent::Arc Arc; typedef typename Parent::Edge Edge; void first(Node& i) const { Parent::first(i); while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); } void first(Arc& i) const { Parent::first(i); while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); } void first(Edge& i) const { Parent::first(i); while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); } void firstIn(Arc& i, const Node& n) const { Parent::firstIn(i, n); while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); } void firstOut(Arc& i, const Node& n) const { Parent::firstOut(i, n); while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i); } void firstInc(Edge& i, bool& d, const Node& n) const { Parent::firstInc(i, d, n); while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d); } void next(Node& i) const { Parent::next(i); while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); } void next(Arc& i) const { Parent::next(i); while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); } void next(Edge& i) const { Parent::next(i); while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); } void nextIn(Arc& i) const { Parent::nextIn(i); while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); } void nextOut(Arc& i) const { Parent::nextOut(i); while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i); } void nextInc(Edge& i, bool& d) const { Parent::nextInc(i, d); while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d); } void status(const Node& n, bool v) const { _node_filter->set(n, v); } void status(const Edge& e, bool v) const { _edge_filter->set(e, v); } bool status(const Node& n) const { return (*_node_filter)[n]; } bool status(const Edge& e) const { return (*_edge_filter)[e]; } typedef False NodeNumTag; typedef False ArcNumTag; typedef False EdgeNumTag; typedef FindArcTagIndicator FindArcTag; Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { Arc arc = Parent::findArc(u, v, prev); while (arc != INVALID && !(*_edge_filter)[arc]) { arc = Parent::findArc(u, v, arc); } return arc; } typedef FindEdgeTagIndicator FindEdgeTag; Edge findEdge(const Node& u, const Node& v, const Edge& prev = INVALID) const { Edge edge = Parent::findEdge(u, v, prev); while (edge != INVALID && !(*_edge_filter)[edge]) { edge = Parent::findEdge(u, v, edge); } return edge; } template class NodeMap : public SubMapExtender, LEMON_SCOPE_FIX(GraphAdaptorBase, NodeMap)> { public: typedef V Value; typedef SubMapExtender, LEMON_SCOPE_FIX(GraphAdaptorBase, NodeMap)> Parent; NodeMap(const SubGraphBase& adaptor) : Parent(adaptor) {} NodeMap(const SubGraphBase& adaptor, const V& value) : Parent(adaptor, value) {} private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class ArcMap : public SubMapExtender, LEMON_SCOPE_FIX(GraphAdaptorBase, ArcMap)> { public: typedef V Value; typedef SubMapExtender, LEMON_SCOPE_FIX(GraphAdaptorBase, ArcMap)> Parent; ArcMap(const SubGraphBase& adaptor) : Parent(adaptor) {} ArcMap(const SubGraphBase& adaptor, const V& value) : Parent(adaptor, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class EdgeMap : public SubMapExtender, LEMON_SCOPE_FIX(GraphAdaptorBase, EdgeMap)> { public: typedef V Value; typedef SubMapExtender, LEMON_SCOPE_FIX(GraphAdaptorBase, EdgeMap)> Parent; EdgeMap(const SubGraphBase& adaptor) : Parent(adaptor) {} EdgeMap(const SubGraphBase& adaptor, const V& value) : Parent(adaptor, value) {} private: EdgeMap& operator=(const EdgeMap& cmap) { return operator=(cmap); } template EdgeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; }; /// \ingroup graph_adaptors /// /// \brief Adaptor class for hiding nodes and edges in an undirected /// graph. /// /// SubGraph can be used for hiding nodes and edges in a graph. /// A \c bool node map and a \c bool edge map must be specified, which /// define the filters for nodes and edges. /// Only the nodes and edges with \c true filter value are /// shown in the subgraph. The edges that are incident to hidden /// nodes are also filtered out. /// This adaptor conforms to the \ref concepts::Graph "Graph" concept. /// /// The adapted graph can also be modified through this adaptor /// by adding or removing nodes or edges, unless the \c GR template /// parameter is set to be \c const. /// /// \tparam GR The type of the adapted graph. /// It must conform to the \ref concepts::Graph "Graph" concept. /// It can also be specified to be \c const. /// \tparam NF The type of the node filter map. /// It must be a \c bool (or convertible) node map of the /// adapted graph. The default type is /// \ref concepts::Graph::NodeMap "GR::NodeMap". /// \tparam EF The type of the edge filter map. /// It must be a \c bool (or convertible) edge map of the /// adapted graph. The default type is /// \ref concepts::Graph::EdgeMap "GR::EdgeMap". /// /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the /// adapted graph are convertible to each other. /// /// \see FilterNodes /// \see FilterEdges #ifdef DOXYGEN template class SubGraph { #else template, typename EF = typename GR::template EdgeMap > class SubGraph : public GraphAdaptorExtender > { #endif public: /// The type of the adapted graph. typedef GR Graph; /// The type of the node filter map. typedef NF NodeFilterMap; /// The type of the edge filter map. typedef EF EdgeFilterMap; typedef GraphAdaptorExtender > Parent; typedef typename Parent::Node Node; typedef typename Parent::Edge Edge; protected: SubGraph() { } public: /// \brief Constructor /// /// Creates a subgraph for the given graph with the given node /// and edge filter maps. SubGraph(GR& graph, NF& node_filter, EF& edge_filter) { initialize(graph, node_filter, edge_filter); } /// \brief Sets the status of the given node /// /// This function sets the status of the given node. /// It is done by simply setting the assigned value of \c n /// to \c v in the node filter map. void status(const Node& n, bool v) const { Parent::status(n, v); } /// \brief Sets the status of the given edge /// /// This function sets the status of the given edge. /// It is done by simply setting the assigned value of \c e /// to \c v in the edge filter map. void status(const Edge& e, bool v) const { Parent::status(e, v); } /// \brief Returns the status of the given node /// /// This function returns the status of the given node. /// It is \c true if the given node is enabled (i.e. not hidden). bool status(const Node& n) const { return Parent::status(n); } /// \brief Returns the status of the given edge /// /// This function returns the status of the given edge. /// It is \c true if the given edge is enabled (i.e. not hidden). bool status(const Edge& e) const { return Parent::status(e); } /// \brief Disables the given node /// /// This function disables the given node in the subdigraph, /// so the iteration jumps over it. /// It is the same as \ref status() "status(n, false)". void disable(const Node& n) const { Parent::status(n, false); } /// \brief Disables the given edge /// /// This function disables the given edge in the subgraph, /// so the iteration jumps over it. /// It is the same as \ref status() "status(e, false)". void disable(const Edge& e) const { Parent::status(e, false); } /// \brief Enables the given node /// /// This function enables the given node in the subdigraph. /// It is the same as \ref status() "status(n, true)". void enable(const Node& n) const { Parent::status(n, true); } /// \brief Enables the given edge /// /// This function enables the given edge in the subgraph. /// It is the same as \ref status() "status(e, true)". void enable(const Edge& e) const { Parent::status(e, true); } }; /// \brief Returns a read-only SubGraph adaptor /// /// This function just returns a read-only \ref SubGraph adaptor. /// \ingroup graph_adaptors /// \relates SubGraph template SubGraph subGraph(const GR& graph, NF& node_filter, EF& edge_filter) { return SubGraph (graph, node_filter, edge_filter); } template SubGraph subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) { return SubGraph (graph, node_filter, edge_filter); } template SubGraph subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) { return SubGraph (graph, node_filter, edge_filter); } template SubGraph subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) { return SubGraph (graph, node_filter, edge_filter); } /// \ingroup graph_adaptors /// /// \brief Adaptor class for hiding nodes in a digraph or a graph. /// /// FilterNodes adaptor can be used for hiding nodes in a digraph or a /// graph. A \c bool node map must be specified, which defines the filter /// for the nodes. Only the nodes with \c true filter value and the /// arcs/edges incident to nodes both with \c true filter value are shown /// in the subgraph. This adaptor conforms to the \ref concepts::Digraph /// "Digraph" concept or the \ref concepts::Graph "Graph" concept /// depending on the \c GR template parameter. /// /// The adapted (di)graph can also be modified through this adaptor /// by adding or removing nodes or arcs/edges, unless the \c GR template /// parameter is set to be \c const. /// /// \tparam GR The type of the adapted digraph or graph. /// It must conform to the \ref concepts::Digraph "Digraph" concept /// or the \ref concepts::Graph "Graph" concept. /// It can also be specified to be \c const. /// \tparam NF The type of the node filter map. /// It must be a \c bool (or convertible) node map of the /// adapted (di)graph. The default type is /// \ref concepts::Graph::NodeMap "GR::NodeMap". /// /// \note The \c Node and Arc/Edge types of this adaptor and the /// adapted (di)graph are convertible to each other. #ifdef DOXYGEN template class FilterNodes { #else template, typename Enable = void> class FilterNodes : public DigraphAdaptorExtender< SubDigraphBase >, true> > { #endif public: typedef GR Digraph; typedef NF NodeFilterMap; typedef DigraphAdaptorExtender< SubDigraphBase >, true> > Parent; typedef typename Parent::Node Node; protected: ConstMap > const_true_map; FilterNodes() : const_true_map() {} public: /// \brief Constructor /// /// Creates a subgraph for the given digraph or graph with the /// given node filter map. FilterNodes(GR& graph, NF& node_filter) : Parent(), const_true_map() { Parent::initialize(graph, node_filter, const_true_map); } /// \brief Sets the status of the given node /// /// This function sets the status of the given node. /// It is done by simply setting the assigned value of \c n /// to \c v in the node filter map. void status(const Node& n, bool v) const { Parent::status(n, v); } /// \brief Returns the status of the given node /// /// This function returns the status of the given node. /// It is \c true if the given node is enabled (i.e. not hidden). bool status(const Node& n) const { return Parent::status(n); } /// \brief Disables the given node /// /// This function disables the given node, so the iteration /// jumps over it. /// It is the same as \ref status() "status(n, false)". void disable(const Node& n) const { Parent::status(n, false); } /// \brief Enables the given node /// /// This function enables the given node. /// It is the same as \ref status() "status(n, true)". void enable(const Node& n) const { Parent::status(n, true); } }; template class FilterNodes >::type> : public GraphAdaptorExtender< SubGraphBase >, true> > { public: typedef GR Graph; typedef NF NodeFilterMap; typedef GraphAdaptorExtender< SubGraphBase >, true> > Parent; typedef typename Parent::Node Node; protected: ConstMap > const_true_map; FilterNodes() : const_true_map() {} public: FilterNodes(GR& graph, NodeFilterMap& node_filter) : Parent(), const_true_map() { Parent::initialize(graph, node_filter, const_true_map); } void status(const Node& n, bool v) const { Parent::status(n, v); } bool status(const Node& n) const { return Parent::status(n); } void disable(const Node& n) const { Parent::status(n, false); } void enable(const Node& n) const { Parent::status(n, true); } }; /// \brief Returns a read-only FilterNodes adaptor /// /// This function just returns a read-only \ref FilterNodes adaptor. /// \ingroup graph_adaptors /// \relates FilterNodes template FilterNodes filterNodes(const GR& graph, NF& node_filter) { return FilterNodes(graph, node_filter); } template FilterNodes filterNodes(const GR& graph, const NF& node_filter) { return FilterNodes(graph, node_filter); } /// \ingroup graph_adaptors /// /// \brief Adaptor class for hiding arcs in a digraph. /// /// FilterArcs adaptor can be used for hiding arcs in a digraph. /// A \c bool arc map must be specified, which defines the filter for /// the arcs. Only the arcs with \c true filter value are shown in the /// subdigraph. This adaptor conforms to the \ref concepts::Digraph /// "Digraph" concept. /// /// The adapted digraph can also be modified through this adaptor /// by adding or removing nodes or arcs, unless the \c GR template /// parameter is set to be \c const. /// /// \tparam DGR The type of the adapted digraph. /// It must conform to the \ref concepts::Digraph "Digraph" concept. /// It can also be specified to be \c const. /// \tparam AF The type of the arc filter map. /// It must be a \c bool (or convertible) arc map of the /// adapted digraph. The default type is /// \ref concepts::Digraph::ArcMap "DGR::ArcMap". /// /// \note The \c Node and \c Arc types of this adaptor and the adapted /// digraph are convertible to each other. #ifdef DOXYGEN template class FilterArcs { #else template > class FilterArcs : public DigraphAdaptorExtender< SubDigraphBase >, AF, false> > { #endif public: /// The type of the adapted digraph. typedef DGR Digraph; /// The type of the arc filter map. typedef AF ArcFilterMap; typedef DigraphAdaptorExtender< SubDigraphBase >, AF, false> > Parent; typedef typename Parent::Arc Arc; protected: ConstMap > const_true_map; FilterArcs() : const_true_map() {} public: /// \brief Constructor /// /// Creates a subdigraph for the given digraph with the given arc /// filter map. FilterArcs(DGR& digraph, ArcFilterMap& arc_filter) : Parent(), const_true_map() { Parent::initialize(digraph, const_true_map, arc_filter); } /// \brief Sets the status of the given arc /// /// This function sets the status of the given arc. /// It is done by simply setting the assigned value of \c a /// to \c v in the arc filter map. void status(const Arc& a, bool v) const { Parent::status(a, v); } /// \brief Returns the status of the given arc /// /// This function returns the status of the given arc. /// It is \c true if the given arc is enabled (i.e. not hidden). bool status(const Arc& a) const { return Parent::status(a); } /// \brief Disables the given arc /// /// This function disables the given arc in the subdigraph, /// so the iteration jumps over it. /// It is the same as \ref status() "status(a, false)". void disable(const Arc& a) const { Parent::status(a, false); } /// \brief Enables the given arc /// /// This function enables the given arc in the subdigraph. /// It is the same as \ref status() "status(a, true)". void enable(const Arc& a) const { Parent::status(a, true); } }; /// \brief Returns a read-only FilterArcs adaptor /// /// This function just returns a read-only \ref FilterArcs adaptor. /// \ingroup graph_adaptors /// \relates FilterArcs template FilterArcs filterArcs(const DGR& digraph, AF& arc_filter) { return FilterArcs(digraph, arc_filter); } template FilterArcs filterArcs(const DGR& digraph, const AF& arc_filter) { return FilterArcs(digraph, arc_filter); } /// \ingroup graph_adaptors /// /// \brief Adaptor class for hiding edges in a graph. /// /// FilterEdges adaptor can be used for hiding edges in a graph. /// A \c bool edge map must be specified, which defines the filter for /// the edges. Only the edges with \c true filter value are shown in the /// subgraph. This adaptor conforms to the \ref concepts::Graph /// "Graph" concept. /// /// The adapted graph can also be modified through this adaptor /// by adding or removing nodes or edges, unless the \c GR template /// parameter is set to be \c const. /// /// \tparam GR The type of the adapted graph. /// It must conform to the \ref concepts::Graph "Graph" concept. /// It can also be specified to be \c const. /// \tparam EF The type of the edge filter map. /// It must be a \c bool (or convertible) edge map of the /// adapted graph. The default type is /// \ref concepts::Graph::EdgeMap "GR::EdgeMap". /// /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the /// adapted graph are convertible to each other. #ifdef DOXYGEN template class FilterEdges { #else template > class FilterEdges : public GraphAdaptorExtender< SubGraphBase >, EF, false> > { #endif public: /// The type of the adapted graph. typedef GR Graph; /// The type of the edge filter map. typedef EF EdgeFilterMap; typedef GraphAdaptorExtender< SubGraphBase >, EF, false> > Parent; typedef typename Parent::Edge Edge; protected: ConstMap > const_true_map; FilterEdges() : const_true_map(true) { Parent::setNodeFilterMap(const_true_map); } public: /// \brief Constructor /// /// Creates a subgraph for the given graph with the given edge /// filter map. FilterEdges(GR& graph, EF& edge_filter) : Parent(), const_true_map() { Parent::initialize(graph, const_true_map, edge_filter); } /// \brief Sets the status of the given edge /// /// This function sets the status of the given edge. /// It is done by simply setting the assigned value of \c e /// to \c v in the edge filter map. void status(const Edge& e, bool v) const { Parent::status(e, v); } /// \brief Returns the status of the given edge /// /// This function returns the status of the given edge. /// It is \c true if the given edge is enabled (i.e. not hidden). bool status(const Edge& e) const { return Parent::status(e); } /// \brief Disables the given edge /// /// This function disables the given edge in the subgraph, /// so the iteration jumps over it. /// It is the same as \ref status() "status(e, false)". void disable(const Edge& e) const { Parent::status(e, false); } /// \brief Enables the given edge /// /// This function enables the given edge in the subgraph. /// It is the same as \ref status() "status(e, true)". void enable(const Edge& e) const { Parent::status(e, true); } }; /// \brief Returns a read-only FilterEdges adaptor /// /// This function just returns a read-only \ref FilterEdges adaptor. /// \ingroup graph_adaptors /// \relates FilterEdges template FilterEdges filterEdges(const GR& graph, EF& edge_filter) { return FilterEdges(graph, edge_filter); } template FilterEdges filterEdges(const GR& graph, const EF& edge_filter) { return FilterEdges(graph, edge_filter); } template class UndirectorBase { public: typedef DGR Digraph; typedef UndirectorBase Adaptor; typedef True UndirectedTag; typedef typename Digraph::Arc Edge; typedef typename Digraph::Node Node; class Arc : public Edge { friend class UndirectorBase; protected: bool _forward; Arc(const Edge& edge, bool forward) : Edge(edge), _forward(forward) {} public: Arc() {} Arc(Invalid) : Edge(INVALID), _forward(true) {} bool operator==(const Arc &other) const { return _forward == other._forward && static_cast(*this) == static_cast(other); } bool operator!=(const Arc &other) const { return _forward != other._forward || static_cast(*this) != static_cast(other); } bool operator<(const Arc &other) const { return _forward < other._forward || (_forward == other._forward && static_cast(*this) < static_cast(other)); } }; void first(Node& n) const { _digraph->first(n); } void next(Node& n) const { _digraph->next(n); } void first(Arc& a) const { _digraph->first(a); a._forward = true; } void next(Arc& a) const { if (a._forward) { a._forward = false; } else { _digraph->next(a); a._forward = true; } } void first(Edge& e) const { _digraph->first(e); } void next(Edge& e) const { _digraph->next(e); } void firstOut(Arc& a, const Node& n) const { _digraph->firstIn(a, n); if( static_cast(a) != INVALID ) { a._forward = false; } else { _digraph->firstOut(a, n); a._forward = true; } } void nextOut(Arc &a) const { if (!a._forward) { Node n = _digraph->target(a); _digraph->nextIn(a); if (static_cast(a) == INVALID ) { _digraph->firstOut(a, n); a._forward = true; } } else { _digraph->nextOut(a); } } void firstIn(Arc &a, const Node &n) const { _digraph->firstOut(a, n); if (static_cast(a) != INVALID ) { a._forward = false; } else { _digraph->firstIn(a, n); a._forward = true; } } void nextIn(Arc &a) const { if (!a._forward) { Node n = _digraph->source(a); _digraph->nextOut(a); if( static_cast(a) == INVALID ) { _digraph->firstIn(a, n); a._forward = true; } } else { _digraph->nextIn(a); } } void firstInc(Edge &e, bool &d, const Node &n) const { d = true; _digraph->firstOut(e, n); if (e != INVALID) return; d = false; _digraph->firstIn(e, n); } void nextInc(Edge &e, bool &d) const { if (d) { Node s = _digraph->source(e); _digraph->nextOut(e); if (e != INVALID) return; d = false; _digraph->firstIn(e, s); } else { _digraph->nextIn(e); } } Node u(const Edge& e) const { return _digraph->source(e); } Node v(const Edge& e) const { return _digraph->target(e); } Node source(const Arc &a) const { return a._forward ? _digraph->source(a) : _digraph->target(a); } Node target(const Arc &a) const { return a._forward ? _digraph->target(a) : _digraph->source(a); } static Arc direct(const Edge &e, bool d) { return Arc(e, d); } Arc direct(const Edge &e, const Node& n) const { return Arc(e, _digraph->source(e) == n); } static bool direction(const Arc &a) { return a._forward; } Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } Arc arcFromId(int ix) const { return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1)); } Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); } int id(const Node &n) const { return _digraph->id(n); } int id(const Arc &a) const { return (_digraph->id(a) << 1) | (a._forward ? 1 : 0); } int id(const Edge &e) const { return _digraph->id(e); } int maxNodeId() const { return _digraph->maxNodeId(); } int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; } int maxEdgeId() const { return _digraph->maxArcId(); } Node addNode() { return _digraph->addNode(); } Edge addEdge(const Node& u, const Node& v) { return _digraph->addArc(u, v); } void erase(const Node& i) { _digraph->erase(i); } void erase(const Edge& i) { _digraph->erase(i); } void clear() { _digraph->clear(); } typedef NodeNumTagIndicator NodeNumTag; int nodeNum() const { return _digraph->nodeNum(); } typedef ArcNumTagIndicator ArcNumTag; int arcNum() const { return 2 * _digraph->arcNum(); } typedef ArcNumTag EdgeNumTag; int edgeNum() const { return _digraph->arcNum(); } typedef FindArcTagIndicator FindArcTag; Arc findArc(Node s, Node t, Arc p = INVALID) const { if (p == INVALID) { Edge arc = _digraph->findArc(s, t); if (arc != INVALID) return direct(arc, true); arc = _digraph->findArc(t, s); if (arc != INVALID) return direct(arc, false); } else if (direction(p)) { Edge arc = _digraph->findArc(s, t, p); if (arc != INVALID) return direct(arc, true); arc = _digraph->findArc(t, s); if (arc != INVALID) return direct(arc, false); } else { Edge arc = _digraph->findArc(t, s, p); if (arc != INVALID) return direct(arc, false); } return INVALID; } typedef FindArcTag FindEdgeTag; Edge findEdge(Node s, Node t, Edge p = INVALID) const { if (s != t) { if (p == INVALID) { Edge arc = _digraph->findArc(s, t); if (arc != INVALID) return arc; arc = _digraph->findArc(t, s); if (arc != INVALID) return arc; } else if (_digraph->source(p) == s) { Edge arc = _digraph->findArc(s, t, p); if (arc != INVALID) return arc; arc = _digraph->findArc(t, s); if (arc != INVALID) return arc; } else { Edge arc = _digraph->findArc(t, s, p); if (arc != INVALID) return arc; } } else { return _digraph->findArc(s, t, p); } return INVALID; } private: template class ArcMapBase { private: typedef typename DGR::template ArcMap MapImpl; public: typedef typename MapTraits::ReferenceMapTag ReferenceMapTag; typedef V Value; typedef Arc Key; typedef typename MapTraits::ConstReturnValue ConstReturnValue; typedef typename MapTraits::ReturnValue ReturnValue; typedef typename MapTraits::ConstReturnValue ConstReference; typedef typename MapTraits::ReturnValue Reference; ArcMapBase(const UndirectorBase& adaptor) : _forward(*adaptor._digraph), _backward(*adaptor._digraph) {} ArcMapBase(const UndirectorBase& adaptor, const V& value) : _forward(*adaptor._digraph, value), _backward(*adaptor._digraph, value) {} void set(const Arc& a, const V& value) { if (direction(a)) { _forward.set(a, value); } else { _backward.set(a, value); } } ConstReturnValue operator[](const Arc& a) const { if (direction(a)) { return _forward[a]; } else { return _backward[a]; } } ReturnValue operator[](const Arc& a) { if (direction(a)) { return _forward[a]; } else { return _backward[a]; } } protected: MapImpl _forward, _backward; }; public: template class NodeMap : public DGR::template NodeMap { public: typedef V Value; typedef typename DGR::template NodeMap Parent; explicit NodeMap(const UndirectorBase& adaptor) : Parent(*adaptor._digraph) {} NodeMap(const UndirectorBase& adaptor, const V& value) : Parent(*adaptor._digraph, value) { } private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class ArcMap : public SubMapExtender, ArcMapBase > { public: typedef V Value; typedef SubMapExtender > Parent; explicit ArcMap(const UndirectorBase& adaptor) : Parent(adaptor) {} ArcMap(const UndirectorBase& adaptor, const V& value) : Parent(adaptor, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class EdgeMap : public Digraph::template ArcMap { public: typedef V Value; typedef typename Digraph::template ArcMap Parent; explicit EdgeMap(const UndirectorBase& adaptor) : Parent(*adaptor._digraph) {} EdgeMap(const UndirectorBase& adaptor, const V& value) : Parent(*adaptor._digraph, value) {} private: EdgeMap& operator=(const EdgeMap& cmap) { return operator=(cmap); } template EdgeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; typedef typename ItemSetTraits::ItemNotifier NodeNotifier; NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } typedef typename ItemSetTraits::ItemNotifier EdgeNotifier; EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); } protected: UndirectorBase() : _digraph(0) {} DGR* _digraph; void initialize(DGR& digraph) { _digraph = &digraph; } }; /// \ingroup graph_adaptors /// /// \brief Adaptor class for viewing a digraph as an undirected graph. /// /// Undirector adaptor can be used for viewing a digraph as an undirected /// graph. All arcs of the underlying digraph are showed in the /// adaptor as an edge (and also as a pair of arcs, of course). /// This adaptor conforms to the \ref concepts::Graph "Graph" concept. /// /// The adapted digraph can also be modified through this adaptor /// by adding or removing nodes or edges, unless the \c GR template /// parameter is set to be \c const. /// /// \tparam DGR The type of the adapted digraph. /// It must conform to the \ref concepts::Digraph "Digraph" concept. /// It can also be specified to be \c const. /// /// \note The \c Node type of this adaptor and the adapted digraph are /// convertible to each other, moreover the \c Edge type of the adaptor /// and the \c Arc type of the adapted digraph are also convertible to /// each other. /// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type /// of the adapted digraph.) template #ifdef DOXYGEN class Undirector { #else class Undirector : public GraphAdaptorExtender > { #endif public: /// The type of the adapted digraph. typedef DGR Digraph; typedef GraphAdaptorExtender > Parent; protected: Undirector() { } public: /// \brief Constructor /// /// Creates an undirected graph from the given digraph. Undirector(DGR& digraph) { initialize(digraph); } /// \brief Arc map combined from two original arc maps /// /// This map adaptor class adapts two arc maps of the underlying /// digraph to get an arc map of the undirected graph. /// Its value type is inherited from the first arc map type /// (\c %ForwardMap). template class CombinedArcMap { public: /// The key type of the map typedef typename Parent::Arc Key; /// The value type of the map typedef typename ForwardMap::Value Value; typedef typename MapTraits::ReferenceMapTag ReferenceMapTag; typedef typename MapTraits::ReturnValue ReturnValue; typedef typename MapTraits::ConstReturnValue ConstReturnValue; typedef typename MapTraits::ReturnValue Reference; typedef typename MapTraits::ConstReturnValue ConstReference; /// Constructor CombinedArcMap(ForwardMap& forward, BackwardMap& backward) : _forward(&forward), _backward(&backward) {} /// Sets the value associated with the given key. void set(const Key& e, const Value& a) { if (Parent::direction(e)) { _forward->set(e, a); } else { _backward->set(e, a); } } /// Returns the value associated with the given key. ConstReturnValue operator[](const Key& e) const { if (Parent::direction(e)) { return (*_forward)[e]; } else { return (*_backward)[e]; } } /// Returns a reference to the value associated with the given key. ReturnValue operator[](const Key& e) { if (Parent::direction(e)) { return (*_forward)[e]; } else { return (*_backward)[e]; } } protected: ForwardMap* _forward; BackwardMap* _backward; }; /// \brief Returns a combined arc map /// /// This function just returns a combined arc map. template static CombinedArcMap combinedArcMap(ForwardMap& forward, BackwardMap& backward) { return CombinedArcMap(forward, backward); } template static CombinedArcMap combinedArcMap(const ForwardMap& forward, BackwardMap& backward) { return CombinedArcMap(forward, backward); } template static CombinedArcMap combinedArcMap(ForwardMap& forward, const BackwardMap& backward) { return CombinedArcMap(forward, backward); } template static CombinedArcMap combinedArcMap(const ForwardMap& forward, const BackwardMap& backward) { return CombinedArcMap(forward, backward); } }; /// \brief Returns a read-only Undirector adaptor /// /// This function just returns a read-only \ref Undirector adaptor. /// \ingroup graph_adaptors /// \relates Undirector template Undirector undirector(const DGR& digraph) { return Undirector(digraph); } template class OrienterBase { public: typedef GR Graph; typedef DM DirectionMap; typedef typename GR::Node Node; typedef typename GR::Edge Arc; void reverseArc(const Arc& arc) { _direction->set(arc, !(*_direction)[arc]); } void first(Node& i) const { _graph->first(i); } void first(Arc& i) const { _graph->first(i); } void firstIn(Arc& i, const Node& n) const { bool d = true; _graph->firstInc(i, d, n); while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); } void firstOut(Arc& i, const Node& n ) const { bool d = true; _graph->firstInc(i, d, n); while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); } void next(Node& i) const { _graph->next(i); } void next(Arc& i) const { _graph->next(i); } void nextIn(Arc& i) const { bool d = !(*_direction)[i]; _graph->nextInc(i, d); while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); } void nextOut(Arc& i) const { bool d = (*_direction)[i]; _graph->nextInc(i, d); while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); } Node source(const Arc& e) const { return (*_direction)[e] ? _graph->u(e) : _graph->v(e); } Node target(const Arc& e) const { return (*_direction)[e] ? _graph->v(e) : _graph->u(e); } typedef NodeNumTagIndicator NodeNumTag; int nodeNum() const { return _graph->nodeNum(); } typedef EdgeNumTagIndicator ArcNumTag; int arcNum() const { return _graph->edgeNum(); } typedef FindEdgeTagIndicator FindArcTag; Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { Arc arc = _graph->findEdge(u, v, prev); while (arc != INVALID && source(arc) != u) { arc = _graph->findEdge(u, v, arc); } return arc; } Node addNode() { return Node(_graph->addNode()); } Arc addArc(const Node& u, const Node& v) { Arc arc = _graph->addEdge(u, v); _direction->set(arc, _graph->u(arc) == u); return arc; } void erase(const Node& i) { _graph->erase(i); } void erase(const Arc& i) { _graph->erase(i); } void clear() { _graph->clear(); } int id(const Node& v) const { return _graph->id(v); } int id(const Arc& e) const { return _graph->id(e); } Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); } Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); } int maxNodeId() const { return _graph->maxNodeId(); } int maxArcId() const { return _graph->maxEdgeId(); } typedef typename ItemSetTraits::ItemNotifier NodeNotifier; NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } typedef typename ItemSetTraits::ItemNotifier ArcNotifier; ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } template class NodeMap : public GR::template NodeMap { public: typedef typename GR::template NodeMap Parent; explicit NodeMap(const OrienterBase& adapter) : Parent(*adapter._graph) {} NodeMap(const OrienterBase& adapter, const V& value) : Parent(*adapter._graph, value) {} private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class ArcMap : public GR::template EdgeMap { public: typedef typename Graph::template EdgeMap Parent; explicit ArcMap(const OrienterBase& adapter) : Parent(*adapter._graph) { } ArcMap(const OrienterBase& adapter, const V& value) : Parent(*adapter._graph, value) { } private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; protected: Graph* _graph; DM* _direction; void initialize(GR& graph, DM& direction) { _graph = &graph; _direction = &direction; } }; /// \ingroup graph_adaptors /// /// \brief Adaptor class for orienting the edges of a graph to get a digraph /// /// Orienter adaptor can be used for orienting the edges of a graph to /// get a digraph. A \c bool edge map of the underlying graph must be /// specified, which define the direction of the arcs in the adaptor. /// The arcs can be easily reversed by the \c reverseArc() member function /// of the adaptor. /// This class conforms to the \ref concepts::Digraph "Digraph" concept. /// /// The adapted graph can also be modified through this adaptor /// by adding or removing nodes or arcs, unless the \c GR template /// parameter is set to be \c const. /// /// \tparam GR The type of the adapted graph. /// It must conform to the \ref concepts::Graph "Graph" concept. /// It can also be specified to be \c const. /// \tparam DM The type of the direction map. /// It must be a \c bool (or convertible) edge map of the /// adapted graph. The default type is /// \ref concepts::Graph::EdgeMap "GR::EdgeMap". /// /// \note The \c Node type of this adaptor and the adapted graph are /// convertible to each other, moreover the \c Arc type of the adaptor /// and the \c Edge type of the adapted graph are also convertible to /// each other. #ifdef DOXYGEN template class Orienter { #else template > class Orienter : public DigraphAdaptorExtender > { #endif public: /// The type of the adapted graph. typedef GR Graph; /// The type of the direction edge map. typedef DM DirectionMap; typedef DigraphAdaptorExtender > Parent; typedef typename Parent::Arc Arc; protected: Orienter() { } public: /// \brief Constructor /// /// Constructor of the adaptor. Orienter(GR& graph, DM& direction) { Parent::initialize(graph, direction); } /// \brief Reverses the given arc /// /// This function reverses the given arc. /// It is done by simply negate the assigned value of \c a /// in the direction map. void reverseArc(const Arc& a) { Parent::reverseArc(a); } }; /// \brief Returns a read-only Orienter adaptor /// /// This function just returns a read-only \ref Orienter adaptor. /// \ingroup graph_adaptors /// \relates Orienter template Orienter orienter(const GR& graph, DM& direction) { return Orienter(graph, direction); } template Orienter orienter(const GR& graph, const DM& direction) { return Orienter(graph, direction); } namespace _adaptor_bits { template class ResForwardFilter { public: typedef typename DGR::Arc Key; typedef bool Value; private: const CM* _capacity; const FM* _flow; TL _tolerance; public: ResForwardFilter(const CM& capacity, const FM& flow, const TL& tolerance = TL()) : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } bool operator[](const typename DGR::Arc& a) const { return _tolerance.positive((*_capacity)[a] - (*_flow)[a]); } }; template class ResBackwardFilter { public: typedef typename DGR::Arc Key; typedef bool Value; private: const CM* _capacity; const FM* _flow; TL _tolerance; public: ResBackwardFilter(const CM& capacity, const FM& flow, const TL& tolerance = TL()) : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } bool operator[](const typename DGR::Arc& a) const { return _tolerance.positive((*_flow)[a]); } }; } /// \ingroup graph_adaptors /// /// \brief Adaptor class for composing the residual digraph for directed /// flow and circulation problems. /// /// ResidualDigraph can be used for composing the \e residual digraph /// for directed flow and circulation problems. Let \f$ G=(V, A) \f$ /// be a directed graph and let \f$ F \f$ be a number type. /// Let \f$ flow, cap: A\to F \f$ be functions on the arcs. /// This adaptor implements a digraph structure with node set \f$ V \f$ /// and arc set \f$ A_{forward}\cup A_{backward} \f$, /// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)0\} \f$, i.e. the so /// called residual digraph. /// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken, /// multiplicities are counted, i.e. the adaptor has exactly /// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel /// arcs). /// This class conforms to the \ref concepts::Digraph "Digraph" concept. /// /// \tparam DGR The type of the adapted digraph. /// It must conform to the \ref concepts::Digraph "Digraph" concept. /// It is implicitly \c const. /// \tparam CM The type of the capacity map. /// It must be an arc map of some numerical type, which defines /// the capacities in the flow problem. It is implicitly \c const. /// The default type is /// \ref concepts::Digraph::ArcMap "GR::ArcMap". /// \tparam FM The type of the flow map. /// It must be an arc map of some numerical type, which defines /// the flow values in the flow problem. The default type is \c CM. /// \tparam TL The tolerance type for handling inexact computation. /// The default tolerance type depends on the value type of the /// capacity map. /// /// \note This adaptor is implemented using Undirector and FilterArcs /// adaptors. /// /// \note The \c Node type of this adaptor and the adapted digraph are /// convertible to each other, moreover the \c Arc type of the adaptor /// is convertible to the \c Arc type of the adapted digraph. #ifdef DOXYGEN template class ResidualDigraph #else template, typename FM = CM, typename TL = Tolerance > class ResidualDigraph : public SubDigraph< Undirector, ConstMap >, typename Undirector::template CombinedArcMap< _adaptor_bits::ResForwardFilter, _adaptor_bits::ResBackwardFilter > > #endif { public: /// The type of the underlying digraph. typedef DGR Digraph; /// The type of the capacity map. typedef CM CapacityMap; /// The type of the flow map. typedef FM FlowMap; /// The tolerance type. typedef TL Tolerance; typedef typename CapacityMap::Value Value; typedef ResidualDigraph Adaptor; protected: typedef Undirector Undirected; typedef ConstMap > NodeFilter; typedef _adaptor_bits::ResForwardFilter ForwardFilter; typedef _adaptor_bits::ResBackwardFilter BackwardFilter; typedef typename Undirected:: template CombinedArcMap ArcFilter; typedef SubDigraph Parent; const CapacityMap* _capacity; FlowMap* _flow; Undirected _graph; NodeFilter _node_filter; ForwardFilter _forward_filter; BackwardFilter _backward_filter; ArcFilter _arc_filter; public: /// \brief Constructor /// /// Constructor of the residual digraph adaptor. The parameters are the /// digraph, the capacity map, the flow map, and a tolerance object. ResidualDigraph(const DGR& digraph, const CM& capacity, FM& flow, const TL& tolerance = Tolerance()) : Parent(), _capacity(&capacity), _flow(&flow), _graph(digraph), _node_filter(), _forward_filter(capacity, flow, tolerance), _backward_filter(capacity, flow, tolerance), _arc_filter(_forward_filter, _backward_filter) { Parent::initialize(_graph, _node_filter, _arc_filter); } typedef typename Parent::Arc Arc; /// \brief Returns the residual capacity of the given arc. /// /// Returns the residual capacity of the given arc. Value residualCapacity(const Arc& a) const { if (Undirected::direction(a)) { return (*_capacity)[a] - (*_flow)[a]; } else { return (*_flow)[a]; } } /// \brief Augments on the given arc in the residual digraph. /// /// Augments on the given arc in the residual digraph. It increases /// or decreases the flow value on the original arc according to the /// direction of the residual arc. void augment(const Arc& a, const Value& v) const { if (Undirected::direction(a)) { _flow->set(a, (*_flow)[a] + v); } else { _flow->set(a, (*_flow)[a] - v); } } /// \brief Returns \c true if the given residual arc is a forward arc. /// /// Returns \c true if the given residual arc has the same orientation /// as the original arc, i.e. it is a so called forward arc. static bool forward(const Arc& a) { return Undirected::direction(a); } /// \brief Returns \c true if the given residual arc is a backward arc. /// /// Returns \c true if the given residual arc has the opposite orientation /// than the original arc, i.e. it is a so called backward arc. static bool backward(const Arc& a) { return !Undirected::direction(a); } /// \brief Returns the forward oriented residual arc. /// /// Returns the forward oriented residual arc related to the given /// arc of the underlying digraph. static Arc forward(const typename Digraph::Arc& a) { return Undirected::direct(a, true); } /// \brief Returns the backward oriented residual arc. /// /// Returns the backward oriented residual arc related to the given /// arc of the underlying digraph. static Arc backward(const typename Digraph::Arc& a) { return Undirected::direct(a, false); } /// \brief Residual capacity map. /// /// This map adaptor class can be used for obtaining the residual /// capacities as an arc map of the residual digraph. /// Its value type is inherited from the capacity map. class ResidualCapacity { protected: const Adaptor* _adaptor; public: /// The key type of the map typedef Arc Key; /// The value type of the map typedef typename CapacityMap::Value Value; /// Constructor ResidualCapacity(const ResidualDigraph& adaptor) : _adaptor(&adaptor) {} /// Returns the value associated with the given residual arc Value operator[](const Arc& a) const { return _adaptor->residualCapacity(a); } }; /// \brief Returns a residual capacity map /// /// This function just returns a residual capacity map. ResidualCapacity residualCapacity() const { return ResidualCapacity(*this); } }; /// \brief Returns a (read-only) Residual adaptor /// /// This function just returns a (read-only) \ref ResidualDigraph adaptor. /// \ingroup graph_adaptors /// \relates ResidualDigraph template ResidualDigraph residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) { return ResidualDigraph (digraph, capacity_map, flow_map); } template class SplitNodesBase { public: typedef DGR Digraph; typedef DigraphAdaptorBase Parent; typedef SplitNodesBase Adaptor; typedef typename DGR::Node DigraphNode; typedef typename DGR::Arc DigraphArc; class Node; class Arc; private: template class NodeMapBase; template class ArcMapBase; public: class Node : public DigraphNode { friend class SplitNodesBase; template friend class NodeMapBase; private: bool _in; Node(DigraphNode node, bool in) : DigraphNode(node), _in(in) {} public: Node() {} Node(Invalid) : DigraphNode(INVALID), _in(true) {} bool operator==(const Node& node) const { return DigraphNode::operator==(node) && _in == node._in; } bool operator!=(const Node& node) const { return !(*this == node); } bool operator<(const Node& node) const { return DigraphNode::operator<(node) || (DigraphNode::operator==(node) && _in < node._in); } }; class Arc { friend class SplitNodesBase; template friend class ArcMapBase; private: typedef BiVariant ArcImpl; explicit Arc(const DigraphArc& arc) : _item(arc) {} explicit Arc(const DigraphNode& node) : _item(node) {} ArcImpl _item; public: Arc() {} Arc(Invalid) : _item(DigraphArc(INVALID)) {} bool operator==(const Arc& arc) const { if (_item.firstState()) { if (arc._item.firstState()) { return _item.first() == arc._item.first(); } } else { if (arc._item.secondState()) { return _item.second() == arc._item.second(); } } return false; } bool operator!=(const Arc& arc) const { return !(*this == arc); } bool operator<(const Arc& arc) const { if (_item.firstState()) { if (arc._item.firstState()) { return _item.first() < arc._item.first(); } return false; } else { if (arc._item.secondState()) { return _item.second() < arc._item.second(); } return true; } } operator DigraphArc() const { return _item.first(); } operator DigraphNode() const { return _item.second(); } }; void first(Node& n) const { _digraph->first(n); n._in = true; } void next(Node& n) const { if (n._in) { n._in = false; } else { n._in = true; _digraph->next(n); } } void first(Arc& e) const { e._item.setSecond(); _digraph->first(e._item.second()); if (e._item.second() == INVALID) { e._item.setFirst(); _digraph->first(e._item.first()); } } void next(Arc& e) const { if (e._item.secondState()) { _digraph->next(e._item.second()); if (e._item.second() == INVALID) { e._item.setFirst(); _digraph->first(e._item.first()); } } else { _digraph->next(e._item.first()); } } void firstOut(Arc& e, const Node& n) const { if (n._in) { e._item.setSecond(n); } else { e._item.setFirst(); _digraph->firstOut(e._item.first(), n); } } void nextOut(Arc& e) const { if (!e._item.firstState()) { e._item.setFirst(INVALID); } else { _digraph->nextOut(e._item.first()); } } void firstIn(Arc& e, const Node& n) const { if (!n._in) { e._item.setSecond(n); } else { e._item.setFirst(); _digraph->firstIn(e._item.first(), n); } } void nextIn(Arc& e) const { if (!e._item.firstState()) { e._item.setFirst(INVALID); } else { _digraph->nextIn(e._item.first()); } } Node source(const Arc& e) const { if (e._item.firstState()) { return Node(_digraph->source(e._item.first()), false); } else { return Node(e._item.second(), true); } } Node target(const Arc& e) const { if (e._item.firstState()) { return Node(_digraph->target(e._item.first()), true); } else { return Node(e._item.second(), false); } } int id(const Node& n) const { return (_digraph->id(n) << 1) | (n._in ? 0 : 1); } Node nodeFromId(int ix) const { return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0); } int maxNodeId() const { return 2 * _digraph->maxNodeId() + 1; } int id(const Arc& e) const { if (e._item.firstState()) { return _digraph->id(e._item.first()) << 1; } else { return (_digraph->id(e._item.second()) << 1) | 1; } } Arc arcFromId(int ix) const { if ((ix & 1) == 0) { return Arc(_digraph->arcFromId(ix >> 1)); } else { return Arc(_digraph->nodeFromId(ix >> 1)); } } int maxArcId() const { return std::max(_digraph->maxNodeId() << 1, (_digraph->maxArcId() << 1) | 1); } static bool inNode(const Node& n) { return n._in; } static bool outNode(const Node& n) { return !n._in; } static bool origArc(const Arc& e) { return e._item.firstState(); } static bool bindArc(const Arc& e) { return e._item.secondState(); } static Node inNode(const DigraphNode& n) { return Node(n, true); } static Node outNode(const DigraphNode& n) { return Node(n, false); } static Arc arc(const DigraphNode& n) { return Arc(n); } static Arc arc(const DigraphArc& e) { return Arc(e); } typedef True NodeNumTag; int nodeNum() const { return 2 * countNodes(*_digraph); } typedef True ArcNumTag; int arcNum() const { return countArcs(*_digraph) + countNodes(*_digraph); } typedef True FindArcTag; Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { if (inNode(u) && outNode(v)) { if (static_cast(u) == static_cast(v) && prev == INVALID) { return Arc(u); } } else if (outNode(u) && inNode(v)) { return Arc(::lemon::findArc(*_digraph, u, v, prev)); } return INVALID; } private: template class NodeMapBase : public MapTraits > { typedef typename Parent::template NodeMap NodeImpl; public: typedef Node Key; typedef V Value; typedef typename MapTraits::ReferenceMapTag ReferenceMapTag; typedef typename MapTraits::ReturnValue ReturnValue; typedef typename MapTraits::ConstReturnValue ConstReturnValue; typedef typename MapTraits::ReturnValue Reference; typedef typename MapTraits::ConstReturnValue ConstReference; NodeMapBase(const SplitNodesBase& adaptor) : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {} NodeMapBase(const SplitNodesBase& adaptor, const V& value) : _in_map(*adaptor._digraph, value), _out_map(*adaptor._digraph, value) {} void set(const Node& key, const V& val) { if (SplitNodesBase::inNode(key)) { _in_map.set(key, val); } else {_out_map.set(key, val); } } ReturnValue operator[](const Node& key) { if (SplitNodesBase::inNode(key)) { return _in_map[key]; } else { return _out_map[key]; } } ConstReturnValue operator[](const Node& key) const { if (Adaptor::inNode(key)) { return _in_map[key]; } else { return _out_map[key]; } } private: NodeImpl _in_map, _out_map; }; template class ArcMapBase : public MapTraits > { typedef typename Parent::template ArcMap ArcImpl; typedef typename Parent::template NodeMap NodeImpl; public: typedef Arc Key; typedef V Value; typedef typename MapTraits::ReferenceMapTag ReferenceMapTag; typedef typename MapTraits::ReturnValue ReturnValue; typedef typename MapTraits::ConstReturnValue ConstReturnValue; typedef typename MapTraits::ReturnValue Reference; typedef typename MapTraits::ConstReturnValue ConstReference; ArcMapBase(const SplitNodesBase& adaptor) : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {} ArcMapBase(const SplitNodesBase& adaptor, const V& value) : _arc_map(*adaptor._digraph, value), _node_map(*adaptor._digraph, value) {} void set(const Arc& key, const V& val) { if (SplitNodesBase::origArc(key)) { _arc_map.set(static_cast(key), val); } else { _node_map.set(static_cast(key), val); } } ReturnValue operator[](const Arc& key) { if (SplitNodesBase::origArc(key)) { return _arc_map[static_cast(key)]; } else { return _node_map[static_cast(key)]; } } ConstReturnValue operator[](const Arc& key) const { if (SplitNodesBase::origArc(key)) { return _arc_map[static_cast(key)]; } else { return _node_map[static_cast(key)]; } } private: ArcImpl _arc_map; NodeImpl _node_map; }; public: template class NodeMap : public SubMapExtender, NodeMapBase > { public: typedef V Value; typedef SubMapExtender, NodeMapBase > Parent; NodeMap(const SplitNodesBase& adaptor) : Parent(adaptor) {} NodeMap(const SplitNodesBase& adaptor, const V& value) : Parent(adaptor, value) {} private: NodeMap& operator=(const NodeMap& cmap) { return operator=(cmap); } template NodeMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; template class ArcMap : public SubMapExtender, ArcMapBase > { public: typedef V Value; typedef SubMapExtender, ArcMapBase > Parent; ArcMap(const SplitNodesBase& adaptor) : Parent(adaptor) {} ArcMap(const SplitNodesBase& adaptor, const V& value) : Parent(adaptor, value) {} private: ArcMap& operator=(const ArcMap& cmap) { return operator=(cmap); } template ArcMap& operator=(const CMap& cmap) { Parent::operator=(cmap); return *this; } }; protected: SplitNodesBase() : _digraph(0) {} DGR* _digraph; void initialize(Digraph& digraph) { _digraph = &digraph; } }; /// \ingroup graph_adaptors /// /// \brief Adaptor class for splitting the nodes of a digraph. /// /// SplitNodes adaptor can be used for splitting each node into an /// \e in-node and an \e out-node in a digraph. Formaly, the adaptor /// replaces each node \f$ u \f$ in the digraph with two nodes, /// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$. /// If there is a \f$ (v, u) \f$ arc in the original digraph, then the /// new target of the arc will be \f$ u_{in} \f$ and similarly the /// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$. /// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$ /// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph. /// /// The aim of this class is running an algorithm with respect to node /// costs or capacities if the algorithm considers only arc costs or /// capacities directly. /// In this case you can use \c SplitNodes adaptor, and set the node /// costs/capacities of the original digraph to the \e bind \e arcs /// in the adaptor. /// /// \tparam DGR The type of the adapted digraph. /// It must conform to the \ref concepts::Digraph "Digraph" concept. /// It is implicitly \c const. /// /// \note The \c Node type of this adaptor is converible to the \c Node /// type of the adapted digraph. template #ifdef DOXYGEN class SplitNodes { #else class SplitNodes : public DigraphAdaptorExtender > { #endif public: typedef DGR Digraph; typedef DigraphAdaptorExtender > Parent; typedef typename DGR::Node DigraphNode; typedef typename DGR::Arc DigraphArc; typedef typename Parent::Node Node; typedef typename Parent::Arc Arc; /// \brief Constructor /// /// Constructor of the adaptor. SplitNodes(const DGR& g) { Parent::initialize(g); } /// \brief Returns \c true if the given node is an in-node. /// /// Returns \c true if the given node is an in-node. static bool inNode(const Node& n) { return Parent::inNode(n); } /// \brief Returns \c true if the given node is an out-node. /// /// Returns \c true if the given node is an out-node. static bool outNode(const Node& n) { return Parent::outNode(n); } /// \brief Returns \c true if the given arc is an original arc. /// /// Returns \c true if the given arc is one of the arcs in the /// original digraph. static bool origArc(const Arc& a) { return Parent::origArc(a); } /// \brief Returns \c true if the given arc is a bind arc. /// /// Returns \c true if the given arc is a bind arc, i.e. it connects /// an in-node and an out-node. static bool bindArc(const Arc& a) { return Parent::bindArc(a); } /// \brief Returns the in-node created from the given original node. /// /// Returns the in-node created from the given original node. static Node inNode(const DigraphNode& n) { return Parent::inNode(n); } /// \brief Returns the out-node created from the given original node. /// /// Returns the out-node created from the given original node. static Node outNode(const DigraphNode& n) { return Parent::outNode(n); } /// \brief Returns the bind arc that corresponds to the given /// original node. /// /// Returns the bind arc in the adaptor that corresponds to the given /// original node, i.e. the arc connecting the in-node and out-node /// of \c n. static Arc arc(const DigraphNode& n) { return Parent::arc(n); } /// \brief Returns the arc that corresponds to the given original arc. /// /// Returns the arc in the adaptor that corresponds to the given /// original arc. static Arc arc(const DigraphArc& a) { return Parent::arc(a); } /// \brief Node map combined from two original node maps /// /// This map adaptor class adapts two node maps of the original digraph /// to get a node map of the split digraph. /// Its value type is inherited from the first node map type /// (\c InNodeMap). template class CombinedNodeMap { public: /// The key type of the map typedef Node Key; /// The value type of the map typedef typename InNodeMap::Value Value; typedef typename MapTraits::ReferenceMapTag ReferenceMapTag; typedef typename MapTraits::ReturnValue ReturnValue; typedef typename MapTraits::ConstReturnValue ConstReturnValue; typedef typename MapTraits::ReturnValue Reference; typedef typename MapTraits::ConstReturnValue ConstReference; /// Constructor CombinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) : _in_map(in_map), _out_map(out_map) {} /// Returns the value associated with the given key. Value operator[](const Key& key) const { if (SplitNodesBase::inNode(key)) { return _in_map[key]; } else { return _out_map[key]; } } /// Returns a reference to the value associated with the given key. Value& operator[](const Key& key) { if (SplitNodesBase::inNode(key)) { return _in_map[key]; } else { return _out_map[key]; } } /// Sets the value associated with the given key. void set(const Key& key, const Value& value) { if (SplitNodesBase::inNode(key)) { _in_map.set(key, value); } else { _out_map.set(key, value); } } private: InNodeMap& _in_map; OutNodeMap& _out_map; }; /// \brief Returns a combined node map /// /// This function just returns a combined node map. template static CombinedNodeMap combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) { return CombinedNodeMap(in_map, out_map); } template static CombinedNodeMap combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) { return CombinedNodeMap(in_map, out_map); } template static CombinedNodeMap combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) { return CombinedNodeMap(in_map, out_map); } template static CombinedNodeMap combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) { return CombinedNodeMap(in_map, out_map); } /// \brief Arc map combined from an arc map and a node map of the /// original digraph. /// /// This map adaptor class adapts an arc map and a node map of the /// original digraph to get an arc map of the split digraph. /// Its value type is inherited from the original arc map type /// (\c ArcMap). template class CombinedArcMap { public: /// The key type of the map typedef Arc Key; /// The value type of the map typedef typename ArcMap::Value Value; typedef typename MapTraits::ReferenceMapTag ReferenceMapTag; typedef typename MapTraits::ReturnValue ReturnValue; typedef typename MapTraits::ConstReturnValue ConstReturnValue; typedef typename MapTraits::ReturnValue Reference; typedef typename MapTraits::ConstReturnValue ConstReference; /// Constructor CombinedArcMap(ArcMap& arc_map, NodeMap& node_map) : _arc_map(arc_map), _node_map(node_map) {} /// Returns the value associated with the given key. Value operator[](const Key& arc) const { if (SplitNodesBase::origArc(arc)) { return _arc_map[arc]; } else { return _node_map[arc]; } } /// Returns a reference to the value associated with the given key. Value& operator[](const Key& arc) { if (SplitNodesBase::origArc(arc)) { return _arc_map[arc]; } else { return _node_map[arc]; } } /// Sets the value associated with the given key. void set(const Arc& arc, const Value& val) { if (SplitNodesBase::origArc(arc)) { _arc_map.set(arc, val); } else { _node_map.set(arc, val); } } private: ArcMap& _arc_map; NodeMap& _node_map; }; /// \brief Returns a combined arc map /// /// This function just returns a combined arc map. template static CombinedArcMap combinedArcMap(ArcMap& arc_map, NodeMap& node_map) { return CombinedArcMap(arc_map, node_map); } template static CombinedArcMap combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) { return CombinedArcMap(arc_map, node_map); } template static CombinedArcMap combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) { return CombinedArcMap(arc_map, node_map); } template static CombinedArcMap combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) { return CombinedArcMap(arc_map, node_map); } }; /// \brief Returns a (read-only) SplitNodes adaptor /// /// This function just returns a (read-only) \ref SplitNodes adaptor. /// \ingroup graph_adaptors /// \relates SplitNodes template SplitNodes splitNodes(const DGR& digraph) { return SplitNodes(digraph); } #undef LEMON_SCOPE_FIX } //namespace lemon #endif //LEMON_ADAPTORS_H