1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_BFS_H |
---|
20 | #define LEMON_BFS_H |
---|
21 | |
---|
22 | ///\ingroup search |
---|
23 | ///\file |
---|
24 | ///\brief BFS algorithm. |
---|
25 | |
---|
26 | #include <lemon/list_graph.h> |
---|
27 | #include <lemon/bits/path_dump.h> |
---|
28 | #include <lemon/core.h> |
---|
29 | #include <lemon/error.h> |
---|
30 | #include <lemon/maps.h> |
---|
31 | #include <lemon/path.h> |
---|
32 | |
---|
33 | namespace lemon { |
---|
34 | |
---|
35 | ///Default traits class of Bfs class. |
---|
36 | |
---|
37 | ///Default traits class of Bfs class. |
---|
38 | ///\tparam GR Digraph type. |
---|
39 | template<class GR> |
---|
40 | struct BfsDefaultTraits |
---|
41 | { |
---|
42 | ///The type of the digraph the algorithm runs on. |
---|
43 | typedef GR Digraph; |
---|
44 | |
---|
45 | ///\brief The type of the map that stores the predecessor |
---|
46 | ///arcs of the shortest paths. |
---|
47 | /// |
---|
48 | ///The type of the map that stores the predecessor |
---|
49 | ///arcs of the shortest paths. |
---|
50 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
51 | typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
---|
52 | ///Instantiates a PredMap. |
---|
53 | |
---|
54 | ///This function instantiates a PredMap. |
---|
55 | ///\param g is the digraph, to which we would like to define the |
---|
56 | ///PredMap. |
---|
57 | static PredMap *createPredMap(const Digraph &g) |
---|
58 | { |
---|
59 | return new PredMap(g); |
---|
60 | } |
---|
61 | |
---|
62 | ///The type of the map that indicates which nodes are processed. |
---|
63 | |
---|
64 | ///The type of the map that indicates which nodes are processed. |
---|
65 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
66 | typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
---|
67 | ///Instantiates a ProcessedMap. |
---|
68 | |
---|
69 | ///This function instantiates a ProcessedMap. |
---|
70 | ///\param g is the digraph, to which |
---|
71 | ///we would like to define the ProcessedMap |
---|
72 | #ifdef DOXYGEN |
---|
73 | static ProcessedMap *createProcessedMap(const Digraph &g) |
---|
74 | #else |
---|
75 | static ProcessedMap *createProcessedMap(const Digraph &) |
---|
76 | #endif |
---|
77 | { |
---|
78 | return new ProcessedMap(); |
---|
79 | } |
---|
80 | |
---|
81 | ///The type of the map that indicates which nodes are reached. |
---|
82 | |
---|
83 | ///The type of the map that indicates which nodes are reached. |
---|
84 | ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
---|
85 | typedef typename Digraph::template NodeMap<bool> ReachedMap; |
---|
86 | ///Instantiates a ReachedMap. |
---|
87 | |
---|
88 | ///This function instantiates a ReachedMap. |
---|
89 | ///\param g is the digraph, to which |
---|
90 | ///we would like to define the ReachedMap. |
---|
91 | static ReachedMap *createReachedMap(const Digraph &g) |
---|
92 | { |
---|
93 | return new ReachedMap(g); |
---|
94 | } |
---|
95 | |
---|
96 | ///The type of the map that stores the distances of the nodes. |
---|
97 | |
---|
98 | ///The type of the map that stores the distances of the nodes. |
---|
99 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
100 | typedef typename Digraph::template NodeMap<int> DistMap; |
---|
101 | ///Instantiates a DistMap. |
---|
102 | |
---|
103 | ///This function instantiates a DistMap. |
---|
104 | ///\param g is the digraph, to which we would like to define the |
---|
105 | ///DistMap. |
---|
106 | static DistMap *createDistMap(const Digraph &g) |
---|
107 | { |
---|
108 | return new DistMap(g); |
---|
109 | } |
---|
110 | }; |
---|
111 | |
---|
112 | ///%BFS algorithm class. |
---|
113 | |
---|
114 | ///\ingroup search |
---|
115 | ///This class provides an efficient implementation of the %BFS algorithm. |
---|
116 | /// |
---|
117 | ///There is also a \ref bfs() "function-type interface" for the BFS |
---|
118 | ///algorithm, which is convenient in the simplier cases and it can be |
---|
119 | ///used easier. |
---|
120 | /// |
---|
121 | ///\tparam GR The type of the digraph the algorithm runs on. |
---|
122 | ///The default value is \ref ListDigraph. The value of GR is not used |
---|
123 | ///directly by \ref Bfs, it is only passed to \ref BfsDefaultTraits. |
---|
124 | ///\tparam TR Traits class to set various data types used by the algorithm. |
---|
125 | ///The default traits class is |
---|
126 | ///\ref BfsDefaultTraits "BfsDefaultTraits<GR>". |
---|
127 | ///See \ref BfsDefaultTraits for the documentation of |
---|
128 | ///a Bfs traits class. |
---|
129 | #ifdef DOXYGEN |
---|
130 | template <typename GR, |
---|
131 | typename TR> |
---|
132 | #else |
---|
133 | template <typename GR=ListDigraph, |
---|
134 | typename TR=BfsDefaultTraits<GR> > |
---|
135 | #endif |
---|
136 | class Bfs { |
---|
137 | public: |
---|
138 | |
---|
139 | ///The type of the digraph the algorithm runs on. |
---|
140 | typedef typename TR::Digraph Digraph; |
---|
141 | |
---|
142 | ///\brief The type of the map that stores the predecessor arcs of the |
---|
143 | ///shortest paths. |
---|
144 | typedef typename TR::PredMap PredMap; |
---|
145 | ///The type of the map that stores the distances of the nodes. |
---|
146 | typedef typename TR::DistMap DistMap; |
---|
147 | ///The type of the map that indicates which nodes are reached. |
---|
148 | typedef typename TR::ReachedMap ReachedMap; |
---|
149 | ///The type of the map that indicates which nodes are processed. |
---|
150 | typedef typename TR::ProcessedMap ProcessedMap; |
---|
151 | ///The type of the paths. |
---|
152 | typedef PredMapPath<Digraph, PredMap> Path; |
---|
153 | |
---|
154 | ///The traits class. |
---|
155 | typedef TR Traits; |
---|
156 | |
---|
157 | private: |
---|
158 | |
---|
159 | typedef typename Digraph::Node Node; |
---|
160 | typedef typename Digraph::NodeIt NodeIt; |
---|
161 | typedef typename Digraph::Arc Arc; |
---|
162 | typedef typename Digraph::OutArcIt OutArcIt; |
---|
163 | |
---|
164 | //Pointer to the underlying digraph. |
---|
165 | const Digraph *G; |
---|
166 | //Pointer to the map of predecessor arcs. |
---|
167 | PredMap *_pred; |
---|
168 | //Indicates if _pred is locally allocated (true) or not. |
---|
169 | bool local_pred; |
---|
170 | //Pointer to the map of distances. |
---|
171 | DistMap *_dist; |
---|
172 | //Indicates if _dist is locally allocated (true) or not. |
---|
173 | bool local_dist; |
---|
174 | //Pointer to the map of reached status of the nodes. |
---|
175 | ReachedMap *_reached; |
---|
176 | //Indicates if _reached is locally allocated (true) or not. |
---|
177 | bool local_reached; |
---|
178 | //Pointer to the map of processed status of the nodes. |
---|
179 | ProcessedMap *_processed; |
---|
180 | //Indicates if _processed is locally allocated (true) or not. |
---|
181 | bool local_processed; |
---|
182 | |
---|
183 | std::vector<typename Digraph::Node> _queue; |
---|
184 | int _queue_head,_queue_tail,_queue_next_dist; |
---|
185 | int _curr_dist; |
---|
186 | |
---|
187 | //Creates the maps if necessary. |
---|
188 | void create_maps() |
---|
189 | { |
---|
190 | if(!_pred) { |
---|
191 | local_pred = true; |
---|
192 | _pred = Traits::createPredMap(*G); |
---|
193 | } |
---|
194 | if(!_dist) { |
---|
195 | local_dist = true; |
---|
196 | _dist = Traits::createDistMap(*G); |
---|
197 | } |
---|
198 | if(!_reached) { |
---|
199 | local_reached = true; |
---|
200 | _reached = Traits::createReachedMap(*G); |
---|
201 | } |
---|
202 | if(!_processed) { |
---|
203 | local_processed = true; |
---|
204 | _processed = Traits::createProcessedMap(*G); |
---|
205 | } |
---|
206 | } |
---|
207 | |
---|
208 | protected: |
---|
209 | |
---|
210 | Bfs() {} |
---|
211 | |
---|
212 | public: |
---|
213 | |
---|
214 | typedef Bfs Create; |
---|
215 | |
---|
216 | ///\name Named template parameters |
---|
217 | |
---|
218 | ///@{ |
---|
219 | |
---|
220 | template <class T> |
---|
221 | struct SetPredMapTraits : public Traits { |
---|
222 | typedef T PredMap; |
---|
223 | static PredMap *createPredMap(const Digraph &) |
---|
224 | { |
---|
225 | LEMON_ASSERT(false, "PredMap is not initialized"); |
---|
226 | return 0; // ignore warnings |
---|
227 | } |
---|
228 | }; |
---|
229 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
230 | ///PredMap type. |
---|
231 | /// |
---|
232 | ///\ref named-templ-param "Named parameter" for setting |
---|
233 | ///PredMap type. |
---|
234 | template <class T> |
---|
235 | struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > { |
---|
236 | typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
---|
237 | }; |
---|
238 | |
---|
239 | template <class T> |
---|
240 | struct SetDistMapTraits : public Traits { |
---|
241 | typedef T DistMap; |
---|
242 | static DistMap *createDistMap(const Digraph &) |
---|
243 | { |
---|
244 | LEMON_ASSERT(false, "DistMap is not initialized"); |
---|
245 | return 0; // ignore warnings |
---|
246 | } |
---|
247 | }; |
---|
248 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
249 | ///DistMap type. |
---|
250 | /// |
---|
251 | ///\ref named-templ-param "Named parameter" for setting |
---|
252 | ///DistMap type. |
---|
253 | template <class T> |
---|
254 | struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > { |
---|
255 | typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
---|
256 | }; |
---|
257 | |
---|
258 | template <class T> |
---|
259 | struct SetReachedMapTraits : public Traits { |
---|
260 | typedef T ReachedMap; |
---|
261 | static ReachedMap *createReachedMap(const Digraph &) |
---|
262 | { |
---|
263 | LEMON_ASSERT(false, "ReachedMap is not initialized"); |
---|
264 | return 0; // ignore warnings |
---|
265 | } |
---|
266 | }; |
---|
267 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
268 | ///ReachedMap type. |
---|
269 | /// |
---|
270 | ///\ref named-templ-param "Named parameter" for setting |
---|
271 | ///ReachedMap type. |
---|
272 | template <class T> |
---|
273 | struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
---|
274 | typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
---|
275 | }; |
---|
276 | |
---|
277 | template <class T> |
---|
278 | struct SetProcessedMapTraits : public Traits { |
---|
279 | typedef T ProcessedMap; |
---|
280 | static ProcessedMap *createProcessedMap(const Digraph &) |
---|
281 | { |
---|
282 | LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
---|
283 | return 0; // ignore warnings |
---|
284 | } |
---|
285 | }; |
---|
286 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
287 | ///ProcessedMap type. |
---|
288 | /// |
---|
289 | ///\ref named-templ-param "Named parameter" for setting |
---|
290 | ///ProcessedMap type. |
---|
291 | template <class T> |
---|
292 | struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > { |
---|
293 | typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
---|
294 | }; |
---|
295 | |
---|
296 | struct SetStandardProcessedMapTraits : public Traits { |
---|
297 | typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
---|
298 | static ProcessedMap *createProcessedMap(const Digraph &g) |
---|
299 | { |
---|
300 | return new ProcessedMap(g); |
---|
301 | return 0; // ignore warnings |
---|
302 | } |
---|
303 | }; |
---|
304 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
305 | ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
---|
306 | /// |
---|
307 | ///\ref named-templ-param "Named parameter" for setting |
---|
308 | ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
---|
309 | ///If you don't set it explicitly, it will be automatically allocated. |
---|
310 | struct SetStandardProcessedMap : |
---|
311 | public Bfs< Digraph, SetStandardProcessedMapTraits > { |
---|
312 | typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
---|
313 | }; |
---|
314 | |
---|
315 | ///@} |
---|
316 | |
---|
317 | public: |
---|
318 | |
---|
319 | ///Constructor. |
---|
320 | |
---|
321 | ///Constructor. |
---|
322 | ///\param g The digraph the algorithm runs on. |
---|
323 | Bfs(const Digraph &g) : |
---|
324 | G(&g), |
---|
325 | _pred(NULL), local_pred(false), |
---|
326 | _dist(NULL), local_dist(false), |
---|
327 | _reached(NULL), local_reached(false), |
---|
328 | _processed(NULL), local_processed(false) |
---|
329 | { } |
---|
330 | |
---|
331 | ///Destructor. |
---|
332 | ~Bfs() |
---|
333 | { |
---|
334 | if(local_pred) delete _pred; |
---|
335 | if(local_dist) delete _dist; |
---|
336 | if(local_reached) delete _reached; |
---|
337 | if(local_processed) delete _processed; |
---|
338 | } |
---|
339 | |
---|
340 | ///Sets the map that stores the predecessor arcs. |
---|
341 | |
---|
342 | ///Sets the map that stores the predecessor arcs. |
---|
343 | ///If you don't use this function before calling \ref run(), |
---|
344 | ///it will allocate one. The destructor deallocates this |
---|
345 | ///automatically allocated map, of course. |
---|
346 | ///\return <tt> (*this) </tt> |
---|
347 | Bfs &predMap(PredMap &m) |
---|
348 | { |
---|
349 | if(local_pred) { |
---|
350 | delete _pred; |
---|
351 | local_pred=false; |
---|
352 | } |
---|
353 | _pred = &m; |
---|
354 | return *this; |
---|
355 | } |
---|
356 | |
---|
357 | ///Sets the map that indicates which nodes are reached. |
---|
358 | |
---|
359 | ///Sets the map that indicates which nodes are reached. |
---|
360 | ///If you don't use this function before calling \ref run(), |
---|
361 | ///it will allocate one. The destructor deallocates this |
---|
362 | ///automatically allocated map, of course. |
---|
363 | ///\return <tt> (*this) </tt> |
---|
364 | Bfs &reachedMap(ReachedMap &m) |
---|
365 | { |
---|
366 | if(local_reached) { |
---|
367 | delete _reached; |
---|
368 | local_reached=false; |
---|
369 | } |
---|
370 | _reached = &m; |
---|
371 | return *this; |
---|
372 | } |
---|
373 | |
---|
374 | ///Sets the map that indicates which nodes are processed. |
---|
375 | |
---|
376 | ///Sets the map that indicates which nodes are processed. |
---|
377 | ///If you don't use this function before calling \ref run(), |
---|
378 | ///it will allocate one. The destructor deallocates this |
---|
379 | ///automatically allocated map, of course. |
---|
380 | ///\return <tt> (*this) </tt> |
---|
381 | Bfs &processedMap(ProcessedMap &m) |
---|
382 | { |
---|
383 | if(local_processed) { |
---|
384 | delete _processed; |
---|
385 | local_processed=false; |
---|
386 | } |
---|
387 | _processed = &m; |
---|
388 | return *this; |
---|
389 | } |
---|
390 | |
---|
391 | ///Sets the map that stores the distances of the nodes. |
---|
392 | |
---|
393 | ///Sets the map that stores the distances of the nodes calculated by |
---|
394 | ///the algorithm. |
---|
395 | ///If you don't use this function before calling \ref run(), |
---|
396 | ///it will allocate one. The destructor deallocates this |
---|
397 | ///automatically allocated map, of course. |
---|
398 | ///\return <tt> (*this) </tt> |
---|
399 | Bfs &distMap(DistMap &m) |
---|
400 | { |
---|
401 | if(local_dist) { |
---|
402 | delete _dist; |
---|
403 | local_dist=false; |
---|
404 | } |
---|
405 | _dist = &m; |
---|
406 | return *this; |
---|
407 | } |
---|
408 | |
---|
409 | public: |
---|
410 | |
---|
411 | ///\name Execution control |
---|
412 | ///The simplest way to execute the algorithm is to use |
---|
413 | ///one of the member functions called \ref lemon::Bfs::run() "run()". |
---|
414 | ///\n |
---|
415 | ///If you need more control on the execution, first you must call |
---|
416 | ///\ref lemon::Bfs::init() "init()", then you can add several source |
---|
417 | ///nodes with \ref lemon::Bfs::addSource() "addSource()". |
---|
418 | ///Finally \ref lemon::Bfs::start() "start()" will perform the |
---|
419 | ///actual path computation. |
---|
420 | |
---|
421 | ///@{ |
---|
422 | |
---|
423 | ///Initializes the internal data structures. |
---|
424 | |
---|
425 | ///Initializes the internal data structures. |
---|
426 | /// |
---|
427 | void init() |
---|
428 | { |
---|
429 | create_maps(); |
---|
430 | _queue.resize(countNodes(*G)); |
---|
431 | _queue_head=_queue_tail=0; |
---|
432 | _curr_dist=1; |
---|
433 | for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
---|
434 | _pred->set(u,INVALID); |
---|
435 | _reached->set(u,false); |
---|
436 | _processed->set(u,false); |
---|
437 | } |
---|
438 | } |
---|
439 | |
---|
440 | ///Adds a new source node. |
---|
441 | |
---|
442 | ///Adds a new source node to the set of nodes to be processed. |
---|
443 | /// |
---|
444 | void addSource(Node s) |
---|
445 | { |
---|
446 | if(!(*_reached)[s]) |
---|
447 | { |
---|
448 | _reached->set(s,true); |
---|
449 | _pred->set(s,INVALID); |
---|
450 | _dist->set(s,0); |
---|
451 | _queue[_queue_head++]=s; |
---|
452 | _queue_next_dist=_queue_head; |
---|
453 | } |
---|
454 | } |
---|
455 | |
---|
456 | ///Processes the next node. |
---|
457 | |
---|
458 | ///Processes the next node. |
---|
459 | /// |
---|
460 | ///\return The processed node. |
---|
461 | /// |
---|
462 | ///\pre The queue must not be empty. |
---|
463 | Node processNextNode() |
---|
464 | { |
---|
465 | if(_queue_tail==_queue_next_dist) { |
---|
466 | _curr_dist++; |
---|
467 | _queue_next_dist=_queue_head; |
---|
468 | } |
---|
469 | Node n=_queue[_queue_tail++]; |
---|
470 | _processed->set(n,true); |
---|
471 | Node m; |
---|
472 | for(OutArcIt e(*G,n);e!=INVALID;++e) |
---|
473 | if(!(*_reached)[m=G->target(e)]) { |
---|
474 | _queue[_queue_head++]=m; |
---|
475 | _reached->set(m,true); |
---|
476 | _pred->set(m,e); |
---|
477 | _dist->set(m,_curr_dist); |
---|
478 | } |
---|
479 | return n; |
---|
480 | } |
---|
481 | |
---|
482 | ///Processes the next node. |
---|
483 | |
---|
484 | ///Processes the next node and checks if the given target node |
---|
485 | ///is reached. If the target node is reachable from the processed |
---|
486 | ///node, then the \c reach parameter will be set to \c true. |
---|
487 | /// |
---|
488 | ///\param target The target node. |
---|
489 | ///\retval reach Indicates if the target node is reached. |
---|
490 | ///It should be initially \c false. |
---|
491 | /// |
---|
492 | ///\return The processed node. |
---|
493 | /// |
---|
494 | ///\pre The queue must not be empty. |
---|
495 | Node processNextNode(Node target, bool& reach) |
---|
496 | { |
---|
497 | if(_queue_tail==_queue_next_dist) { |
---|
498 | _curr_dist++; |
---|
499 | _queue_next_dist=_queue_head; |
---|
500 | } |
---|
501 | Node n=_queue[_queue_tail++]; |
---|
502 | _processed->set(n,true); |
---|
503 | Node m; |
---|
504 | for(OutArcIt e(*G,n);e!=INVALID;++e) |
---|
505 | if(!(*_reached)[m=G->target(e)]) { |
---|
506 | _queue[_queue_head++]=m; |
---|
507 | _reached->set(m,true); |
---|
508 | _pred->set(m,e); |
---|
509 | _dist->set(m,_curr_dist); |
---|
510 | reach = reach || (target == m); |
---|
511 | } |
---|
512 | return n; |
---|
513 | } |
---|
514 | |
---|
515 | ///Processes the next node. |
---|
516 | |
---|
517 | ///Processes the next node and checks if at least one of reached |
---|
518 | ///nodes has \c true value in the \c nm node map. If one node |
---|
519 | ///with \c true value is reachable from the processed node, then the |
---|
520 | ///\c rnode parameter will be set to the first of such nodes. |
---|
521 | /// |
---|
522 | ///\param nm A \c bool (or convertible) node map that indicates the |
---|
523 | ///possible targets. |
---|
524 | ///\retval rnode The reached target node. |
---|
525 | ///It should be initially \c INVALID. |
---|
526 | /// |
---|
527 | ///\return The processed node. |
---|
528 | /// |
---|
529 | ///\pre The queue must not be empty. |
---|
530 | template<class NM> |
---|
531 | Node processNextNode(const NM& nm, Node& rnode) |
---|
532 | { |
---|
533 | if(_queue_tail==_queue_next_dist) { |
---|
534 | _curr_dist++; |
---|
535 | _queue_next_dist=_queue_head; |
---|
536 | } |
---|
537 | Node n=_queue[_queue_tail++]; |
---|
538 | _processed->set(n,true); |
---|
539 | Node m; |
---|
540 | for(OutArcIt e(*G,n);e!=INVALID;++e) |
---|
541 | if(!(*_reached)[m=G->target(e)]) { |
---|
542 | _queue[_queue_head++]=m; |
---|
543 | _reached->set(m,true); |
---|
544 | _pred->set(m,e); |
---|
545 | _dist->set(m,_curr_dist); |
---|
546 | if (nm[m] && rnode == INVALID) rnode = m; |
---|
547 | } |
---|
548 | return n; |
---|
549 | } |
---|
550 | |
---|
551 | ///The next node to be processed. |
---|
552 | |
---|
553 | ///Returns the next node to be processed or \c INVALID if the queue |
---|
554 | ///is empty. |
---|
555 | Node nextNode() const |
---|
556 | { |
---|
557 | return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
---|
558 | } |
---|
559 | |
---|
560 | ///\brief Returns \c false if there are nodes |
---|
561 | ///to be processed. |
---|
562 | /// |
---|
563 | ///Returns \c false if there are nodes |
---|
564 | ///to be processed in the queue. |
---|
565 | bool emptyQueue() const { return _queue_tail==_queue_head; } |
---|
566 | |
---|
567 | ///Returns the number of the nodes to be processed. |
---|
568 | |
---|
569 | ///Returns the number of the nodes to be processed in the queue. |
---|
570 | int queueSize() const { return _queue_head-_queue_tail; } |
---|
571 | |
---|
572 | ///Executes the algorithm. |
---|
573 | |
---|
574 | ///Executes the algorithm. |
---|
575 | /// |
---|
576 | ///This method runs the %BFS algorithm from the root node(s) |
---|
577 | ///in order to compute the shortest path to each node. |
---|
578 | /// |
---|
579 | ///The algorithm computes |
---|
580 | ///- the shortest path tree (forest), |
---|
581 | ///- the distance of each node from the root(s). |
---|
582 | /// |
---|
583 | ///\pre init() must be called and at least one root node should be |
---|
584 | ///added with addSource() before using this function. |
---|
585 | /// |
---|
586 | ///\note <tt>b.start()</tt> is just a shortcut of the following code. |
---|
587 | ///\code |
---|
588 | /// while ( !b.emptyQueue() ) { |
---|
589 | /// b.processNextNode(); |
---|
590 | /// } |
---|
591 | ///\endcode |
---|
592 | void start() |
---|
593 | { |
---|
594 | while ( !emptyQueue() ) processNextNode(); |
---|
595 | } |
---|
596 | |
---|
597 | ///Executes the algorithm until the given target node is reached. |
---|
598 | |
---|
599 | ///Executes the algorithm until the given target node is reached. |
---|
600 | /// |
---|
601 | ///This method runs the %BFS algorithm from the root node(s) |
---|
602 | ///in order to compute the shortest path to \c t. |
---|
603 | /// |
---|
604 | ///The algorithm computes |
---|
605 | ///- the shortest path to \c t, |
---|
606 | ///- the distance of \c t from the root(s). |
---|
607 | /// |
---|
608 | ///\pre init() must be called and at least one root node should be |
---|
609 | ///added with addSource() before using this function. |
---|
610 | /// |
---|
611 | ///\note <tt>b.start(t)</tt> is just a shortcut of the following code. |
---|
612 | ///\code |
---|
613 | /// bool reach = false; |
---|
614 | /// while ( !b.emptyQueue() && !reach ) { |
---|
615 | /// b.processNextNode(t, reach); |
---|
616 | /// } |
---|
617 | ///\endcode |
---|
618 | void start(Node t) |
---|
619 | { |
---|
620 | bool reach = false; |
---|
621 | while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
---|
622 | } |
---|
623 | |
---|
624 | ///Executes the algorithm until a condition is met. |
---|
625 | |
---|
626 | ///Executes the algorithm until a condition is met. |
---|
627 | /// |
---|
628 | ///This method runs the %BFS algorithm from the root node(s) in |
---|
629 | ///order to compute the shortest path to a node \c v with |
---|
630 | /// <tt>nm[v]</tt> true, if such a node can be found. |
---|
631 | /// |
---|
632 | ///\param nm A \c bool (or convertible) node map. The algorithm |
---|
633 | ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
---|
634 | /// |
---|
635 | ///\return The reached node \c v with <tt>nm[v]</tt> true or |
---|
636 | ///\c INVALID if no such node was found. |
---|
637 | /// |
---|
638 | ///\pre init() must be called and at least one root node should be |
---|
639 | ///added with addSource() before using this function. |
---|
640 | /// |
---|
641 | ///\note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
---|
642 | ///\code |
---|
643 | /// Node rnode = INVALID; |
---|
644 | /// while ( !b.emptyQueue() && rnode == INVALID ) { |
---|
645 | /// b.processNextNode(nm, rnode); |
---|
646 | /// } |
---|
647 | /// return rnode; |
---|
648 | ///\endcode |
---|
649 | template<class NodeBoolMap> |
---|
650 | Node start(const NodeBoolMap &nm) |
---|
651 | { |
---|
652 | Node rnode = INVALID; |
---|
653 | while ( !emptyQueue() && rnode == INVALID ) { |
---|
654 | processNextNode(nm, rnode); |
---|
655 | } |
---|
656 | return rnode; |
---|
657 | } |
---|
658 | |
---|
659 | ///Runs the algorithm from the given source node. |
---|
660 | |
---|
661 | ///This method runs the %BFS algorithm from node \c s |
---|
662 | ///in order to compute the shortest path to each node. |
---|
663 | /// |
---|
664 | ///The algorithm computes |
---|
665 | ///- the shortest path tree, |
---|
666 | ///- the distance of each node from the root. |
---|
667 | /// |
---|
668 | ///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
---|
669 | ///\code |
---|
670 | /// b.init(); |
---|
671 | /// b.addSource(s); |
---|
672 | /// b.start(); |
---|
673 | ///\endcode |
---|
674 | void run(Node s) { |
---|
675 | init(); |
---|
676 | addSource(s); |
---|
677 | start(); |
---|
678 | } |
---|
679 | |
---|
680 | ///Finds the shortest path between \c s and \c t. |
---|
681 | |
---|
682 | ///This method runs the %BFS algorithm from node \c s |
---|
683 | ///in order to compute the shortest path to node \c t |
---|
684 | ///(it stops searching when \c t is processed). |
---|
685 | /// |
---|
686 | ///\return \c true if \c t is reachable form \c s. |
---|
687 | /// |
---|
688 | ///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
---|
689 | ///shortcut of the following code. |
---|
690 | ///\code |
---|
691 | /// b.init(); |
---|
692 | /// b.addSource(s); |
---|
693 | /// b.start(t); |
---|
694 | ///\endcode |
---|
695 | bool run(Node s,Node t) { |
---|
696 | init(); |
---|
697 | addSource(s); |
---|
698 | start(t); |
---|
699 | return reached(t); |
---|
700 | } |
---|
701 | |
---|
702 | ///Runs the algorithm to visit all nodes in the digraph. |
---|
703 | |
---|
704 | ///This method runs the %BFS algorithm in order to |
---|
705 | ///compute the shortest path to each node. |
---|
706 | /// |
---|
707 | ///The algorithm computes |
---|
708 | ///- the shortest path tree (forest), |
---|
709 | ///- the distance of each node from the root(s). |
---|
710 | /// |
---|
711 | ///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
---|
712 | ///\code |
---|
713 | /// b.init(); |
---|
714 | /// for (NodeIt n(gr); n != INVALID; ++n) { |
---|
715 | /// if (!b.reached(n)) { |
---|
716 | /// b.addSource(n); |
---|
717 | /// b.start(); |
---|
718 | /// } |
---|
719 | /// } |
---|
720 | ///\endcode |
---|
721 | void run() { |
---|
722 | init(); |
---|
723 | for (NodeIt n(*G); n != INVALID; ++n) { |
---|
724 | if (!reached(n)) { |
---|
725 | addSource(n); |
---|
726 | start(); |
---|
727 | } |
---|
728 | } |
---|
729 | } |
---|
730 | |
---|
731 | ///@} |
---|
732 | |
---|
733 | ///\name Query Functions |
---|
734 | ///The result of the %BFS algorithm can be obtained using these |
---|
735 | ///functions.\n |
---|
736 | ///Either \ref lemon::Bfs::run() "run()" or \ref lemon::Bfs::start() |
---|
737 | ///"start()" must be called before using them. |
---|
738 | |
---|
739 | ///@{ |
---|
740 | |
---|
741 | ///The shortest path to a node. |
---|
742 | |
---|
743 | ///Returns the shortest path to a node. |
---|
744 | /// |
---|
745 | ///\warning \c t should be reachable from the root(s). |
---|
746 | /// |
---|
747 | ///\pre Either \ref run() or \ref start() must be called before |
---|
748 | ///using this function. |
---|
749 | Path path(Node t) const { return Path(*G, *_pred, t); } |
---|
750 | |
---|
751 | ///The distance of a node from the root(s). |
---|
752 | |
---|
753 | ///Returns the distance of a node from the root(s). |
---|
754 | /// |
---|
755 | ///\warning If node \c v is not reachable from the root(s), then |
---|
756 | ///the return value of this function is undefined. |
---|
757 | /// |
---|
758 | ///\pre Either \ref run() or \ref start() must be called before |
---|
759 | ///using this function. |
---|
760 | int dist(Node v) const { return (*_dist)[v]; } |
---|
761 | |
---|
762 | ///Returns the 'previous arc' of the shortest path tree for a node. |
---|
763 | |
---|
764 | ///This function returns the 'previous arc' of the shortest path |
---|
765 | ///tree for the node \c v, i.e. it returns the last arc of a |
---|
766 | ///shortest path from the root(s) to \c v. It is \c INVALID if \c v |
---|
767 | ///is not reachable from the root(s) or if \c v is a root. |
---|
768 | /// |
---|
769 | ///The shortest path tree used here is equal to the shortest path |
---|
770 | ///tree used in \ref predNode(). |
---|
771 | /// |
---|
772 | ///\pre Either \ref run() or \ref start() must be called before |
---|
773 | ///using this function. |
---|
774 | Arc predArc(Node v) const { return (*_pred)[v];} |
---|
775 | |
---|
776 | ///Returns the 'previous node' of the shortest path tree for a node. |
---|
777 | |
---|
778 | ///This function returns the 'previous node' of the shortest path |
---|
779 | ///tree for the node \c v, i.e. it returns the last but one node |
---|
780 | ///from a shortest path from the root(s) to \c v. It is \c INVALID |
---|
781 | ///if \c v is not reachable from the root(s) or if \c v is a root. |
---|
782 | /// |
---|
783 | ///The shortest path tree used here is equal to the shortest path |
---|
784 | ///tree used in \ref predArc(). |
---|
785 | /// |
---|
786 | ///\pre Either \ref run() or \ref start() must be called before |
---|
787 | ///using this function. |
---|
788 | Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
---|
789 | G->source((*_pred)[v]); } |
---|
790 | |
---|
791 | ///\brief Returns a const reference to the node map that stores the |
---|
792 | /// distances of the nodes. |
---|
793 | /// |
---|
794 | ///Returns a const reference to the node map that stores the distances |
---|
795 | ///of the nodes calculated by the algorithm. |
---|
796 | /// |
---|
797 | ///\pre Either \ref run() or \ref init() |
---|
798 | ///must be called before using this function. |
---|
799 | const DistMap &distMap() const { return *_dist;} |
---|
800 | |
---|
801 | ///\brief Returns a const reference to the node map that stores the |
---|
802 | ///predecessor arcs. |
---|
803 | /// |
---|
804 | ///Returns a const reference to the node map that stores the predecessor |
---|
805 | ///arcs, which form the shortest path tree. |
---|
806 | /// |
---|
807 | ///\pre Either \ref run() or \ref init() |
---|
808 | ///must be called before using this function. |
---|
809 | const PredMap &predMap() const { return *_pred;} |
---|
810 | |
---|
811 | ///Checks if a node is reachable from the root(s). |
---|
812 | |
---|
813 | ///Returns \c true if \c v is reachable from the root(s). |
---|
814 | ///\pre Either \ref run() or \ref start() |
---|
815 | ///must be called before using this function. |
---|
816 | bool reached(Node v) const { return (*_reached)[v]; } |
---|
817 | |
---|
818 | ///@} |
---|
819 | }; |
---|
820 | |
---|
821 | ///Default traits class of bfs() function. |
---|
822 | |
---|
823 | ///Default traits class of bfs() function. |
---|
824 | ///\tparam GR Digraph type. |
---|
825 | template<class GR> |
---|
826 | struct BfsWizardDefaultTraits |
---|
827 | { |
---|
828 | ///The type of the digraph the algorithm runs on. |
---|
829 | typedef GR Digraph; |
---|
830 | |
---|
831 | ///\brief The type of the map that stores the predecessor |
---|
832 | ///arcs of the shortest paths. |
---|
833 | /// |
---|
834 | ///The type of the map that stores the predecessor |
---|
835 | ///arcs of the shortest paths. |
---|
836 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
837 | typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
---|
838 | ///Instantiates a PredMap. |
---|
839 | |
---|
840 | ///This function instantiates a PredMap. |
---|
841 | ///\param g is the digraph, to which we would like to define the |
---|
842 | ///PredMap. |
---|
843 | static PredMap *createPredMap(const Digraph &g) |
---|
844 | { |
---|
845 | return new PredMap(g); |
---|
846 | } |
---|
847 | |
---|
848 | ///The type of the map that indicates which nodes are processed. |
---|
849 | |
---|
850 | ///The type of the map that indicates which nodes are processed. |
---|
851 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
852 | ///By default it is a NullMap. |
---|
853 | typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
---|
854 | ///Instantiates a ProcessedMap. |
---|
855 | |
---|
856 | ///This function instantiates a ProcessedMap. |
---|
857 | ///\param g is the digraph, to which |
---|
858 | ///we would like to define the ProcessedMap. |
---|
859 | #ifdef DOXYGEN |
---|
860 | static ProcessedMap *createProcessedMap(const Digraph &g) |
---|
861 | #else |
---|
862 | static ProcessedMap *createProcessedMap(const Digraph &) |
---|
863 | #endif |
---|
864 | { |
---|
865 | return new ProcessedMap(); |
---|
866 | } |
---|
867 | |
---|
868 | ///The type of the map that indicates which nodes are reached. |
---|
869 | |
---|
870 | ///The type of the map that indicates which nodes are reached. |
---|
871 | ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
---|
872 | typedef typename Digraph::template NodeMap<bool> ReachedMap; |
---|
873 | ///Instantiates a ReachedMap. |
---|
874 | |
---|
875 | ///This function instantiates a ReachedMap. |
---|
876 | ///\param g is the digraph, to which |
---|
877 | ///we would like to define the ReachedMap. |
---|
878 | static ReachedMap *createReachedMap(const Digraph &g) |
---|
879 | { |
---|
880 | return new ReachedMap(g); |
---|
881 | } |
---|
882 | |
---|
883 | ///The type of the map that stores the distances of the nodes. |
---|
884 | |
---|
885 | ///The type of the map that stores the distances of the nodes. |
---|
886 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
887 | typedef typename Digraph::template NodeMap<int> DistMap; |
---|
888 | ///Instantiates a DistMap. |
---|
889 | |
---|
890 | ///This function instantiates a DistMap. |
---|
891 | ///\param g is the digraph, to which we would like to define |
---|
892 | ///the DistMap |
---|
893 | static DistMap *createDistMap(const Digraph &g) |
---|
894 | { |
---|
895 | return new DistMap(g); |
---|
896 | } |
---|
897 | |
---|
898 | ///The type of the shortest paths. |
---|
899 | |
---|
900 | ///The type of the shortest paths. |
---|
901 | ///It must meet the \ref concepts::Path "Path" concept. |
---|
902 | typedef lemon::Path<Digraph> Path; |
---|
903 | }; |
---|
904 | |
---|
905 | /// Default traits class used by BfsWizard |
---|
906 | |
---|
907 | /// To make it easier to use Bfs algorithm |
---|
908 | /// we have created a wizard class. |
---|
909 | /// This \ref BfsWizard class needs default traits, |
---|
910 | /// as well as the \ref Bfs class. |
---|
911 | /// The \ref BfsWizardBase is a class to be the default traits of the |
---|
912 | /// \ref BfsWizard class. |
---|
913 | template<class GR> |
---|
914 | class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
---|
915 | { |
---|
916 | |
---|
917 | typedef BfsWizardDefaultTraits<GR> Base; |
---|
918 | protected: |
---|
919 | //The type of the nodes in the digraph. |
---|
920 | typedef typename Base::Digraph::Node Node; |
---|
921 | |
---|
922 | //Pointer to the digraph the algorithm runs on. |
---|
923 | void *_g; |
---|
924 | //Pointer to the map of reached nodes. |
---|
925 | void *_reached; |
---|
926 | //Pointer to the map of processed nodes. |
---|
927 | void *_processed; |
---|
928 | //Pointer to the map of predecessors arcs. |
---|
929 | void *_pred; |
---|
930 | //Pointer to the map of distances. |
---|
931 | void *_dist; |
---|
932 | //Pointer to the shortest path to the target node. |
---|
933 | void *_path; |
---|
934 | //Pointer to the distance of the target node. |
---|
935 | int *_di; |
---|
936 | |
---|
937 | public: |
---|
938 | /// Constructor. |
---|
939 | |
---|
940 | /// This constructor does not require parameters, therefore it initiates |
---|
941 | /// all of the attributes to \c 0. |
---|
942 | BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
---|
943 | _dist(0), _path(0), _di(0) {} |
---|
944 | |
---|
945 | /// Constructor. |
---|
946 | |
---|
947 | /// This constructor requires one parameter, |
---|
948 | /// others are initiated to \c 0. |
---|
949 | /// \param g The digraph the algorithm runs on. |
---|
950 | BfsWizardBase(const GR &g) : |
---|
951 | _g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
---|
952 | _reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
---|
953 | |
---|
954 | }; |
---|
955 | |
---|
956 | /// Auxiliary class for the function-type interface of BFS algorithm. |
---|
957 | |
---|
958 | /// This auxiliary class is created to implement the |
---|
959 | /// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
---|
960 | /// It does not have own \ref run() method, it uses the functions |
---|
961 | /// and features of the plain \ref Bfs. |
---|
962 | /// |
---|
963 | /// This class should only be used through the \ref bfs() function, |
---|
964 | /// which makes it easier to use the algorithm. |
---|
965 | template<class TR> |
---|
966 | class BfsWizard : public TR |
---|
967 | { |
---|
968 | typedef TR Base; |
---|
969 | |
---|
970 | ///The type of the digraph the algorithm runs on. |
---|
971 | typedef typename TR::Digraph Digraph; |
---|
972 | |
---|
973 | typedef typename Digraph::Node Node; |
---|
974 | typedef typename Digraph::NodeIt NodeIt; |
---|
975 | typedef typename Digraph::Arc Arc; |
---|
976 | typedef typename Digraph::OutArcIt OutArcIt; |
---|
977 | |
---|
978 | ///\brief The type of the map that stores the predecessor |
---|
979 | ///arcs of the shortest paths. |
---|
980 | typedef typename TR::PredMap PredMap; |
---|
981 | ///\brief The type of the map that stores the distances of the nodes. |
---|
982 | typedef typename TR::DistMap DistMap; |
---|
983 | ///\brief The type of the map that indicates which nodes are reached. |
---|
984 | typedef typename TR::ReachedMap ReachedMap; |
---|
985 | ///\brief The type of the map that indicates which nodes are processed. |
---|
986 | typedef typename TR::ProcessedMap ProcessedMap; |
---|
987 | ///The type of the shortest paths |
---|
988 | typedef typename TR::Path Path; |
---|
989 | |
---|
990 | public: |
---|
991 | |
---|
992 | /// Constructor. |
---|
993 | BfsWizard() : TR() {} |
---|
994 | |
---|
995 | /// Constructor that requires parameters. |
---|
996 | |
---|
997 | /// Constructor that requires parameters. |
---|
998 | /// These parameters will be the default values for the traits class. |
---|
999 | /// \param g The digraph the algorithm runs on. |
---|
1000 | BfsWizard(const Digraph &g) : |
---|
1001 | TR(g) {} |
---|
1002 | |
---|
1003 | ///Copy constructor |
---|
1004 | BfsWizard(const TR &b) : TR(b) {} |
---|
1005 | |
---|
1006 | ~BfsWizard() {} |
---|
1007 | |
---|
1008 | ///Runs BFS algorithm from the given source node. |
---|
1009 | |
---|
1010 | ///This method runs BFS algorithm from node \c s |
---|
1011 | ///in order to compute the shortest path to each node. |
---|
1012 | void run(Node s) |
---|
1013 | { |
---|
1014 | Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
---|
1015 | if (Base::_pred) |
---|
1016 | alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
---|
1017 | if (Base::_dist) |
---|
1018 | alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
---|
1019 | if (Base::_reached) |
---|
1020 | alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
---|
1021 | if (Base::_processed) |
---|
1022 | alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
---|
1023 | if (s!=INVALID) |
---|
1024 | alg.run(s); |
---|
1025 | else |
---|
1026 | alg.run(); |
---|
1027 | } |
---|
1028 | |
---|
1029 | ///Finds the shortest path between \c s and \c t. |
---|
1030 | |
---|
1031 | ///This method runs BFS algorithm from node \c s |
---|
1032 | ///in order to compute the shortest path to node \c t |
---|
1033 | ///(it stops searching when \c t is processed). |
---|
1034 | /// |
---|
1035 | ///\return \c true if \c t is reachable form \c s. |
---|
1036 | bool run(Node s, Node t) |
---|
1037 | { |
---|
1038 | Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
---|
1039 | if (Base::_pred) |
---|
1040 | alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
---|
1041 | if (Base::_dist) |
---|
1042 | alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
---|
1043 | if (Base::_reached) |
---|
1044 | alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
---|
1045 | if (Base::_processed) |
---|
1046 | alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
---|
1047 | alg.run(s,t); |
---|
1048 | if (Base::_path) |
---|
1049 | *reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
---|
1050 | if (Base::_di) |
---|
1051 | *Base::_di = alg.dist(t); |
---|
1052 | return alg.reached(t); |
---|
1053 | } |
---|
1054 | |
---|
1055 | ///Runs BFS algorithm to visit all nodes in the digraph. |
---|
1056 | |
---|
1057 | ///This method runs BFS algorithm in order to compute |
---|
1058 | ///the shortest path to each node. |
---|
1059 | void run() |
---|
1060 | { |
---|
1061 | run(INVALID); |
---|
1062 | } |
---|
1063 | |
---|
1064 | template<class T> |
---|
1065 | struct SetPredMapBase : public Base { |
---|
1066 | typedef T PredMap; |
---|
1067 | static PredMap *createPredMap(const Digraph &) { return 0; }; |
---|
1068 | SetPredMapBase(const TR &b) : TR(b) {} |
---|
1069 | }; |
---|
1070 | ///\brief \ref named-func-param "Named parameter" |
---|
1071 | ///for setting PredMap object. |
---|
1072 | /// |
---|
1073 | ///\ref named-func-param "Named parameter" |
---|
1074 | ///for setting PredMap object. |
---|
1075 | template<class T> |
---|
1076 | BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
---|
1077 | { |
---|
1078 | Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1079 | return BfsWizard<SetPredMapBase<T> >(*this); |
---|
1080 | } |
---|
1081 | |
---|
1082 | template<class T> |
---|
1083 | struct SetReachedMapBase : public Base { |
---|
1084 | typedef T ReachedMap; |
---|
1085 | static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
---|
1086 | SetReachedMapBase(const TR &b) : TR(b) {} |
---|
1087 | }; |
---|
1088 | ///\brief \ref named-func-param "Named parameter" |
---|
1089 | ///for setting ReachedMap object. |
---|
1090 | /// |
---|
1091 | /// \ref named-func-param "Named parameter" |
---|
1092 | ///for setting ReachedMap object. |
---|
1093 | template<class T> |
---|
1094 | BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
---|
1095 | { |
---|
1096 | Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1097 | return BfsWizard<SetReachedMapBase<T> >(*this); |
---|
1098 | } |
---|
1099 | |
---|
1100 | template<class T> |
---|
1101 | struct SetDistMapBase : public Base { |
---|
1102 | typedef T DistMap; |
---|
1103 | static DistMap *createDistMap(const Digraph &) { return 0; }; |
---|
1104 | SetDistMapBase(const TR &b) : TR(b) {} |
---|
1105 | }; |
---|
1106 | ///\brief \ref named-func-param "Named parameter" |
---|
1107 | ///for setting DistMap object. |
---|
1108 | /// |
---|
1109 | /// \ref named-func-param "Named parameter" |
---|
1110 | ///for setting DistMap object. |
---|
1111 | template<class T> |
---|
1112 | BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
---|
1113 | { |
---|
1114 | Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1115 | return BfsWizard<SetDistMapBase<T> >(*this); |
---|
1116 | } |
---|
1117 | |
---|
1118 | template<class T> |
---|
1119 | struct SetProcessedMapBase : public Base { |
---|
1120 | typedef T ProcessedMap; |
---|
1121 | static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
---|
1122 | SetProcessedMapBase(const TR &b) : TR(b) {} |
---|
1123 | }; |
---|
1124 | ///\brief \ref named-func-param "Named parameter" |
---|
1125 | ///for setting ProcessedMap object. |
---|
1126 | /// |
---|
1127 | /// \ref named-func-param "Named parameter" |
---|
1128 | ///for setting ProcessedMap object. |
---|
1129 | template<class T> |
---|
1130 | BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
---|
1131 | { |
---|
1132 | Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1133 | return BfsWizard<SetProcessedMapBase<T> >(*this); |
---|
1134 | } |
---|
1135 | |
---|
1136 | template<class T> |
---|
1137 | struct SetPathBase : public Base { |
---|
1138 | typedef T Path; |
---|
1139 | SetPathBase(const TR &b) : TR(b) {} |
---|
1140 | }; |
---|
1141 | ///\brief \ref named-func-param "Named parameter" |
---|
1142 | ///for getting the shortest path to the target node. |
---|
1143 | /// |
---|
1144 | ///\ref named-func-param "Named parameter" |
---|
1145 | ///for getting the shortest path to the target node. |
---|
1146 | template<class T> |
---|
1147 | BfsWizard<SetPathBase<T> > path(const T &t) |
---|
1148 | { |
---|
1149 | Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1150 | return BfsWizard<SetPathBase<T> >(*this); |
---|
1151 | } |
---|
1152 | |
---|
1153 | ///\brief \ref named-func-param "Named parameter" |
---|
1154 | ///for getting the distance of the target node. |
---|
1155 | /// |
---|
1156 | ///\ref named-func-param "Named parameter" |
---|
1157 | ///for getting the distance of the target node. |
---|
1158 | BfsWizard dist(const int &d) |
---|
1159 | { |
---|
1160 | Base::_di=const_cast<int*>(&d); |
---|
1161 | return *this; |
---|
1162 | } |
---|
1163 | |
---|
1164 | }; |
---|
1165 | |
---|
1166 | ///Function-type interface for BFS algorithm. |
---|
1167 | |
---|
1168 | /// \ingroup search |
---|
1169 | ///Function-type interface for BFS algorithm. |
---|
1170 | /// |
---|
1171 | ///This function also has several \ref named-func-param "named parameters", |
---|
1172 | ///they are declared as the members of class \ref BfsWizard. |
---|
1173 | ///The following examples show how to use these parameters. |
---|
1174 | ///\code |
---|
1175 | /// // Compute shortest path from node s to each node |
---|
1176 | /// bfs(g).predMap(preds).distMap(dists).run(s); |
---|
1177 | /// |
---|
1178 | /// // Compute shortest path from s to t |
---|
1179 | /// bool reached = bfs(g).path(p).dist(d).run(s,t); |
---|
1180 | ///\endcode |
---|
1181 | ///\warning Don't forget to put the \ref BfsWizard::run() "run()" |
---|
1182 | ///to the end of the parameter list. |
---|
1183 | ///\sa BfsWizard |
---|
1184 | ///\sa Bfs |
---|
1185 | template<class GR> |
---|
1186 | BfsWizard<BfsWizardBase<GR> > |
---|
1187 | bfs(const GR &digraph) |
---|
1188 | { |
---|
1189 | return BfsWizard<BfsWizardBase<GR> >(digraph); |
---|
1190 | } |
---|
1191 | |
---|
1192 | #ifdef DOXYGEN |
---|
1193 | /// \brief Visitor class for BFS. |
---|
1194 | /// |
---|
1195 | /// This class defines the interface of the BfsVisit events, and |
---|
1196 | /// it could be the base of a real visitor class. |
---|
1197 | template <typename _Digraph> |
---|
1198 | struct BfsVisitor { |
---|
1199 | typedef _Digraph Digraph; |
---|
1200 | typedef typename Digraph::Arc Arc; |
---|
1201 | typedef typename Digraph::Node Node; |
---|
1202 | /// \brief Called for the source node(s) of the BFS. |
---|
1203 | /// |
---|
1204 | /// This function is called for the source node(s) of the BFS. |
---|
1205 | void start(const Node& node) {} |
---|
1206 | /// \brief Called when a node is reached first time. |
---|
1207 | /// |
---|
1208 | /// This function is called when a node is reached first time. |
---|
1209 | void reach(const Node& node) {} |
---|
1210 | /// \brief Called when a node is processed. |
---|
1211 | /// |
---|
1212 | /// This function is called when a node is processed. |
---|
1213 | void process(const Node& node) {} |
---|
1214 | /// \brief Called when an arc reaches a new node. |
---|
1215 | /// |
---|
1216 | /// This function is called when the BFS finds an arc whose target node |
---|
1217 | /// is not reached yet. |
---|
1218 | void discover(const Arc& arc) {} |
---|
1219 | /// \brief Called when an arc is examined but its target node is |
---|
1220 | /// already discovered. |
---|
1221 | /// |
---|
1222 | /// This function is called when an arc is examined but its target node is |
---|
1223 | /// already discovered. |
---|
1224 | void examine(const Arc& arc) {} |
---|
1225 | }; |
---|
1226 | #else |
---|
1227 | template <typename _Digraph> |
---|
1228 | struct BfsVisitor { |
---|
1229 | typedef _Digraph Digraph; |
---|
1230 | typedef typename Digraph::Arc Arc; |
---|
1231 | typedef typename Digraph::Node Node; |
---|
1232 | void start(const Node&) {} |
---|
1233 | void reach(const Node&) {} |
---|
1234 | void process(const Node&) {} |
---|
1235 | void discover(const Arc&) {} |
---|
1236 | void examine(const Arc&) {} |
---|
1237 | |
---|
1238 | template <typename _Visitor> |
---|
1239 | struct Constraints { |
---|
1240 | void constraints() { |
---|
1241 | Arc arc; |
---|
1242 | Node node; |
---|
1243 | visitor.start(node); |
---|
1244 | visitor.reach(node); |
---|
1245 | visitor.process(node); |
---|
1246 | visitor.discover(arc); |
---|
1247 | visitor.examine(arc); |
---|
1248 | } |
---|
1249 | _Visitor& visitor; |
---|
1250 | }; |
---|
1251 | }; |
---|
1252 | #endif |
---|
1253 | |
---|
1254 | /// \brief Default traits class of BfsVisit class. |
---|
1255 | /// |
---|
1256 | /// Default traits class of BfsVisit class. |
---|
1257 | /// \tparam _Digraph The type of the digraph the algorithm runs on. |
---|
1258 | template<class _Digraph> |
---|
1259 | struct BfsVisitDefaultTraits { |
---|
1260 | |
---|
1261 | /// \brief The type of the digraph the algorithm runs on. |
---|
1262 | typedef _Digraph Digraph; |
---|
1263 | |
---|
1264 | /// \brief The type of the map that indicates which nodes are reached. |
---|
1265 | /// |
---|
1266 | /// The type of the map that indicates which nodes are reached. |
---|
1267 | /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
---|
1268 | typedef typename Digraph::template NodeMap<bool> ReachedMap; |
---|
1269 | |
---|
1270 | /// \brief Instantiates a ReachedMap. |
---|
1271 | /// |
---|
1272 | /// This function instantiates a ReachedMap. |
---|
1273 | /// \param digraph is the digraph, to which |
---|
1274 | /// we would like to define the ReachedMap. |
---|
1275 | static ReachedMap *createReachedMap(const Digraph &digraph) { |
---|
1276 | return new ReachedMap(digraph); |
---|
1277 | } |
---|
1278 | |
---|
1279 | }; |
---|
1280 | |
---|
1281 | /// \ingroup search |
---|
1282 | /// |
---|
1283 | /// \brief %BFS algorithm class with visitor interface. |
---|
1284 | /// |
---|
1285 | /// This class provides an efficient implementation of the %BFS algorithm |
---|
1286 | /// with visitor interface. |
---|
1287 | /// |
---|
1288 | /// The %BfsVisit class provides an alternative interface to the Bfs |
---|
1289 | /// class. It works with callback mechanism, the BfsVisit object calls |
---|
1290 | /// the member functions of the \c Visitor class on every BFS event. |
---|
1291 | /// |
---|
1292 | /// This interface of the BFS algorithm should be used in special cases |
---|
1293 | /// when extra actions have to be performed in connection with certain |
---|
1294 | /// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
---|
1295 | /// instead. |
---|
1296 | /// |
---|
1297 | /// \tparam _Digraph The type of the digraph the algorithm runs on. |
---|
1298 | /// The default value is |
---|
1299 | /// \ref ListDigraph. The value of _Digraph is not used directly by |
---|
1300 | /// \ref BfsVisit, it is only passed to \ref BfsVisitDefaultTraits. |
---|
1301 | /// \tparam _Visitor The Visitor type that is used by the algorithm. |
---|
1302 | /// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty visitor, which |
---|
1303 | /// does not observe the BFS events. If you want to observe the BFS |
---|
1304 | /// events, you should implement your own visitor class. |
---|
1305 | /// \tparam _Traits Traits class to set various data types used by the |
---|
1306 | /// algorithm. The default traits class is |
---|
1307 | /// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>". |
---|
1308 | /// See \ref BfsVisitDefaultTraits for the documentation of |
---|
1309 | /// a BFS visit traits class. |
---|
1310 | #ifdef DOXYGEN |
---|
1311 | template <typename _Digraph, typename _Visitor, typename _Traits> |
---|
1312 | #else |
---|
1313 | template <typename _Digraph = ListDigraph, |
---|
1314 | typename _Visitor = BfsVisitor<_Digraph>, |
---|
1315 | typename _Traits = BfsVisitDefaultTraits<_Digraph> > |
---|
1316 | #endif |
---|
1317 | class BfsVisit { |
---|
1318 | public: |
---|
1319 | |
---|
1320 | ///The traits class. |
---|
1321 | typedef _Traits Traits; |
---|
1322 | |
---|
1323 | ///The type of the digraph the algorithm runs on. |
---|
1324 | typedef typename Traits::Digraph Digraph; |
---|
1325 | |
---|
1326 | ///The visitor type used by the algorithm. |
---|
1327 | typedef _Visitor Visitor; |
---|
1328 | |
---|
1329 | ///The type of the map that indicates which nodes are reached. |
---|
1330 | typedef typename Traits::ReachedMap ReachedMap; |
---|
1331 | |
---|
1332 | private: |
---|
1333 | |
---|
1334 | typedef typename Digraph::Node Node; |
---|
1335 | typedef typename Digraph::NodeIt NodeIt; |
---|
1336 | typedef typename Digraph::Arc Arc; |
---|
1337 | typedef typename Digraph::OutArcIt OutArcIt; |
---|
1338 | |
---|
1339 | //Pointer to the underlying digraph. |
---|
1340 | const Digraph *_digraph; |
---|
1341 | //Pointer to the visitor object. |
---|
1342 | Visitor *_visitor; |
---|
1343 | //Pointer to the map of reached status of the nodes. |
---|
1344 | ReachedMap *_reached; |
---|
1345 | //Indicates if _reached is locally allocated (true) or not. |
---|
1346 | bool local_reached; |
---|
1347 | |
---|
1348 | std::vector<typename Digraph::Node> _list; |
---|
1349 | int _list_front, _list_back; |
---|
1350 | |
---|
1351 | //Creates the maps if necessary. |
---|
1352 | void create_maps() { |
---|
1353 | if(!_reached) { |
---|
1354 | local_reached = true; |
---|
1355 | _reached = Traits::createReachedMap(*_digraph); |
---|
1356 | } |
---|
1357 | } |
---|
1358 | |
---|
1359 | protected: |
---|
1360 | |
---|
1361 | BfsVisit() {} |
---|
1362 | |
---|
1363 | public: |
---|
1364 | |
---|
1365 | typedef BfsVisit Create; |
---|
1366 | |
---|
1367 | /// \name Named template parameters |
---|
1368 | |
---|
1369 | ///@{ |
---|
1370 | template <class T> |
---|
1371 | struct SetReachedMapTraits : public Traits { |
---|
1372 | typedef T ReachedMap; |
---|
1373 | static ReachedMap *createReachedMap(const Digraph &digraph) { |
---|
1374 | LEMON_ASSERT(false, "ReachedMap is not initialized"); |
---|
1375 | return 0; // ignore warnings |
---|
1376 | } |
---|
1377 | }; |
---|
1378 | /// \brief \ref named-templ-param "Named parameter" for setting |
---|
1379 | /// ReachedMap type. |
---|
1380 | /// |
---|
1381 | /// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
---|
1382 | template <class T> |
---|
1383 | struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
---|
1384 | SetReachedMapTraits<T> > { |
---|
1385 | typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
---|
1386 | }; |
---|
1387 | ///@} |
---|
1388 | |
---|
1389 | public: |
---|
1390 | |
---|
1391 | /// \brief Constructor. |
---|
1392 | /// |
---|
1393 | /// Constructor. |
---|
1394 | /// |
---|
1395 | /// \param digraph The digraph the algorithm runs on. |
---|
1396 | /// \param visitor The visitor object of the algorithm. |
---|
1397 | BfsVisit(const Digraph& digraph, Visitor& visitor) |
---|
1398 | : _digraph(&digraph), _visitor(&visitor), |
---|
1399 | _reached(0), local_reached(false) {} |
---|
1400 | |
---|
1401 | /// \brief Destructor. |
---|
1402 | ~BfsVisit() { |
---|
1403 | if(local_reached) delete _reached; |
---|
1404 | } |
---|
1405 | |
---|
1406 | /// \brief Sets the map that indicates which nodes are reached. |
---|
1407 | /// |
---|
1408 | /// Sets the map that indicates which nodes are reached. |
---|
1409 | /// If you don't use this function before calling \ref run(), |
---|
1410 | /// it will allocate one. The destructor deallocates this |
---|
1411 | /// automatically allocated map, of course. |
---|
1412 | /// \return <tt> (*this) </tt> |
---|
1413 | BfsVisit &reachedMap(ReachedMap &m) { |
---|
1414 | if(local_reached) { |
---|
1415 | delete _reached; |
---|
1416 | local_reached = false; |
---|
1417 | } |
---|
1418 | _reached = &m; |
---|
1419 | return *this; |
---|
1420 | } |
---|
1421 | |
---|
1422 | public: |
---|
1423 | |
---|
1424 | /// \name Execution control |
---|
1425 | /// The simplest way to execute the algorithm is to use |
---|
1426 | /// one of the member functions called \ref lemon::BfsVisit::run() |
---|
1427 | /// "run()". |
---|
1428 | /// \n |
---|
1429 | /// If you need more control on the execution, first you must call |
---|
1430 | /// \ref lemon::BfsVisit::init() "init()", then you can add several |
---|
1431 | /// source nodes with \ref lemon::BfsVisit::addSource() "addSource()". |
---|
1432 | /// Finally \ref lemon::BfsVisit::start() "start()" will perform the |
---|
1433 | /// actual path computation. |
---|
1434 | |
---|
1435 | /// @{ |
---|
1436 | |
---|
1437 | /// \brief Initializes the internal data structures. |
---|
1438 | /// |
---|
1439 | /// Initializes the internal data structures. |
---|
1440 | void init() { |
---|
1441 | create_maps(); |
---|
1442 | _list.resize(countNodes(*_digraph)); |
---|
1443 | _list_front = _list_back = -1; |
---|
1444 | for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
---|
1445 | _reached->set(u, false); |
---|
1446 | } |
---|
1447 | } |
---|
1448 | |
---|
1449 | /// \brief Adds a new source node. |
---|
1450 | /// |
---|
1451 | /// Adds a new source node to the set of nodes to be processed. |
---|
1452 | void addSource(Node s) { |
---|
1453 | if(!(*_reached)[s]) { |
---|
1454 | _reached->set(s,true); |
---|
1455 | _visitor->start(s); |
---|
1456 | _visitor->reach(s); |
---|
1457 | _list[++_list_back] = s; |
---|
1458 | } |
---|
1459 | } |
---|
1460 | |
---|
1461 | /// \brief Processes the next node. |
---|
1462 | /// |
---|
1463 | /// Processes the next node. |
---|
1464 | /// |
---|
1465 | /// \return The processed node. |
---|
1466 | /// |
---|
1467 | /// \pre The queue must not be empty. |
---|
1468 | Node processNextNode() { |
---|
1469 | Node n = _list[++_list_front]; |
---|
1470 | _visitor->process(n); |
---|
1471 | Arc e; |
---|
1472 | for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
---|
1473 | Node m = _digraph->target(e); |
---|
1474 | if (!(*_reached)[m]) { |
---|
1475 | _visitor->discover(e); |
---|
1476 | _visitor->reach(m); |
---|
1477 | _reached->set(m, true); |
---|
1478 | _list[++_list_back] = m; |
---|
1479 | } else { |
---|
1480 | _visitor->examine(e); |
---|
1481 | } |
---|
1482 | } |
---|
1483 | return n; |
---|
1484 | } |
---|
1485 | |
---|
1486 | /// \brief Processes the next node. |
---|
1487 | /// |
---|
1488 | /// Processes the next node and checks if the given target node |
---|
1489 | /// is reached. If the target node is reachable from the processed |
---|
1490 | /// node, then the \c reach parameter will be set to \c true. |
---|
1491 | /// |
---|
1492 | /// \param target The target node. |
---|
1493 | /// \retval reach Indicates if the target node is reached. |
---|
1494 | /// It should be initially \c false. |
---|
1495 | /// |
---|
1496 | /// \return The processed node. |
---|
1497 | /// |
---|
1498 | /// \pre The queue must not be empty. |
---|
1499 | Node processNextNode(Node target, bool& reach) { |
---|
1500 | Node n = _list[++_list_front]; |
---|
1501 | _visitor->process(n); |
---|
1502 | Arc e; |
---|
1503 | for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
---|
1504 | Node m = _digraph->target(e); |
---|
1505 | if (!(*_reached)[m]) { |
---|
1506 | _visitor->discover(e); |
---|
1507 | _visitor->reach(m); |
---|
1508 | _reached->set(m, true); |
---|
1509 | _list[++_list_back] = m; |
---|
1510 | reach = reach || (target == m); |
---|
1511 | } else { |
---|
1512 | _visitor->examine(e); |
---|
1513 | } |
---|
1514 | } |
---|
1515 | return n; |
---|
1516 | } |
---|
1517 | |
---|
1518 | /// \brief Processes the next node. |
---|
1519 | /// |
---|
1520 | /// Processes the next node and checks if at least one of reached |
---|
1521 | /// nodes has \c true value in the \c nm node map. If one node |
---|
1522 | /// with \c true value is reachable from the processed node, then the |
---|
1523 | /// \c rnode parameter will be set to the first of such nodes. |
---|
1524 | /// |
---|
1525 | /// \param nm A \c bool (or convertible) node map that indicates the |
---|
1526 | /// possible targets. |
---|
1527 | /// \retval rnode The reached target node. |
---|
1528 | /// It should be initially \c INVALID. |
---|
1529 | /// |
---|
1530 | /// \return The processed node. |
---|
1531 | /// |
---|
1532 | /// \pre The queue must not be empty. |
---|
1533 | template <typename NM> |
---|
1534 | Node processNextNode(const NM& nm, Node& rnode) { |
---|
1535 | Node n = _list[++_list_front]; |
---|
1536 | _visitor->process(n); |
---|
1537 | Arc e; |
---|
1538 | for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
---|
1539 | Node m = _digraph->target(e); |
---|
1540 | if (!(*_reached)[m]) { |
---|
1541 | _visitor->discover(e); |
---|
1542 | _visitor->reach(m); |
---|
1543 | _reached->set(m, true); |
---|
1544 | _list[++_list_back] = m; |
---|
1545 | if (nm[m] && rnode == INVALID) rnode = m; |
---|
1546 | } else { |
---|
1547 | _visitor->examine(e); |
---|
1548 | } |
---|
1549 | } |
---|
1550 | return n; |
---|
1551 | } |
---|
1552 | |
---|
1553 | /// \brief The next node to be processed. |
---|
1554 | /// |
---|
1555 | /// Returns the next node to be processed or \c INVALID if the queue |
---|
1556 | /// is empty. |
---|
1557 | Node nextNode() const { |
---|
1558 | return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
---|
1559 | } |
---|
1560 | |
---|
1561 | /// \brief Returns \c false if there are nodes |
---|
1562 | /// to be processed. |
---|
1563 | /// |
---|
1564 | /// Returns \c false if there are nodes |
---|
1565 | /// to be processed in the queue. |
---|
1566 | bool emptyQueue() const { return _list_front == _list_back; } |
---|
1567 | |
---|
1568 | /// \brief Returns the number of the nodes to be processed. |
---|
1569 | /// |
---|
1570 | /// Returns the number of the nodes to be processed in the queue. |
---|
1571 | int queueSize() const { return _list_back - _list_front; } |
---|
1572 | |
---|
1573 | /// \brief Executes the algorithm. |
---|
1574 | /// |
---|
1575 | /// Executes the algorithm. |
---|
1576 | /// |
---|
1577 | /// This method runs the %BFS algorithm from the root node(s) |
---|
1578 | /// in order to compute the shortest path to each node. |
---|
1579 | /// |
---|
1580 | /// The algorithm computes |
---|
1581 | /// - the shortest path tree (forest), |
---|
1582 | /// - the distance of each node from the root(s). |
---|
1583 | /// |
---|
1584 | /// \pre init() must be called and at least one root node should be added |
---|
1585 | /// with addSource() before using this function. |
---|
1586 | /// |
---|
1587 | /// \note <tt>b.start()</tt> is just a shortcut of the following code. |
---|
1588 | /// \code |
---|
1589 | /// while ( !b.emptyQueue() ) { |
---|
1590 | /// b.processNextNode(); |
---|
1591 | /// } |
---|
1592 | /// \endcode |
---|
1593 | void start() { |
---|
1594 | while ( !emptyQueue() ) processNextNode(); |
---|
1595 | } |
---|
1596 | |
---|
1597 | /// \brief Executes the algorithm until the given target node is reached. |
---|
1598 | /// |
---|
1599 | /// Executes the algorithm until the given target node is reached. |
---|
1600 | /// |
---|
1601 | /// This method runs the %BFS algorithm from the root node(s) |
---|
1602 | /// in order to compute the shortest path to \c t. |
---|
1603 | /// |
---|
1604 | /// The algorithm computes |
---|
1605 | /// - the shortest path to \c t, |
---|
1606 | /// - the distance of \c t from the root(s). |
---|
1607 | /// |
---|
1608 | /// \pre init() must be called and at least one root node should be |
---|
1609 | /// added with addSource() before using this function. |
---|
1610 | /// |
---|
1611 | /// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
---|
1612 | /// \code |
---|
1613 | /// bool reach = false; |
---|
1614 | /// while ( !b.emptyQueue() && !reach ) { |
---|
1615 | /// b.processNextNode(t, reach); |
---|
1616 | /// } |
---|
1617 | /// \endcode |
---|
1618 | void start(Node t) { |
---|
1619 | bool reach = false; |
---|
1620 | while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
---|
1621 | } |
---|
1622 | |
---|
1623 | /// \brief Executes the algorithm until a condition is met. |
---|
1624 | /// |
---|
1625 | /// Executes the algorithm until a condition is met. |
---|
1626 | /// |
---|
1627 | /// This method runs the %BFS algorithm from the root node(s) in |
---|
1628 | /// order to compute the shortest path to a node \c v with |
---|
1629 | /// <tt>nm[v]</tt> true, if such a node can be found. |
---|
1630 | /// |
---|
1631 | /// \param nm must be a bool (or convertible) node map. The |
---|
1632 | /// algorithm will stop when it reaches a node \c v with |
---|
1633 | /// <tt>nm[v]</tt> true. |
---|
1634 | /// |
---|
1635 | /// \return The reached node \c v with <tt>nm[v]</tt> true or |
---|
1636 | /// \c INVALID if no such node was found. |
---|
1637 | /// |
---|
1638 | /// \pre init() must be called and at least one root node should be |
---|
1639 | /// added with addSource() before using this function. |
---|
1640 | /// |
---|
1641 | /// \note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
---|
1642 | /// \code |
---|
1643 | /// Node rnode = INVALID; |
---|
1644 | /// while ( !b.emptyQueue() && rnode == INVALID ) { |
---|
1645 | /// b.processNextNode(nm, rnode); |
---|
1646 | /// } |
---|
1647 | /// return rnode; |
---|
1648 | /// \endcode |
---|
1649 | template <typename NM> |
---|
1650 | Node start(const NM &nm) { |
---|
1651 | Node rnode = INVALID; |
---|
1652 | while ( !emptyQueue() && rnode == INVALID ) { |
---|
1653 | processNextNode(nm, rnode); |
---|
1654 | } |
---|
1655 | return rnode; |
---|
1656 | } |
---|
1657 | |
---|
1658 | /// \brief Runs the algorithm from the given source node. |
---|
1659 | /// |
---|
1660 | /// This method runs the %BFS algorithm from node \c s |
---|
1661 | /// in order to compute the shortest path to each node. |
---|
1662 | /// |
---|
1663 | /// The algorithm computes |
---|
1664 | /// - the shortest path tree, |
---|
1665 | /// - the distance of each node from the root. |
---|
1666 | /// |
---|
1667 | /// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
---|
1668 | ///\code |
---|
1669 | /// b.init(); |
---|
1670 | /// b.addSource(s); |
---|
1671 | /// b.start(); |
---|
1672 | ///\endcode |
---|
1673 | void run(Node s) { |
---|
1674 | init(); |
---|
1675 | addSource(s); |
---|
1676 | start(); |
---|
1677 | } |
---|
1678 | |
---|
1679 | /// \brief Finds the shortest path between \c s and \c t. |
---|
1680 | /// |
---|
1681 | /// This method runs the %BFS algorithm from node \c s |
---|
1682 | /// in order to compute the shortest path to node \c t |
---|
1683 | /// (it stops searching when \c t is processed). |
---|
1684 | /// |
---|
1685 | /// \return \c true if \c t is reachable form \c s. |
---|
1686 | /// |
---|
1687 | /// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
---|
1688 | /// shortcut of the following code. |
---|
1689 | ///\code |
---|
1690 | /// b.init(); |
---|
1691 | /// b.addSource(s); |
---|
1692 | /// b.start(t); |
---|
1693 | ///\endcode |
---|
1694 | bool run(Node s,Node t) { |
---|
1695 | init(); |
---|
1696 | addSource(s); |
---|
1697 | start(t); |
---|
1698 | return reached(t); |
---|
1699 | } |
---|
1700 | |
---|
1701 | /// \brief Runs the algorithm to visit all nodes in the digraph. |
---|
1702 | /// |
---|
1703 | /// This method runs the %BFS algorithm in order to |
---|
1704 | /// compute the shortest path to each node. |
---|
1705 | /// |
---|
1706 | /// The algorithm computes |
---|
1707 | /// - the shortest path tree (forest), |
---|
1708 | /// - the distance of each node from the root(s). |
---|
1709 | /// |
---|
1710 | /// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
---|
1711 | ///\code |
---|
1712 | /// b.init(); |
---|
1713 | /// for (NodeIt n(gr); n != INVALID; ++n) { |
---|
1714 | /// if (!b.reached(n)) { |
---|
1715 | /// b.addSource(n); |
---|
1716 | /// b.start(); |
---|
1717 | /// } |
---|
1718 | /// } |
---|
1719 | ///\endcode |
---|
1720 | void run() { |
---|
1721 | init(); |
---|
1722 | for (NodeIt it(*_digraph); it != INVALID; ++it) { |
---|
1723 | if (!reached(it)) { |
---|
1724 | addSource(it); |
---|
1725 | start(); |
---|
1726 | } |
---|
1727 | } |
---|
1728 | } |
---|
1729 | |
---|
1730 | ///@} |
---|
1731 | |
---|
1732 | /// \name Query Functions |
---|
1733 | /// The result of the %BFS algorithm can be obtained using these |
---|
1734 | /// functions.\n |
---|
1735 | /// Either \ref lemon::BfsVisit::run() "run()" or |
---|
1736 | /// \ref lemon::BfsVisit::start() "start()" must be called before |
---|
1737 | /// using them. |
---|
1738 | ///@{ |
---|
1739 | |
---|
1740 | /// \brief Checks if a node is reachable from the root(s). |
---|
1741 | /// |
---|
1742 | /// Returns \c true if \c v is reachable from the root(s). |
---|
1743 | /// \pre Either \ref run() or \ref start() |
---|
1744 | /// must be called before using this function. |
---|
1745 | bool reached(Node v) { return (*_reached)[v]; } |
---|
1746 | |
---|
1747 | ///@} |
---|
1748 | |
---|
1749 | }; |
---|
1750 | |
---|
1751 | } //END OF NAMESPACE LEMON |
---|
1752 | |
---|
1753 | #endif |
---|