/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_BIN_HEAP_H #define LEMON_BIN_HEAP_H ///\ingroup auxdat ///\file ///\brief Binary Heap implementation. #include #include #include namespace lemon { ///\ingroup auxdat /// ///\brief A Binary Heap implementation. /// ///This class implements the \e binary \e heap data structure. /// ///A \e heap is a data structure for storing items with specified values ///called \e priorities in such a way that finding the item with minimum ///priority is efficient. \c Comp specifies the ordering of the priorities. ///In a heap one can change the priority of an item, add or erase an ///item, etc. /// ///\tparam PR Type of the priority of the items. ///\tparam IM A read and writable item map with int values, used internally ///to handle the cross references. ///\tparam Comp A functor class for the ordering of the priorities. ///The default is \c std::less. /// ///\sa FibHeap ///\sa Dijkstra template > class BinHeap { public: ///\e typedef IM ItemIntMap; ///\e typedef PR Prio; ///\e typedef typename ItemIntMap::Key Item; ///\e typedef std::pair Pair; ///\e typedef Comp Compare; /// \brief Type to represent the items states. /// /// Each Item element have a state associated to it. It may be "in heap", /// "pre heap" or "post heap". The latter two are indifferent from the /// heap's point of view, but may be useful to the user. /// /// The item-int map must be initialized in such way that it assigns /// \c PRE_HEAP (-1) to any element to be put in the heap. enum State { IN_HEAP = 0, ///< = 0. PRE_HEAP = -1, ///< = -1. POST_HEAP = -2 ///< = -2. }; private: std::vector _data; Compare _comp; ItemIntMap &_iim; public: /// \brief The constructor. /// /// The constructor. /// \param map should be given to the constructor, since it is used /// internally to handle the cross references. The value of the map /// must be \c PRE_HEAP (-1) for every item. explicit BinHeap(ItemIntMap &map) : _iim(map) {} /// \brief The constructor. /// /// The constructor. /// \param map should be given to the constructor, since it is used /// internally to handle the cross references. The value of the map /// should be PRE_HEAP (-1) for each element. /// /// \param comp The comparator function object. BinHeap(ItemIntMap &map, const Compare &comp) : _iim(map), _comp(comp) {} /// The number of items stored in the heap. /// /// \brief Returns the number of items stored in the heap. int size() const { return _data.size(); } /// \brief Checks if the heap stores no items. /// /// Returns \c true if and only if the heap stores no items. bool empty() const { return _data.empty(); } /// \brief Make empty this heap. /// /// Make empty this heap. It does not change the cross reference map. /// If you want to reuse what is not surely empty you should first clear /// the heap and after that you should set the cross reference map for /// each item to \c PRE_HEAP. void clear() { _data.clear(); } private: static int parent(int i) { return (i-1)/2; } static int second_child(int i) { return 2*i+2; } bool less(const Pair &p1, const Pair &p2) const { return _comp(p1.second, p2.second); } int bubble_up(int hole, Pair p) { int par = parent(hole); while( hole>0 && less(p,_data[par]) ) { move(_data[par],hole); hole = par; par = parent(hole); } move(p, hole); return hole; } int bubble_down(int hole, Pair p, int length) { int child = second_child(hole); while(child < length) { if( less(_data[child-1], _data[child]) ) { --child; } if( !less(_data[child], p) ) goto ok; move(_data[child], hole); hole = child; child = second_child(hole); } child--; if( child 0) { bubble_down(0, _data[n], n); } _data.pop_back(); } /// \brief Deletes \c i from the heap. /// /// This method deletes item \c i from the heap. /// \param i The item to erase. /// \pre The item should be in the heap. void erase(const Item &i) { int h = _iim[i]; int n = _data.size()-1; _iim.set(_data[h].first, POST_HEAP); if( h < n ) { if ( bubble_up(h, _data[n]) == h) { bubble_down(h, _data[n], n); } } _data.pop_back(); } /// \brief Returns the priority of \c i. /// /// This function returns the priority of item \c i. /// \param i The item. /// \pre \c i must be in the heap. Prio operator[](const Item &i) const { int idx = _iim[i]; return _data[idx].second; } /// \brief \c i gets to the heap with priority \c p independently /// if \c i was already there. /// /// This method calls \ref push(\c i, \c p) if \c i is not stored /// in the heap and sets the priority of \c i to \c p otherwise. /// \param i The item. /// \param p The priority. void set(const Item &i, const Prio &p) { int idx = _iim[i]; if( idx < 0 ) { push(i,p); } else if( _comp(p, _data[idx].second) ) { bubble_up(idx, Pair(i,p)); } else { bubble_down(idx, Pair(i,p), _data.size()); } } /// \brief Decreases the priority of \c i to \c p. /// /// This method decreases the priority of item \c i to \c p. /// \param i The item. /// \param p The priority. /// \pre \c i must be stored in the heap with priority at least \c /// p relative to \c Compare. void decrease(const Item &i, const Prio &p) { int idx = _iim[i]; bubble_up(idx, Pair(i,p)); } /// \brief Increases the priority of \c i to \c p. /// /// This method sets the priority of item \c i to \c p. /// \param i The item. /// \param p The priority. /// \pre \c i must be stored in the heap with priority at most \c /// p relative to \c Compare. void increase(const Item &i, const Prio &p) { int idx = _iim[i]; bubble_down(idx, Pair(i,p), _data.size()); } /// \brief Returns if \c item is in, has already been in, or has /// never been in the heap. /// /// This method returns PRE_HEAP if \c item has never been in the /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP /// otherwise. In the latter case it is possible that \c item will /// get back to the heap again. /// \param i The item. State state(const Item &i) const { int s = _iim[i]; if( s>=0 ) s=0; return State(s); } /// \brief Sets the state of the \c item in the heap. /// /// Sets the state of the \c item in the heap. It can be used to /// manually clear the heap when it is important to achive the /// better time complexity. /// \param i The item. /// \param st The state. It should not be \c IN_HEAP. void state(const Item& i, State st) { switch (st) { case POST_HEAP: case PRE_HEAP: if (state(i) == IN_HEAP) { erase(i); } _iim[i] = st; break; case IN_HEAP: break; } } /// \brief Replaces an item in the heap. /// /// The \c i item is replaced with \c j item. The \c i item should /// be in the heap, while the \c j should be out of the heap. The /// \c i item will out of the heap and \c j will be in the heap /// with the same prioriority as prevoiusly the \c i item. void replace(const Item& i, const Item& j) { int idx = _iim[i]; _iim.set(i, _iim[j]); _iim.set(j, idx); _data[idx].first = j; } }; // class BinHeap } // namespace lemon #endif // LEMON_BIN_HEAP_H