COIN-OR::LEMON - Graph Library

source: lemon/lemon/dijkstra.h @ 251:a1ffc9099c25

Last change on this file since 251:a1ffc9099c25 was 251:a1ffc9099c25, checked in by Peter Kovacs <kpeter@…>, 16 years ago

Fix processedMap() named parameter for dijkstra() (ticket #140)

File size: 42.2 KB
RevLine 
[209]1/* -*- mode: C++; indent-tabs-mode: nil; -*-
[100]2 *
[209]3 * This file is a part of LEMON, a generic C++ optimization library.
[100]4 *
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef LEMON_DIJKSTRA_H
20#define LEMON_DIJKSTRA_H
21
22///\ingroup shortest_path
23///\file
24///\brief Dijkstra algorithm.
25
[184]26#include <limits>
[169]27#include <lemon/list_graph.h>
[100]28#include <lemon/bin_heap.h>
29#include <lemon/bits/path_dump.h>
[220]30#include <lemon/core.h>
[100]31#include <lemon/error.h>
32#include <lemon/maps.h>
33
34namespace lemon {
35
[244]36  /// \brief Default operation traits for the Dijkstra algorithm class.
[209]37  ///
[244]38  /// This operation traits class defines all computational operations and
39  /// constants which are used in the Dijkstra algorithm.
[100]40  template <typename Value>
41  struct DijkstraDefaultOperationTraits {
42    /// \brief Gives back the zero value of the type.
43    static Value zero() {
44      return static_cast<Value>(0);
45    }
46    /// \brief Gives back the sum of the given two elements.
47    static Value plus(const Value& left, const Value& right) {
48      return left + right;
49    }
[244]50    /// \brief Gives back true only if the first value is less than the second.
[100]51    static bool less(const Value& left, const Value& right) {
52      return left < right;
53    }
54  };
55
[244]56  /// \brief Widest path operation traits for the Dijkstra algorithm class.
[209]57  ///
[244]58  /// This operation traits class defines all computational operations and
59  /// constants which are used in the Dijkstra algorithm for widest path
60  /// computation.
61  ///
62  /// \see DijkstraDefaultOperationTraits
[100]63  template <typename Value>
64  struct DijkstraWidestPathOperationTraits {
65    /// \brief Gives back the maximum value of the type.
66    static Value zero() {
67      return std::numeric_limits<Value>::max();
68    }
69    /// \brief Gives back the minimum of the given two elements.
70    static Value plus(const Value& left, const Value& right) {
71      return std::min(left, right);
72    }
[244]73    /// \brief Gives back true only if the first value is less than the second.
[100]74    static bool less(const Value& left, const Value& right) {
75      return left < right;
76    }
77  };
[209]78
[100]79  ///Default traits class of Dijkstra class.
80
81  ///Default traits class of Dijkstra class.
[244]82  ///\tparam GR The type of the digraph.
83  ///\tparam LM The type of the length map.
[100]84  template<class GR, class LM>
85  struct DijkstraDefaultTraits
86  {
[244]87    ///The type of the digraph the algorithm runs on.
[100]88    typedef GR Digraph;
[244]89
[100]90    ///The type of the map that stores the arc lengths.
91
92    ///The type of the map that stores the arc lengths.
93    ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
94    typedef LM LengthMap;
[244]95    ///The type of the length of the arcs.
[100]96    typedef typename LM::Value Value;
[244]97
[100]98    /// Operation traits for Dijkstra algorithm.
99
[244]100    /// This class defines the operations that are used in the algorithm.
[100]101    /// \see DijkstraDefaultOperationTraits
102    typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
103
[244]104    /// The cross reference type used by the heap.
[100]105
[244]106    /// The cross reference type used by the heap.
[100]107    /// Usually it is \c Digraph::NodeMap<int>.
108    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
[244]109    ///Instantiates a \ref HeapCrossRef.
[100]110
[244]111    ///This function instantiates a \ref HeapCrossRef.
112    /// \param g is the digraph, to which we would like to define the
113    /// \ref HeapCrossRef.
114    static HeapCrossRef *createHeapCrossRef(const Digraph &g)
[100]115    {
[244]116      return new HeapCrossRef(g);
[100]117    }
[209]118
[244]119    ///The heap type used by the Dijkstra algorithm.
[100]120
[244]121    ///The heap type used by the Dijkstra algorithm.
[100]122    ///
123    ///\sa BinHeap
124    ///\sa Dijkstra
125    typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap;
[244]126    ///Instantiates a \ref Heap.
[100]127
[244]128    ///This function instantiates a \ref Heap.
129    static Heap *createHeap(HeapCrossRef& r)
[100]130    {
[244]131      return new Heap(r);
[100]132    }
133
[244]134    ///\brief The type of the map that stores the predecessor
[100]135    ///arcs of the shortest paths.
[209]136    ///
[244]137    ///The type of the map that stores the predecessor
[100]138    ///arcs of the shortest paths.
139    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
[244]140    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
141    ///Instantiates a \ref PredMap.
[209]142
[244]143    ///This function instantiates a \ref PredMap.
144    ///\param g is the digraph, to which we would like to define the
145    ///\ref PredMap.
[100]146    ///\todo The digraph alone may be insufficient for the initialization
[244]147    static PredMap *createPredMap(const Digraph &g)
[100]148    {
[244]149      return new PredMap(g);
[100]150    }
151
[244]152    ///The type of the map that indicates which nodes are processed.
[209]153
[244]154    ///The type of the map that indicates which nodes are processed.
[100]155    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
156    ///By default it is a NullMap.
157    ///\todo If it is set to a real map,
158    ///Dijkstra::processed() should read this.
159    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
[244]160    ///Instantiates a \ref ProcessedMap.
[209]161
[244]162    ///This function instantiates a \ref ProcessedMap.
[100]163    ///\param g is the digraph, to which
[244]164    ///we would like to define the \ref ProcessedMap
[100]165#ifdef DOXYGEN
[244]166    static ProcessedMap *createProcessedMap(const Digraph &g)
[100]167#else
[244]168    static ProcessedMap *createProcessedMap(const Digraph &)
[100]169#endif
170    {
171      return new ProcessedMap();
172    }
[209]173
[244]174    ///The type of the map that stores the distances of the nodes.
175
176    ///The type of the map that stores the distances of the nodes.
[100]177    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
178    typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
[244]179    ///Instantiates a \ref DistMap.
[209]180
181    ///This function instantiates a \ref DistMap.
[244]182    ///\param g is the digraph, to which we would like to define
[210]183    ///the \ref DistMap
[244]184    static DistMap *createDistMap(const Digraph &g)
[100]185    {
[244]186      return new DistMap(g);
[100]187    }
188  };
[209]189
[100]190  ///%Dijkstra algorithm class.
[209]191
[100]192  /// \ingroup shortest_path
[244]193  ///This class provides an efficient implementation of the %Dijkstra algorithm.
194  ///
[100]195  ///The arc lengths are passed to the algorithm using a
196  ///\ref concepts::ReadMap "ReadMap",
197  ///so it is easy to change it to any kind of length.
198  ///The type of the length is determined by the
199  ///\ref concepts::ReadMap::Value "Value" of the length map.
200  ///It is also possible to change the underlying priority heap.
201  ///
[244]202  ///There is also a \ref dijkstra() "function type interface" for the
203  ///%Dijkstra algorithm, which is convenient in the simplier cases and
204  ///it can be used easier.
205  ///
206  ///\tparam GR The type of the digraph the algorithm runs on.
207  ///The default value is \ref ListDigraph.
208  ///The value of GR is not used directly by \ref Dijkstra, it is only
209  ///passed to \ref DijkstraDefaultTraits.
210  ///\tparam LM A readable arc map that determines the lengths of the
[100]211  ///arcs. It is read once for each arc, so the map may involve in
[244]212  ///relatively time consuming process to compute the arc lengths if
[100]213  ///it is necessary. The default map type is \ref
[244]214  ///concepts::Digraph::ArcMap "Digraph::ArcMap<int>".
215  ///The value of LM is not used directly by \ref Dijkstra, it is only
216  ///passed to \ref DijkstraDefaultTraits.
217  ///\tparam TR Traits class to set various data types used by the algorithm.
218  ///The default traits class is \ref DijkstraDefaultTraits
219  ///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits
220  ///for the documentation of a Dijkstra traits class.
[100]221#ifdef DOXYGEN
222  template <typename GR, typename LM, typename TR>
223#else
224  template <typename GR=ListDigraph,
[209]225            typename LM=typename GR::template ArcMap<int>,
226            typename TR=DijkstraDefaultTraits<GR,LM> >
[100]227#endif
228  class Dijkstra {
229  public:
[244]230    ///\ref Exception for uninitialized parameters.
231
232    ///This error represents problems in the initialization of the
233    ///parameters of the algorithm.
[100]234    class UninitializedParameter : public lemon::UninitializedParameter {
235    public:
236      virtual const char* what() const throw() {
[209]237        return "lemon::Dijkstra::UninitializedParameter";
[100]238      }
239    };
240
[244]241    ///The type of the digraph the algorithm runs on.
[100]242    typedef typename TR::Digraph Digraph;
[209]243
[100]244    ///The type of the length of the arcs.
245    typedef typename TR::LengthMap::Value Value;
246    ///The type of the map that stores the arc lengths.
247    typedef typename TR::LengthMap LengthMap;
[244]248    ///\brief The type of the map that stores the predecessor arcs of the
249    ///shortest paths.
[100]250    typedef typename TR::PredMap PredMap;
[244]251    ///The type of the map that stores the distances of the nodes.
252    typedef typename TR::DistMap DistMap;
253    ///The type of the map that indicates which nodes are processed.
[100]254    typedef typename TR::ProcessedMap ProcessedMap;
[244]255    ///The type of the paths.
256    typedef PredMapPath<Digraph, PredMap> Path;
[100]257    ///The cross reference type used for the current heap.
258    typedef typename TR::HeapCrossRef HeapCrossRef;
[244]259    ///The heap type used by the algorithm.
[100]260    typedef typename TR::Heap Heap;
[244]261    ///The operation traits class.
[100]262    typedef typename TR::OperationTraits OperationTraits;
[244]263
264    ///The traits class.
265    typedef TR Traits;
266
[100]267  private:
[244]268
269    typedef typename Digraph::Node Node;
270    typedef typename Digraph::NodeIt NodeIt;
271    typedef typename Digraph::Arc Arc;
272    typedef typename Digraph::OutArcIt OutArcIt;
273
274    //Pointer to the underlying digraph.
[100]275    const Digraph *G;
[244]276    //Pointer to the length map.
[100]277    const LengthMap *length;
[244]278    //Pointer to the map of predecessors arcs.
[100]279    PredMap *_pred;
[244]280    //Indicates if _pred is locally allocated (true) or not.
[100]281    bool local_pred;
[244]282    //Pointer to the map of distances.
[100]283    DistMap *_dist;
[244]284    //Indicates if _dist is locally allocated (true) or not.
[100]285    bool local_dist;
[244]286    //Pointer to the map of processed status of the nodes.
[100]287    ProcessedMap *_processed;
[244]288    //Indicates if _processed is locally allocated (true) or not.
[100]289    bool local_processed;
[244]290    //Pointer to the heap cross references.
[100]291    HeapCrossRef *_heap_cross_ref;
[244]292    //Indicates if _heap_cross_ref is locally allocated (true) or not.
[100]293    bool local_heap_cross_ref;
[244]294    //Pointer to the heap.
[100]295    Heap *_heap;
[244]296    //Indicates if _heap is locally allocated (true) or not.
[100]297    bool local_heap;
298
299    ///Creates the maps if necessary.
300    ///\todo Better memory allocation (instead of new).
[209]301    void create_maps()
[100]302    {
303      if(!_pred) {
[209]304        local_pred = true;
305        _pred = Traits::createPredMap(*G);
[100]306      }
307      if(!_dist) {
[209]308        local_dist = true;
309        _dist = Traits::createDistMap(*G);
[100]310      }
311      if(!_processed) {
[209]312        local_processed = true;
313        _processed = Traits::createProcessedMap(*G);
[100]314      }
315      if (!_heap_cross_ref) {
[209]316        local_heap_cross_ref = true;
317        _heap_cross_ref = Traits::createHeapCrossRef(*G);
[100]318      }
319      if (!_heap) {
[209]320        local_heap = true;
321        _heap = Traits::createHeap(*_heap_cross_ref);
[100]322      }
323    }
[209]324
[244]325  public:
[100]326
327    typedef Dijkstra Create;
[209]328
[100]329    ///\name Named template parameters
330
331    ///@{
332
333    template <class T>
334    struct DefPredMapTraits : public Traits {
335      typedef T PredMap;
336      static PredMap *createPredMap(const Digraph &)
337      {
[209]338        throw UninitializedParameter();
[100]339      }
340    };
[244]341    ///\brief \ref named-templ-param "Named parameter" for setting
342    ///\ref PredMap type.
[100]343    ///
[244]344    ///\ref named-templ-param "Named parameter" for setting
345    ///\ref PredMap type.
[100]346    template <class T>
[209]347    struct DefPredMap
[210]348      : public Dijkstra< Digraph, LengthMap, DefPredMapTraits<T> > {
349      typedef Dijkstra< Digraph, LengthMap, DefPredMapTraits<T> > Create;
[100]350    };
[209]351
[100]352    template <class T>
353    struct DefDistMapTraits : public Traits {
354      typedef T DistMap;
355      static DistMap *createDistMap(const Digraph &)
356      {
[209]357        throw UninitializedParameter();
[100]358      }
359    };
[244]360    ///\brief \ref named-templ-param "Named parameter" for setting
361    ///\ref DistMap type.
[100]362    ///
[244]363    ///\ref named-templ-param "Named parameter" for setting
364    ///\ref DistMap type.
[100]365    template <class T>
[209]366    struct DefDistMap
367      : public Dijkstra< Digraph, LengthMap, DefDistMapTraits<T> > {
[100]368      typedef Dijkstra< Digraph, LengthMap, DefDistMapTraits<T> > Create;
369    };
[209]370
[100]371    template <class T>
372    struct DefProcessedMapTraits : public Traits {
373      typedef T ProcessedMap;
[244]374      static ProcessedMap *createProcessedMap(const Digraph &)
[100]375      {
[209]376        throw UninitializedParameter();
[100]377      }
378    };
[244]379    ///\brief \ref named-templ-param "Named parameter" for setting
380    ///\ref ProcessedMap type.
[100]381    ///
[244]382    ///\ref named-templ-param "Named parameter" for setting
383    ///\ref ProcessedMap type.
[100]384    template <class T>
[209]385    struct DefProcessedMap
[210]386      : public Dijkstra< Digraph, LengthMap, DefProcessedMapTraits<T> > {
387      typedef Dijkstra< Digraph, LengthMap, DefProcessedMapTraits<T> > Create;
[100]388    };
[209]389
[100]390    struct DefDigraphProcessedMapTraits : public Traits {
391      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
[244]392      static ProcessedMap *createProcessedMap(const Digraph &g)
[100]393      {
[244]394        return new ProcessedMap(g);
[100]395      }
396    };
[244]397    ///\brief \ref named-templ-param "Named parameter" for setting
398    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
[100]399    ///
[244]400    ///\ref named-templ-param "Named parameter" for setting
401    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
402    ///If you don't set it explicitly, it will be automatically allocated.
[100]403    template <class T>
[209]404    struct DefProcessedMapToBeDefaultMap
[100]405      : public Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> {
[210]406      typedef Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits>
407      Create;
[100]408    };
409
410    template <class H, class CR>
411    struct DefHeapTraits : public Traits {
412      typedef CR HeapCrossRef;
413      typedef H Heap;
414      static HeapCrossRef *createHeapCrossRef(const Digraph &) {
[209]415        throw UninitializedParameter();
[100]416      }
[209]417      static Heap *createHeap(HeapCrossRef &)
[100]418      {
[209]419        throw UninitializedParameter();
[100]420      }
421    };
422    ///\brief \ref named-templ-param "Named parameter" for setting
423    ///heap and cross reference type
424    ///
[209]425    ///\ref named-templ-param "Named parameter" for setting heap and cross
[244]426    ///reference type.
[100]427    template <class H, class CR = typename Digraph::template NodeMap<int> >
428    struct DefHeap
[210]429      : public Dijkstra< Digraph, LengthMap, DefHeapTraits<H, CR> > {
430      typedef Dijkstra< Digraph, LengthMap, DefHeapTraits<H, CR> > Create;
[100]431    };
432
433    template <class H, class CR>
434    struct DefStandardHeapTraits : public Traits {
435      typedef CR HeapCrossRef;
436      typedef H Heap;
437      static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
[209]438        return new HeapCrossRef(G);
[100]439      }
[209]440      static Heap *createHeap(HeapCrossRef &R)
[100]441      {
[209]442        return new Heap(R);
[100]443      }
444    };
445    ///\brief \ref named-templ-param "Named parameter" for setting
446    ///heap and cross reference type with automatic allocation
447    ///
[209]448    ///\ref named-templ-param "Named parameter" for setting heap and cross
449    ///reference type. It can allocate the heap and the cross reference
450    ///object if the cross reference's constructor waits for the digraph as
[100]451    ///parameter and the heap's constructor waits for the cross reference.
452    template <class H, class CR = typename Digraph::template NodeMap<int> >
453    struct DefStandardHeap
[210]454      : public Dijkstra< Digraph, LengthMap, DefStandardHeapTraits<H, CR> > {
455      typedef Dijkstra< Digraph, LengthMap, DefStandardHeapTraits<H, CR> >
[100]456      Create;
457    };
458
459    template <class T>
460    struct DefOperationTraitsTraits : public Traits {
461      typedef T OperationTraits;
462    };
[209]463
464    /// \brief \ref named-templ-param "Named parameter" for setting
[244]465    ///\ref OperationTraits type
[100]466    ///
[244]467    ///\ref named-templ-param "Named parameter" for setting
468    ///\ref OperationTraits type.
[100]469    template <class T>
470    struct DefOperationTraits
471      : public Dijkstra<Digraph, LengthMap, DefOperationTraitsTraits<T> > {
472      typedef Dijkstra<Digraph, LengthMap, DefOperationTraitsTraits<T> >
473      Create;
474    };
[209]475
[100]476    ///@}
477
478  protected:
479
480    Dijkstra() {}
481
[209]482  public:
483
[100]484    ///Constructor.
[209]485
[244]486    ///Constructor.
487    ///\param _g The digraph the algorithm runs on.
488    ///\param _length The length map used by the algorithm.
489    Dijkstra(const Digraph& _g, const LengthMap& _length) :
490      G(&_g), length(&_length),
[100]491      _pred(NULL), local_pred(false),
492      _dist(NULL), local_dist(false),
493      _processed(NULL), local_processed(false),
494      _heap_cross_ref(NULL), local_heap_cross_ref(false),
495      _heap(NULL), local_heap(false)
496    { }
[209]497
[100]498    ///Destructor.
[209]499    ~Dijkstra()
[100]500    {
501      if(local_pred) delete _pred;
502      if(local_dist) delete _dist;
503      if(local_processed) delete _processed;
504      if(local_heap_cross_ref) delete _heap_cross_ref;
505      if(local_heap) delete _heap;
506    }
507
508    ///Sets the length map.
509
510    ///Sets the length map.
511    ///\return <tt> (*this) </tt>
[209]512    Dijkstra &lengthMap(const LengthMap &m)
[100]513    {
514      length = &m;
515      return *this;
516    }
517
[244]518    ///Sets the map that stores the predecessor arcs.
[100]519
[244]520    ///Sets the map that stores the predecessor arcs.
[100]521    ///If you don't use this function before calling \ref run(),
[244]522    ///it will allocate one. The destructor deallocates this
[100]523    ///automatically allocated map, of course.
524    ///\return <tt> (*this) </tt>
[209]525    Dijkstra &predMap(PredMap &m)
[100]526    {
527      if(local_pred) {
[209]528        delete _pred;
529        local_pred=false;
[100]530      }
531      _pred = &m;
532      return *this;
533    }
534
[244]535    ///Sets the map that indicates which nodes are processed.
[100]536
[244]537    ///Sets the map that indicates which nodes are processed.
[100]538    ///If you don't use this function before calling \ref run(),
[244]539    ///it will allocate one. The destructor deallocates this
540    ///automatically allocated map, of course.
541    ///\return <tt> (*this) </tt>
542    Dijkstra &processedMap(ProcessedMap &m)
543    {
544      if(local_processed) {
545        delete _processed;
546        local_processed=false;
547      }
548      _processed = &m;
549      return *this;
550    }
551
552    ///Sets the map that stores the distances of the nodes.
553
554    ///Sets the map that stores the distances of the nodes calculated by the
555    ///algorithm.
556    ///If you don't use this function before calling \ref run(),
557    ///it will allocate one. The destructor deallocates this
[100]558    ///automatically allocated map, of course.
559    ///\return <tt> (*this) </tt>
[209]560    Dijkstra &distMap(DistMap &m)
[100]561    {
562      if(local_dist) {
[209]563        delete _dist;
564        local_dist=false;
[100]565      }
566      _dist = &m;
567      return *this;
568    }
569
570    ///Sets the heap and the cross reference used by algorithm.
571
572    ///Sets the heap and the cross reference used by algorithm.
573    ///If you don't use this function before calling \ref run(),
[244]574    ///it will allocate one. The destructor deallocates this
[100]575    ///automatically allocated heap and cross reference, of course.
576    ///\return <tt> (*this) </tt>
577    Dijkstra &heap(Heap& hp, HeapCrossRef &cr)
578    {
579      if(local_heap_cross_ref) {
[209]580        delete _heap_cross_ref;
581        local_heap_cross_ref=false;
[100]582      }
583      _heap_cross_ref = &cr;
584      if(local_heap) {
[209]585        delete _heap;
586        local_heap=false;
[100]587      }
588      _heap = &hp;
589      return *this;
590    }
591
592  private:
[244]593
[100]594    void finalizeNodeData(Node v,Value dst)
595    {
596      _processed->set(v,true);
597      _dist->set(v, dst);
598    }
599
600  public:
601
602    ///\name Execution control
[244]603    ///The simplest way to execute the algorithm is to use one of the
604    ///member functions called \ref lemon::Dijkstra::run() "run()".
[100]605    ///\n
[244]606    ///If you need more control on the execution, first you must call
607    ///\ref lemon::Dijkstra::init() "init()", then you can add several
608    ///source nodes with \ref lemon::Dijkstra::addSource() "addSource()".
609    ///Finally \ref lemon::Dijkstra::start() "start()" will perform the
610    ///actual path computation.
[100]611
612    ///@{
613
614    ///Initializes the internal data structures.
615
616    ///Initializes the internal data structures.
617    ///
618    void init()
619    {
620      create_maps();
621      _heap->clear();
622      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
[209]623        _pred->set(u,INVALID);
624        _processed->set(u,false);
625        _heap_cross_ref->set(u,Heap::PRE_HEAP);
[100]626      }
627    }
[209]628
[100]629    ///Adds a new source node.
630
631    ///Adds a new source node to the priority heap.
632    ///The optional second parameter is the initial distance of the node.
633    ///
[244]634    ///The function checks if the node has already been added to the heap and
[100]635    ///it is pushed to the heap only if either it was not in the heap
636    ///or the shortest path found till then is shorter than \c dst.
637    void addSource(Node s,Value dst=OperationTraits::zero())
638    {
639      if(_heap->state(s) != Heap::IN_HEAP) {
[209]640        _heap->push(s,dst);
[100]641      } else if(OperationTraits::less((*_heap)[s], dst)) {
[209]642        _heap->set(s,dst);
643        _pred->set(s,INVALID);
[100]644      }
645    }
[209]646
[100]647    ///Processes the next node in the priority heap
648
649    ///Processes the next node in the priority heap.
650    ///
651    ///\return The processed node.
652    ///
[244]653    ///\warning The priority heap must not be empty.
[100]654    Node processNextNode()
655    {
[209]656      Node v=_heap->top();
[100]657      Value oldvalue=_heap->prio();
658      _heap->pop();
659      finalizeNodeData(v,oldvalue);
[209]660
[100]661      for(OutArcIt e(*G,v); e!=INVALID; ++e) {
[209]662        Node w=G->target(e);
663        switch(_heap->state(w)) {
664        case Heap::PRE_HEAP:
665          _heap->push(w,OperationTraits::plus(oldvalue, (*length)[e]));
666          _pred->set(w,e);
667          break;
668        case Heap::IN_HEAP:
669          {
670            Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]);
671            if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
672              _heap->decrease(w, newvalue);
673              _pred->set(w,e);
674            }
675          }
676          break;
677        case Heap::POST_HEAP:
678          break;
679        }
[100]680      }
681      return v;
682    }
683
[244]684    ///The next node to be processed.
[209]685
[244]686    ///Returns the next node to be processed or \c INVALID if the
687    ///priority heap is empty.
688    Node nextNode() const
[209]689    {
[100]690      return !_heap->empty()?_heap->top():INVALID;
691    }
[209]692
[100]693    ///\brief Returns \c false if there are nodes
[244]694    ///to be processed.
[100]695    ///
696    ///Returns \c false if there are nodes
[244]697    ///to be processed in the priority heap.
698    bool emptyQueue() const { return _heap->empty(); }
699
[100]700    ///Returns the number of the nodes to be processed in the priority heap
701
[244]702    ///Returns the number of the nodes to be processed in the priority heap.
[100]703    ///
[244]704    int queueSize() const { return _heap->size(); }
[209]705
[100]706    ///Executes the algorithm.
707
708    ///Executes the algorithm.
709    ///
[244]710    ///This method runs the %Dijkstra algorithm from the root node(s)
711    ///in order to compute the shortest path to each node.
712    ///
713    ///The algorithm computes
714    ///- the shortest path tree (forest),
715    ///- the distance of each node from the root(s).
716    ///
717    ///\pre init() must be called and at least one root node should be
718    ///added with addSource() before using this function.
719    ///
720    ///\note <tt>d.start()</tt> is just a shortcut of the following code.
721    ///\code
722    ///  while ( !d.emptyQueue() ) {
723    ///    d.processNextNode();
724    ///  }
725    ///\endcode
726    void start()
727    {
728      while ( !emptyQueue() ) processNextNode();
729    }
730
731    ///Executes the algorithm until the given target node is reached.
732
733    ///Executes the algorithm until the given target node is reached.
[100]734    ///
735    ///This method runs the %Dijkstra algorithm from the root node(s)
[244]736    ///in order to compute the shortest path to \c dest.
[100]737    ///
[244]738    ///The algorithm computes
739    ///- the shortest path to \c dest,
740    ///- the distance of \c dest from the root(s).
[100]741    ///
[244]742    ///\pre init() must be called and at least one root node should be
743    ///added with addSource() before using this function.
[100]744    void start(Node dest)
745    {
746      while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
747      if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
748    }
[209]749
[100]750    ///Executes the algorithm until a condition is met.
751
752    ///Executes the algorithm until a condition is met.
753    ///
[244]754    ///This method runs the %Dijkstra algorithm from the root node(s) in
755    ///order to compute the shortest path to a node \c v with
756    /// <tt>nm[v]</tt> true, if such a node can be found.
[100]757    ///
[244]758    ///\param nm A \c bool (or convertible) node map. The algorithm
[100]759    ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
760    ///
761    ///\return The reached node \c v with <tt>nm[v]</tt> true or
762    ///\c INVALID if no such node was found.
[244]763    ///
764    ///\pre init() must be called and at least one root node should be
765    ///added with addSource() before using this function.
[100]766    template<class NodeBoolMap>
767    Node start(const NodeBoolMap &nm)
768    {
769      while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
770      if ( _heap->empty() ) return INVALID;
771      finalizeNodeData(_heap->top(),_heap->prio());
772      return _heap->top();
773    }
[209]774
[244]775    ///Runs the algorithm from the given node.
[209]776
[244]777    ///This method runs the %Dijkstra algorithm from node \c s
778    ///in order to compute the shortest path to each node.
[100]779    ///
[244]780    ///The algorithm computes
781    ///- the shortest path tree,
782    ///- the distance of each node from the root.
783    ///
784    ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
[100]785    ///\code
786    ///  d.init();
787    ///  d.addSource(s);
788    ///  d.start();
789    ///\endcode
790    void run(Node s) {
791      init();
792      addSource(s);
793      start();
794    }
[209]795
[100]796    ///Finds the shortest path between \c s and \c t.
[209]797
[244]798    ///This method runs the %Dijkstra algorithm from node \c s
799    ///in order to compute the shortest path to \c t.
[100]800    ///
[244]801    ///\return The length of the shortest <tt>s</tt>--<tt>t</tt> path,
802    ///if \c t is reachable form \c s, \c 0 otherwise.
803    ///
804    ///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a
805    ///shortcut of the following code.
[100]806    ///\code
807    ///  d.init();
808    ///  d.addSource(s);
809    ///  d.start(t);
810    ///\endcode
811    Value run(Node s,Node t) {
812      init();
813      addSource(s);
814      start(t);
815      return (*_pred)[t]==INVALID?OperationTraits::zero():(*_dist)[t];
816    }
[209]817
[100]818    ///@}
819
820    ///\name Query Functions
821    ///The result of the %Dijkstra algorithm can be obtained using these
822    ///functions.\n
[244]823    ///Either \ref lemon::Dijkstra::run() "run()" or
824    ///\ref lemon::Dijkstra::start() "start()" must be called before
825    ///using them.
[209]826
[100]827    ///@{
828
[244]829    ///The shortest path to a node.
[209]830
[244]831    ///Returns the shortest path to a node.
832    ///
833    ///\warning \c t should be reachable from the root(s).
834    ///
835    ///\pre Either \ref run() or \ref start() must be called before
836    ///using this function.
837    Path path(Node t) const { return Path(*G, *_pred, t); }
[100]838
[244]839    ///The distance of a node from the root(s).
[100]840
[244]841    ///Returns the distance of a node from the root(s).
842    ///
843    ///\warning If node \c v is not reachable from the root(s), then
844    ///the return value of this function is undefined.
845    ///
846    ///\pre Either \ref run() or \ref start() must be called before
847    ///using this function.
[100]848    Value dist(Node v) const { return (*_dist)[v]; }
849
[244]850    ///Returns the 'previous arc' of the shortest path tree for a node.
[100]851
[244]852    ///This function returns the 'previous arc' of the shortest path
853    ///tree for the node \c v, i.e. it returns the last arc of a
854    ///shortest path from the root(s) to \c v. It is \c INVALID if \c v
855    ///is not reachable from the root(s) or if \c v is a root.
856    ///
857    ///The shortest path tree used here is equal to the shortest path
858    ///tree used in \ref predNode().
859    ///
860    ///\pre Either \ref run() or \ref start() must be called before
861    ///using this function.
[100]862    Arc predArc(Node v) const { return (*_pred)[v]; }
863
[244]864    ///Returns the 'previous node' of the shortest path tree for a node.
[100]865
[244]866    ///This function returns the 'previous node' of the shortest path
867    ///tree for the node \c v, i.e. it returns the last but one node
868    ///from a shortest path from the root(s) to \c v. It is \c INVALID
869    ///if \c v is not reachable from the root(s) or if \c v is a root.
870    ///
871    ///The shortest path tree used here is equal to the shortest path
872    ///tree used in \ref predArc().
873    ///
874    ///\pre Either \ref run() or \ref start() must be called before
[100]875    ///using this function.
876    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
[209]877                                  G->source((*_pred)[v]); }
878
[244]879    ///\brief Returns a const reference to the node map that stores the
880    ///distances of the nodes.
881    ///
882    ///Returns a const reference to the node map that stores the distances
883    ///of the nodes calculated by the algorithm.
884    ///
885    ///\pre Either \ref run() or \ref init()
886    ///must be called before using this function.
[100]887    const DistMap &distMap() const { return *_dist;}
[209]888
[244]889    ///\brief Returns a const reference to the node map that stores the
890    ///predecessor arcs.
891    ///
892    ///Returns a const reference to the node map that stores the predecessor
893    ///arcs, which form the shortest path tree.
894    ///
895    ///\pre Either \ref run() or \ref init()
896    ///must be called before using this function.
[100]897    const PredMap &predMap() const { return *_pred;}
[209]898
[244]899    ///Checks if a node is reachable from the root(s).
[100]900
[244]901    ///Returns \c true if \c v is reachable from the root(s).
902    ///\pre Either \ref run() or \ref start()
903    ///must be called before using this function.
904    bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
905                                        Heap::PRE_HEAP; }
[100]906
907    ///Checks if a node is processed.
908
909    ///Returns \c true if \c v is processed, i.e. the shortest
910    ///path to \c v has already found.
[244]911    ///\pre Either \ref run() or \ref start()
912    ///must be called before using this function.
913    bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
914                                          Heap::POST_HEAP; }
915
916    ///The current distance of a node from the root(s).
917
918    ///Returns the current distance of a node from the root(s).
919    ///It may be decreased in the following processes.
920    ///\pre \c v should be reached but not processed.
921    Value currentDist(Node v) const { return (*_heap)[v]; }
[209]922
[100]923    ///@}
924  };
925
926
[244]927  ///Default traits class of dijkstra() function.
[100]928
[244]929  ///Default traits class of dijkstra() function.
930  ///\tparam GR The type of the digraph.
931  ///\tparam LM The type of the length map.
[100]932  template<class GR, class LM>
933  struct DijkstraWizardDefaultTraits
934  {
[244]935    ///The type of the digraph the algorithm runs on.
[100]936    typedef GR Digraph;
937    ///The type of the map that stores the arc lengths.
938
939    ///The type of the map that stores the arc lengths.
940    ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
941    typedef LM LengthMap;
[244]942    ///The type of the length of the arcs.
[100]943    typedef typename LM::Value Value;
[244]944
[100]945    /// Operation traits for Dijkstra algorithm.
946
[244]947    /// This class defines the operations that are used in the algorithm.
[100]948    /// \see DijkstraDefaultOperationTraits
949    typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
950
[244]951    /// The cross reference type used by the heap.
[100]952
[244]953    /// The cross reference type used by the heap.
[100]954    /// Usually it is \c Digraph::NodeMap<int>.
955    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
[244]956    ///Instantiates a \ref HeapCrossRef.
[100]957
[209]958    ///This function instantiates a \ref HeapCrossRef.
[244]959    /// \param g is the digraph, to which we would like to define the
[100]960    /// HeapCrossRef.
961    /// \todo The digraph alone may be insufficient for the initialization
[244]962    static HeapCrossRef *createHeapCrossRef(const Digraph &g)
[100]963    {
[244]964      return new HeapCrossRef(g);
[100]965    }
[209]966
[244]967    ///The heap type used by the Dijkstra algorithm.
[100]968
[244]969    ///The heap type used by the Dijkstra algorithm.
[100]970    ///
971    ///\sa BinHeap
972    ///\sa Dijkstra
[244]973    typedef BinHeap<Value, typename Digraph::template NodeMap<int>,
[209]974                    std::less<Value> > Heap;
[100]975
[244]976    ///Instantiates a \ref Heap.
977
978    ///This function instantiates a \ref Heap.
979    /// \param r is the HeapCrossRef which is used.
980    static Heap *createHeap(HeapCrossRef& r)
[100]981    {
[244]982      return new Heap(r);
[100]983    }
984
[244]985    ///\brief The type of the map that stores the predecessor
[100]986    ///arcs of the shortest paths.
[209]987    ///
[244]988    ///The type of the map that stores the predecessor
[100]989    ///arcs of the shortest paths.
990    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
[244]991    typedef NullMap <typename Digraph::Node,typename Digraph::Arc> PredMap;
992    ///Instantiates a \ref PredMap.
[209]993
994    ///This function instantiates a \ref PredMap.
[244]995    ///\param g is the digraph, to which we would like to define the
996    ///\ref PredMap.
997    ///\todo The digraph alone may be insufficient to initialize
[100]998#ifdef DOXYGEN
[244]999    static PredMap *createPredMap(const Digraph &g)
[100]1000#else
[244]1001    static PredMap *createPredMap(const Digraph &)
[100]1002#endif
1003    {
1004      return new PredMap();
1005    }
[209]1006
[244]1007    ///The type of the map that indicates which nodes are processed.
1008
1009    ///The type of the map that indicates which nodes are processed.
[100]1010    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
1011    ///By default it is a NullMap.
1012    ///\todo If it is set to a real map,
1013    ///Dijkstra::processed() should read this.
1014    ///\todo named parameter to set this type, function to read and write.
1015    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
[244]1016    ///Instantiates a \ref ProcessedMap.
[209]1017
1018    ///This function instantiates a \ref ProcessedMap.
[100]1019    ///\param g is the digraph, to which
[244]1020    ///we would like to define the \ref ProcessedMap.
[100]1021#ifdef DOXYGEN
[244]1022    static ProcessedMap *createProcessedMap(const Digraph &g)
[100]1023#else
[244]1024    static ProcessedMap *createProcessedMap(const Digraph &)
[100]1025#endif
1026    {
1027      return new ProcessedMap();
1028    }
[209]1029
[244]1030    ///The type of the map that stores the distances of the nodes.
1031
1032    ///The type of the map that stores the distances of the nodes.
[100]1033    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
[244]1034    typedef NullMap<typename Digraph::Node,Value> DistMap;
1035    ///Instantiates a \ref DistMap.
[209]1036
1037    ///This function instantiates a \ref DistMap.
[210]1038    ///\param g is the digraph, to which we would like to define
1039    ///the \ref DistMap
[100]1040#ifdef DOXYGEN
[244]1041    static DistMap *createDistMap(const Digraph &g)
[100]1042#else
[244]1043    static DistMap *createDistMap(const Digraph &)
[100]1044#endif
1045    {
1046      return new DistMap();
1047    }
1048  };
[209]1049
[244]1050  /// Default traits class used by \ref DijkstraWizard
[100]1051
1052  /// To make it easier to use Dijkstra algorithm
[244]1053  /// we have created a wizard class.
[100]1054  /// This \ref DijkstraWizard class needs default traits,
[244]1055  /// as well as the \ref Dijkstra class.
[100]1056  /// The \ref DijkstraWizardBase is a class to be the default traits of the
1057  /// \ref DijkstraWizard class.
1058  /// \todo More named parameters are required...
1059  template<class GR,class LM>
1060  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
1061  {
1062    typedef DijkstraWizardDefaultTraits<GR,LM> Base;
1063  protected:
[244]1064    //The type of the nodes in the digraph.
[100]1065    typedef typename Base::Digraph::Node Node;
1066
[244]1067    //Pointer to the digraph the algorithm runs on.
[100]1068    void *_g;
[244]1069    //Pointer to the length map
[100]1070    void *_length;
[251]1071    //Pointer to the map of processed nodes.
1072    void *_processed;
[244]1073    //Pointer to the map of predecessors arcs.
[100]1074    void *_pred;
[244]1075    //Pointer to the map of distances.
[100]1076    void *_dist;
[244]1077    //Pointer to the source node.
[100]1078    Node _source;
1079
[244]1080  public:
[100]1081    /// Constructor.
[209]1082
[100]1083    /// This constructor does not require parameters, therefore it initiates
1084    /// all of the attributes to default values (0, INVALID).
[251]1085    DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0),
[209]1086                           _dist(0), _source(INVALID) {}
[100]1087
1088    /// Constructor.
[209]1089
[100]1090    /// This constructor requires some parameters,
1091    /// listed in the parameters list.
1092    /// Others are initiated to 0.
[244]1093    /// \param g The digraph the algorithm runs on.
1094    /// \param l The length map.
1095    /// \param s The source node.
[100]1096    DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
[209]1097      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
1098      _length(reinterpret_cast<void*>(const_cast<LM*>(&l))),
[251]1099      _processed(0), _pred(0), _dist(0), _source(s) {}
[100]1100
1101  };
[209]1102
[244]1103  /// Auxiliary class for the function type interface of Dijkstra algorithm.
[100]1104
[244]1105  /// This auxiliary class is created to implement the function type
1106  /// interface of \ref Dijkstra algorithm. It uses the functions and features
1107  /// of the plain \ref Dijkstra, but it is much simpler to use it.
1108  /// It should only be used through the \ref dijkstra() function, which makes
1109  /// it easier to use the algorithm.
[100]1110  ///
1111  /// Simplicity means that the way to change the types defined
1112  /// in the traits class is based on functions that returns the new class
1113  /// and not on templatable built-in classes.
1114  /// When using the plain \ref Dijkstra
1115  /// the new class with the modified type comes from
1116  /// the original class by using the ::
1117  /// operator. In the case of \ref DijkstraWizard only
[244]1118  /// a function have to be called, and it will
[100]1119  /// return the needed class.
1120  ///
[244]1121  /// It does not have own \ref run() method. When its \ref run() method
1122  /// is called, it initiates a plain \ref Dijkstra object, and calls the
1123  /// \ref Dijkstra::run() method of it.
[100]1124  template<class TR>
1125  class DijkstraWizard : public TR
1126  {
1127    typedef TR Base;
1128
[244]1129    ///The type of the digraph the algorithm runs on.
[100]1130    typedef typename TR::Digraph Digraph;
[244]1131
[100]1132    typedef typename Digraph::Node Node;
1133    typedef typename Digraph::NodeIt NodeIt;
1134    typedef typename Digraph::Arc Arc;
1135    typedef typename Digraph::OutArcIt OutArcIt;
[209]1136
[100]1137    ///The type of the map that stores the arc lengths.
1138    typedef typename TR::LengthMap LengthMap;
1139    ///The type of the length of the arcs.
1140    typedef typename LengthMap::Value Value;
[244]1141    ///\brief The type of the map that stores the predecessor
[100]1142    ///arcs of the shortest paths.
1143    typedef typename TR::PredMap PredMap;
[244]1144    ///The type of the map that stores the distances of the nodes.
[100]1145    typedef typename TR::DistMap DistMap;
[244]1146    ///The type of the map that indicates which nodes are processed.
1147    typedef typename TR::ProcessedMap ProcessedMap;
[100]1148    ///The heap type used by the dijkstra algorithm.
1149    typedef typename TR::Heap Heap;
[244]1150
[100]1151  public:
[244]1152
[100]1153    /// Constructor.
1154    DijkstraWizard() : TR() {}
1155
1156    /// Constructor that requires parameters.
1157
1158    /// Constructor that requires parameters.
1159    /// These parameters will be the default values for the traits class.
1160    DijkstraWizard(const Digraph &g,const LengthMap &l, Node s=INVALID) :
1161      TR(g,l,s) {}
1162
1163    ///Copy constructor
1164    DijkstraWizard(const TR &b) : TR(b) {}
1165
1166    ~DijkstraWizard() {}
1167
[244]1168    ///Runs Dijkstra algorithm from a source node.
[209]1169
[244]1170    ///Runs Dijkstra algorithm from a source node.
1171    ///The node can be given with the \ref source() function.
[100]1172    void run()
1173    {
1174      if(Base::_source==INVALID) throw UninitializedParameter();
[209]1175      Dijkstra<Digraph,LengthMap,TR>
1176        dij(*reinterpret_cast<const Digraph*>(Base::_g),
[100]1177            *reinterpret_cast<const LengthMap*>(Base::_length));
[251]1178      if(Base::_processed)
1179        dij.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1180      if(Base::_pred)
1181        dij.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1182      if(Base::_dist)
1183        dij.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
[100]1184      dij.run(Base::_source);
1185    }
1186
1187    ///Runs Dijkstra algorithm from the given node.
1188
1189    ///Runs Dijkstra algorithm from the given node.
1190    ///\param s is the given source.
1191    void run(Node s)
1192    {
1193      Base::_source=s;
1194      run();
1195    }
1196
[244]1197    /// Sets the source node, from which the Dijkstra algorithm runs.
1198
1199    /// Sets the source node, from which the Dijkstra algorithm runs.
1200    /// \param s is the source node.
1201    DijkstraWizard<TR> &source(Node s)
1202    {
1203      Base::_source=s;
1204      return *this;
1205    }
1206
[100]1207    template<class T>
1208    struct DefPredMapBase : public Base {
1209      typedef T PredMap;
1210      static PredMap *createPredMap(const Digraph &) { return 0; };
1211      DefPredMapBase(const TR &b) : TR(b) {}
1212    };
1213    ///\brief \ref named-templ-param "Named parameter"
[244]1214    ///for setting \ref PredMap object.
[100]1215    ///
[244]1216    ///\ref named-templ-param "Named parameter"
1217    ///for setting \ref PredMap object.
[100]1218    template<class T>
[209]1219    DijkstraWizard<DefPredMapBase<T> > predMap(const T &t)
[100]1220    {
1221      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1222      return DijkstraWizard<DefPredMapBase<T> >(*this);
1223    }
[209]1224
[100]1225    template<class T>
[244]1226    struct DefProcessedMapBase : public Base {
1227      typedef T ProcessedMap;
1228      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1229      DefProcessedMapBase(const TR &b) : TR(b) {}
1230    };
1231    ///\brief \ref named-templ-param "Named parameter"
1232    ///for setting \ref ProcessedMap object.
1233    ///
1234    /// \ref named-templ-param "Named parameter"
1235    ///for setting \ref ProcessedMap object.
1236    template<class T>
1237    DijkstraWizard<DefProcessedMapBase<T> > processedMap(const T &t)
1238    {
1239      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1240      return DijkstraWizard<DefProcessedMapBase<T> >(*this);
1241    }
1242
1243    template<class T>
[100]1244    struct DefDistMapBase : public Base {
1245      typedef T DistMap;
1246      static DistMap *createDistMap(const Digraph &) { return 0; };
1247      DefDistMapBase(const TR &b) : TR(b) {}
1248    };
1249    ///\brief \ref named-templ-param "Named parameter"
[244]1250    ///for setting \ref DistMap object.
[100]1251    ///
[244]1252    ///\ref named-templ-param "Named parameter"
1253    ///for setting \ref DistMap object.
[100]1254    template<class T>
[209]1255    DijkstraWizard<DefDistMapBase<T> > distMap(const T &t)
[100]1256    {
1257      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1258      return DijkstraWizard<DefDistMapBase<T> >(*this);
1259    }
[209]1260
[100]1261  };
[209]1262
[100]1263  ///Function type interface for Dijkstra algorithm.
1264
1265  /// \ingroup shortest_path
1266  ///Function type interface for Dijkstra algorithm.
1267  ///
1268  ///This function also has several
1269  ///\ref named-templ-func-param "named parameters",
1270  ///they are declared as the members of class \ref DijkstraWizard.
1271  ///The following
1272  ///example shows how to use these parameters.
1273  ///\code
1274  ///  dijkstra(g,length,source).predMap(preds).run();
1275  ///\endcode
1276  ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
1277  ///to the end of the parameter list.
1278  ///\sa DijkstraWizard
1279  ///\sa Dijkstra
1280  template<class GR, class LM>
1281  DijkstraWizard<DijkstraWizardBase<GR,LM> >
1282  dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
1283  {
1284    return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
1285  }
1286
1287} //END OF NAMESPACE LEMON
1288
1289#endif
Note: See TracBrowser for help on using the repository browser.