/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2010 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_EDMONDS_KARP_H #define LEMON_EDMONDS_KARP_H /// \file /// \ingroup max_flow /// \brief Implementation of the Edmonds-Karp algorithm. #include #include namespace lemon { /// \brief Default traits class of EdmondsKarp class. /// /// Default traits class of EdmondsKarp class. /// \param GR Digraph type. /// \param CAP Type of capacity map. template struct EdmondsKarpDefaultTraits { /// \brief The digraph type the algorithm runs on. typedef GR Digraph; /// \brief The type of the map that stores the arc capacities. /// /// The type of the map that stores the arc capacities. /// It must meet the \ref concepts::ReadMap "ReadMap" concept. typedef CAP CapacityMap; /// \brief The type of the flow values. typedef typename CapacityMap::Value Value; /// \brief The type of the map that stores the flow values. /// /// The type of the map that stores the flow values. /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. #ifdef DOXYGEN typedef GR::ArcMap FlowMap; #else typedef typename Digraph::template ArcMap FlowMap; #endif /// \brief Instantiates a FlowMap. /// /// This function instantiates a \ref FlowMap. /// \param digraph The digraph for which we would like to define /// the flow map. static FlowMap* createFlowMap(const Digraph& digraph) { return new FlowMap(digraph); } /// \brief The tolerance used by the algorithm /// /// The tolerance used by the algorithm to handle inexact computation. typedef lemon::Tolerance Tolerance; }; /// \ingroup max_flow /// /// \brief Edmonds-Karp algorithms class. /// /// This class provides an implementation of the \e Edmonds-Karp \e /// algorithm producing a \ref max_flow "flow of maximum value" in a /// digraph \cite clrs01algorithms, \cite amo93networkflows, /// \cite edmondskarp72theoretical. /// The Edmonds-Karp algorithm is slower than the Preflow /// algorithm, but it has an advantage of the step-by-step execution /// control with feasible flow solutions. The \e source node, the \e /// target node, the \e capacity of the arcs and the \e starting \e /// flow value of the arcs should be passed to the algorithm /// through the constructor. /// /// The time complexity of the algorithm is \f$ O(nm^2) \f$ in /// worst case. Always try the Preflow algorithm instead of this if /// you just want to compute the optimal flow. /// /// \tparam GR The type of the digraph the algorithm runs on. /// \tparam CAP The type of the capacity map. The default map /// type is \ref concepts::Digraph::ArcMap "GR::ArcMap". /// \tparam TR The traits class that defines various types used by the /// algorithm. By default, it is \ref EdmondsKarpDefaultTraits /// "EdmondsKarpDefaultTraits". /// In most cases, this parameter should not be set directly, /// consider to use the named template parameters instead. #ifdef DOXYGEN template #else template , typename TR = EdmondsKarpDefaultTraits > #endif class EdmondsKarp { public: /// \brief The \ref lemon::EdmondsKarpDefaultTraits "traits class" /// of the algorithm. typedef TR Traits; /// The type of the digraph the algorithm runs on. typedef typename Traits::Digraph Digraph; /// The type of the capacity map. typedef typename Traits::CapacityMap CapacityMap; /// The type of the flow values. typedef typename Traits::Value Value; /// The type of the flow map. typedef typename Traits::FlowMap FlowMap; /// The type of the tolerance. typedef typename Traits::Tolerance Tolerance; private: TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); typedef typename Digraph::template NodeMap PredMap; const Digraph& _graph; const CapacityMap* _capacity; Node _source, _target; FlowMap* _flow; bool _local_flow; PredMap* _pred; std::vector _queue; Tolerance _tolerance; Value _flow_value; void createStructures() { if (!_flow) { _flow = Traits::createFlowMap(_graph); _local_flow = true; } if (!_pred) { _pred = new PredMap(_graph); } _queue.resize(countNodes(_graph)); } void destroyStructures() { if (_local_flow) { delete _flow; } if (_pred) { delete _pred; } } public: typedef EdmondsKarp Create; ///\name Named template parameters ///@{ template struct SetFlowMapTraits : public Traits { typedef T FlowMap; static FlowMap *createFlowMap(const Digraph&) { LEMON_ASSERT(false, "FlowMap is not initialized"); return 0; } }; /// \brief \ref named-templ-param "Named parameter" for setting /// FlowMap type /// /// \ref named-templ-param "Named parameter" for setting FlowMap /// type template struct SetFlowMap : public EdmondsKarp > { typedef EdmondsKarp > Create; }; /// @} protected: EdmondsKarp() {} public: /// \brief The constructor of the class. /// /// The constructor of the class. /// \param digraph The digraph the algorithm runs on. /// \param capacity The capacity of the arcs. /// \param source The source node. /// \param target The target node. EdmondsKarp(const Digraph& digraph, const CapacityMap& capacity, Node source, Node target) : _graph(digraph), _capacity(&capacity), _source(source), _target(target), _flow(0), _local_flow(false), _pred(0), _tolerance(), _flow_value() { LEMON_ASSERT(_source != _target, "Flow source and target are the same nodes."); } /// \brief Destructor. /// /// Destructor. ~EdmondsKarp() { destroyStructures(); } /// \brief Sets the capacity map. /// /// Sets the capacity map. /// \return (*this) EdmondsKarp& capacityMap(const CapacityMap& map) { _capacity = ↦ return *this; } /// \brief Sets the flow map. /// /// Sets the flow map. /// If you don't use this function before calling \ref run() or /// \ref init(), an instance will be allocated automatically. /// The destructor deallocates this automatically allocated map, /// of course. /// \return (*this) EdmondsKarp& flowMap(FlowMap& map) { if (_local_flow) { delete _flow; _local_flow = false; } _flow = ↦ return *this; } /// \brief Sets the source node. /// /// Sets the source node. /// \return (*this) EdmondsKarp& source(const Node& node) { _source = node; return *this; } /// \brief Sets the target node. /// /// Sets the target node. /// \return (*this) EdmondsKarp& target(const Node& node) { _target = node; return *this; } /// \brief Sets the tolerance used by algorithm. /// /// Sets the tolerance used by algorithm. /// \return (*this) EdmondsKarp& tolerance(const Tolerance& tolerance) { _tolerance = tolerance; return *this; } /// \brief Returns a const reference to the tolerance. /// /// Returns a const reference to the tolerance object used by /// the algorithm. const Tolerance& tolerance() const { return _tolerance; } /// \name Execution control /// The simplest way to execute the algorithm is to use \ref run().\n /// If you need better control on the initial solution or the execution, /// you have to call one of the \ref init() functions first, then /// \ref start() or multiple times the \ref augment() function. ///@{ /// \brief Initializes the algorithm. /// /// Initializes the internal data structures and sets the initial /// flow to zero on each arc. void init() { createStructures(); for (ArcIt it(_graph); it != INVALID; ++it) { _flow->set(it, 0); } _flow_value = 0; } /// \brief Initializes the algorithm using the given flow map. /// /// Initializes the internal data structures and sets the initial /// flow to the given \c flowMap. The \c flowMap should /// contain a feasible flow, i.e. at each node excluding the source /// and the target, the incoming flow should be equal to the /// outgoing flow. template void init(const FlowMap& flowMap) { createStructures(); for (ArcIt e(_graph); e != INVALID; ++e) { _flow->set(e, flowMap[e]); } _flow_value = 0; for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) { _flow_value += (*_flow)[jt]; } for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) { _flow_value -= (*_flow)[jt]; } } /// \brief Initializes the algorithm using the given flow map. /// /// Initializes the internal data structures and sets the initial /// flow to the given \c flowMap. The \c flowMap should /// contain a feasible flow, i.e. at each node excluding the source /// and the target, the incoming flow should be equal to the /// outgoing flow. /// \return \c false when the given \c flowMap does not contain a /// feasible flow. template bool checkedInit(const FlowMap& flowMap) { createStructures(); for (ArcIt e(_graph); e != INVALID; ++e) { _flow->set(e, flowMap[e]); } for (NodeIt it(_graph); it != INVALID; ++it) { if (it == _source || it == _target) continue; Value outFlow = 0; for (OutArcIt jt(_graph, it); jt != INVALID; ++jt) { outFlow += (*_flow)[jt]; } Value inFlow = 0; for (InArcIt jt(_graph, it); jt != INVALID; ++jt) { inFlow += (*_flow)[jt]; } if (_tolerance.different(outFlow, inFlow)) { return false; } } for (ArcIt it(_graph); it != INVALID; ++it) { if (_tolerance.less((*_flow)[it], 0)) return false; if (_tolerance.less((*_capacity)[it], (*_flow)[it])) return false; } _flow_value = 0; for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) { _flow_value += (*_flow)[jt]; } for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) { _flow_value -= (*_flow)[jt]; } return true; } /// \brief Augments the solution along a shortest path. /// /// Augments the solution along a shortest path. This function searches a /// shortest path between the source and the target /// in the residual digraph by the Bfs algoritm. /// Then it increases the flow on this path with the minimal residual /// capacity on the path. If there is no such path, it gives back /// false. /// \return \c false when the augmenting did not success, i.e. the /// current flow is a feasible and optimal solution. bool augment() { for (NodeIt n(_graph); n != INVALID; ++n) { _pred->set(n, INVALID); } int first = 0, last = 1; _queue[0] = _source; _pred->set(_source, OutArcIt(_graph, _source)); while (first != last && (*_pred)[_target] == INVALID) { Node n = _queue[first++]; for (OutArcIt e(_graph, n); e != INVALID; ++e) { Value rem = (*_capacity)[e] - (*_flow)[e]; Node t = _graph.target(e); if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) { _pred->set(t, e); _queue[last++] = t; } } for (InArcIt e(_graph, n); e != INVALID; ++e) { Value rem = (*_flow)[e]; Node t = _graph.source(e); if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) { _pred->set(t, e); _queue[last++] = t; } } } if ((*_pred)[_target] != INVALID) { Node n = _target; Arc e = (*_pred)[n]; Value prem = (*_capacity)[e] - (*_flow)[e]; n = _graph.source(e); while (n != _source) { e = (*_pred)[n]; if (_graph.target(e) == n) { Value rem = (*_capacity)[e] - (*_flow)[e]; if (rem < prem) prem = rem; n = _graph.source(e); } else { Value rem = (*_flow)[e]; if (rem < prem) prem = rem; n = _graph.target(e); } } n = _target; e = (*_pred)[n]; _flow->set(e, (*_flow)[e] + prem); n = _graph.source(e); while (n != _source) { e = (*_pred)[n]; if (_graph.target(e) == n) { _flow->set(e, (*_flow)[e] + prem); n = _graph.source(e); } else { _flow->set(e, (*_flow)[e] - prem); n = _graph.target(e); } } _flow_value += prem; return true; } else { return false; } } /// \brief Executes the algorithm /// /// Executes the algorithm by performing augmenting phases until the /// optimal solution is reached. /// \pre One of the \ref init() functions must be called before /// using this function. void start() { while (augment()) {} } /// \brief Runs the algorithm. /// /// Runs the Edmonds-Karp algorithm. /// \note ek.run() is just a shortcut of the following code. ///\code /// ek.init(); /// ek.start(); ///\endcode void run() { init(); start(); } /// @} /// \name Query Functions /// The result of the Edmonds-Karp algorithm can be obtained using these /// functions.\n /// Either \ref run() or \ref start() should be called before using them. ///@{ /// \brief Returns the value of the maximum flow. /// /// Returns the value of the maximum flow found by the algorithm. /// /// \pre Either \ref run() or \ref init() must be called before /// using this function. Value flowValue() const { return _flow_value; } /// \brief Returns the flow value on the given arc. /// /// Returns the flow value on the given arc. /// /// \pre Either \ref run() or \ref init() must be called before /// using this function. Value flow(const Arc& arc) const { return (*_flow)[arc]; } /// \brief Returns a const reference to the flow map. /// /// Returns a const reference to the arc map storing the found flow. /// /// \pre Either \ref run() or \ref init() must be called before /// using this function. const FlowMap& flowMap() const { return *_flow; } /// \brief Returns \c true when the node is on the source side of the /// minimum cut. /// /// Returns true when the node is on the source side of the found /// minimum cut. /// /// \pre Either \ref run() or \ref init() must be called before /// using this function. bool minCut(const Node& node) const { return ((*_pred)[node] != INVALID) || node == _source; } /// \brief Gives back a minimum value cut. /// /// Sets \c cutMap to the characteristic vector of a minimum value /// cut. \c cutMap should be a \ref concepts::WriteMap "writable" /// node map with \c bool (or convertible) value type. /// /// \note This function calls \ref minCut() for each node, so it runs in /// O(n) time. /// /// \pre Either \ref run() or \ref init() must be called before /// using this function. template void minCutMap(CutMap& cutMap) const { for (NodeIt n(_graph); n != INVALID; ++n) { cutMap.set(n, (*_pred)[n] != INVALID); } cutMap.set(_source, true); } /// @} }; } #endif