COIN-OR::LEMON - Graph Library

source: lemon/lemon/howard.h @ 815:0a42883c8221

Last change on this file since 815:0a42883c8221 was 815:0a42883c8221, checked in by Peter Kovacs <kpeter@…>, 15 years ago

Separate group for the min mean cycle classes (#179)

File size: 17.3 KB
RevLine 
[805]1/* -*- C++ -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library
4 *
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
[811]19#ifndef LEMON_HOWARD_H
20#define LEMON_HOWARD_H
[805]21
[815]22/// \ingroup min_mean_cycle
[805]23///
24/// \file
25/// \brief Howard's algorithm for finding a minimum mean cycle.
26
27#include <vector>
[810]28#include <limits>
[805]29#include <lemon/core.h>
30#include <lemon/path.h>
31#include <lemon/tolerance.h>
32#include <lemon/connectivity.h>
33
34namespace lemon {
35
[811]36  /// \brief Default traits class of Howard class.
[808]37  ///
[811]38  /// Default traits class of Howard class.
[808]39  /// \tparam GR The type of the digraph.
40  /// \tparam LEN The type of the length map.
41  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
42#ifdef DOXYGEN
43  template <typename GR, typename LEN>
44#else
45  template <typename GR, typename LEN,
46    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47#endif
[811]48  struct HowardDefaultTraits
[808]49  {
50    /// The type of the digraph
51    typedef GR Digraph;
52    /// The type of the length map
53    typedef LEN LengthMap;
54    /// The type of the arc lengths
55    typedef typename LengthMap::Value Value;
56
57    /// \brief The large value type used for internal computations
58    ///
59    /// The large value type used for internal computations.
60    /// It is \c long \c long if the \c Value type is integer,
61    /// otherwise it is \c double.
62    /// \c Value must be convertible to \c LargeValue.
63    typedef double LargeValue;
64
65    /// The tolerance type used for internal computations
66    typedef lemon::Tolerance<LargeValue> Tolerance;
67
68    /// \brief The path type of the found cycles
69    ///
70    /// The path type of the found cycles.
71    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72    /// and it must have an \c addBack() function.
73    typedef lemon::Path<Digraph> Path;
74  };
75
76  // Default traits class for integer value types
77  template <typename GR, typename LEN>
[811]78  struct HowardDefaultTraits<GR, LEN, true>
[808]79  {
80    typedef GR Digraph;
81    typedef LEN LengthMap;
82    typedef typename LengthMap::Value Value;
83#ifdef LEMON_HAVE_LONG_LONG
84    typedef long long LargeValue;
85#else
86    typedef long LargeValue;
87#endif
88    typedef lemon::Tolerance<LargeValue> Tolerance;
89    typedef lemon::Path<Digraph> Path;
90  };
91
92
[815]93  /// \addtogroup min_mean_cycle
[805]94  /// @{
95
96  /// \brief Implementation of Howard's algorithm for finding a minimum
97  /// mean cycle.
98  ///
[811]99  /// This class implements Howard's policy iteration algorithm for finding
100  /// a directed cycle of minimum mean length (cost) in a digraph.
[815]101  /// This class provides the most efficient algorithm for the
102  /// minimum mean cycle problem, though the best known theoretical
103  /// bound on its running time is exponential.
[805]104  ///
105  /// \tparam GR The type of the digraph the algorithm runs on.
106  /// \tparam LEN The type of the length map. The default
107  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
108#ifdef DOXYGEN
[808]109  template <typename GR, typename LEN, typename TR>
[805]110#else
111  template < typename GR,
[808]112             typename LEN = typename GR::template ArcMap<int>,
[811]113             typename TR = HowardDefaultTraits<GR, LEN> >
[805]114#endif
[811]115  class Howard
[805]116  {
117  public:
118 
[808]119    /// The type of the digraph
120    typedef typename TR::Digraph Digraph;
[805]121    /// The type of the length map
[808]122    typedef typename TR::LengthMap LengthMap;
[805]123    /// The type of the arc lengths
[808]124    typedef typename TR::Value Value;
125
126    /// \brief The large value type
127    ///
128    /// The large value type used for internal computations.
[811]129    /// Using the \ref HowardDefaultTraits "default traits class",
[808]130    /// it is \c long \c long if the \c Value type is integer,
131    /// otherwise it is \c double.
132    typedef typename TR::LargeValue LargeValue;
133
134    /// The tolerance type
135    typedef typename TR::Tolerance Tolerance;
136
137    /// \brief The path type of the found cycles
138    ///
139    /// The path type of the found cycles.
[811]140    /// Using the \ref HowardDefaultTraits "default traits class",
[808]141    /// it is \ref lemon::Path "Path<Digraph>".
142    typedef typename TR::Path Path;
143
[811]144    /// The \ref HowardDefaultTraits "traits class" of the algorithm
[808]145    typedef TR Traits;
[805]146
147  private:
148
149    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
150 
151    // The digraph the algorithm runs on
152    const Digraph &_gr;
153    // The length of the arcs
154    const LengthMap &_length;
155
[807]156    // Data for the found cycles
157    bool _curr_found, _best_found;
[808]158    LargeValue _curr_length, _best_length;
[807]159    int _curr_size, _best_size;
160    Node _curr_node, _best_node;
161
[805]162    Path *_cycle_path;
[807]163    bool _local_path;
[805]164
[807]165    // Internal data used by the algorithm
166    typename Digraph::template NodeMap<Arc> _policy;
167    typename Digraph::template NodeMap<bool> _reached;
168    typename Digraph::template NodeMap<int> _level;
[808]169    typename Digraph::template NodeMap<LargeValue> _dist;
[805]170
[807]171    // Data for storing the strongly connected components
172    int _comp_num;
[805]173    typename Digraph::template NodeMap<int> _comp;
[807]174    std::vector<std::vector<Node> > _comp_nodes;
175    std::vector<Node>* _nodes;
176    typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
177   
178    // Queue used for BFS search
179    std::vector<Node> _queue;
180    int _qfront, _qback;
[808]181
182    Tolerance _tolerance;
183 
[814]184    // Infinite constant
185    const LargeValue INF;
186
[808]187  public:
188 
189    /// \name Named Template Parameters
190    /// @{
191
192    template <typename T>
193    struct SetLargeValueTraits : public Traits {
194      typedef T LargeValue;
195      typedef lemon::Tolerance<T> Tolerance;
196    };
197
198    /// \brief \ref named-templ-param "Named parameter" for setting
199    /// \c LargeValue type.
200    ///
201    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
202    /// type. It is used for internal computations in the algorithm.
203    template <typename T>
204    struct SetLargeValue
[811]205      : public Howard<GR, LEN, SetLargeValueTraits<T> > {
206      typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create;
[808]207    };
208
209    template <typename T>
210    struct SetPathTraits : public Traits {
211      typedef T Path;
212    };
213
214    /// \brief \ref named-templ-param "Named parameter" for setting
215    /// \c %Path type.
216    ///
217    /// \ref named-templ-param "Named parameter" for setting the \c %Path
218    /// type of the found cycles.
219    /// It must conform to the \ref lemon::concepts::Path "Path" concept
220    /// and it must have an \c addBack() function.
221    template <typename T>
222    struct SetPath
[811]223      : public Howard<GR, LEN, SetPathTraits<T> > {
224      typedef Howard<GR, LEN, SetPathTraits<T> > Create;
[808]225    };
[807]226   
[808]227    /// @}
[805]228
229  public:
230
231    /// \brief Constructor.
232    ///
233    /// The constructor of the class.
234    ///
235    /// \param digraph The digraph the algorithm runs on.
236    /// \param length The lengths (costs) of the arcs.
[811]237    Howard( const Digraph &digraph,
238            const LengthMap &length ) :
[814]239      _gr(digraph), _length(length), _best_found(false),
240      _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false),
[807]241      _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
[814]242      _comp(digraph), _in_arcs(digraph),
243      INF(std::numeric_limits<LargeValue>::has_infinity ?
244          std::numeric_limits<LargeValue>::infinity() :
245          std::numeric_limits<LargeValue>::max())
[805]246    {}
247
248    /// Destructor.
[811]249    ~Howard() {
[805]250      if (_local_path) delete _cycle_path;
251    }
252
253    /// \brief Set the path structure for storing the found cycle.
254    ///
255    /// This function sets an external path structure for storing the
256    /// found cycle.
257    ///
258    /// If you don't call this function before calling \ref run() or
[806]259    /// \ref findMinMean(), it will allocate a local \ref Path "path"
[805]260    /// structure. The destuctor deallocates this automatically
261    /// allocated object, of course.
262    ///
263    /// \note The algorithm calls only the \ref lemon::Path::addBack()
264    /// "addBack()" function of the given path structure.
265    ///
266    /// \return <tt>(*this)</tt>
[811]267    Howard& cycle(Path &path) {
[805]268      if (_local_path) {
269        delete _cycle_path;
270        _local_path = false;
271      }
272      _cycle_path = &path;
273      return *this;
274    }
275
276    /// \name Execution control
277    /// The simplest way to execute the algorithm is to call the \ref run()
278    /// function.\n
[806]279    /// If you only need the minimum mean length, you may call
280    /// \ref findMinMean().
[805]281
282    /// @{
283
284    /// \brief Run the algorithm.
285    ///
286    /// This function runs the algorithm.
[806]287    /// It can be called more than once (e.g. if the underlying digraph
288    /// and/or the arc lengths have been modified).
[805]289    ///
290    /// \return \c true if a directed cycle exists in the digraph.
291    ///
[806]292    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
[805]293    /// \code
[806]294    ///   return mmc.findMinMean() && mmc.findCycle();
[805]295    /// \endcode
296    bool run() {
297      return findMinMean() && findCycle();
298    }
299
[806]300    /// \brief Find the minimum cycle mean.
[805]301    ///
[806]302    /// This function finds the minimum mean length of the directed
303    /// cycles in the digraph.
[805]304    ///
[806]305    /// \return \c true if a directed cycle exists in the digraph.
306    bool findMinMean() {
[807]307      // Initialize and find strongly connected components
308      init();
309      findComponents();
310     
[806]311      // Find the minimum cycle mean in the components
[805]312      for (int comp = 0; comp < _comp_num; ++comp) {
[807]313        // Find the minimum mean cycle in the current component
314        if (!buildPolicyGraph(comp)) continue;
[805]315        while (true) {
[807]316          findPolicyCycle();
[805]317          if (!computeNodeDistances()) break;
318        }
[807]319        // Update the best cycle (global minimum mean cycle)
[814]320        if ( _curr_found && (!_best_found ||
[807]321             _curr_length * _best_size < _best_length * _curr_size) ) {
322          _best_found = true;
323          _best_length = _curr_length;
324          _best_size = _curr_size;
325          _best_node = _curr_node;
326        }
[805]327      }
[807]328      return _best_found;
[805]329    }
330
331    /// \brief Find a minimum mean directed cycle.
332    ///
333    /// This function finds a directed cycle of minimum mean length
334    /// in the digraph using the data computed by findMinMean().
335    ///
336    /// \return \c true if a directed cycle exists in the digraph.
337    ///
[806]338    /// \pre \ref findMinMean() must be called before using this function.
[805]339    bool findCycle() {
[807]340      if (!_best_found) return false;
341      _cycle_path->addBack(_policy[_best_node]);
342      for ( Node v = _best_node;
343            (v = _gr.target(_policy[v])) != _best_node; ) {
[805]344        _cycle_path->addBack(_policy[v]);
345      }
346      return true;
347    }
348
349    /// @}
350
351    /// \name Query Functions
[806]352    /// The results of the algorithm can be obtained using these
[805]353    /// functions.\n
354    /// The algorithm should be executed before using them.
355
356    /// @{
357
358    /// \brief Return the total length of the found cycle.
359    ///
360    /// This function returns the total length of the found cycle.
361    ///
[807]362    /// \pre \ref run() or \ref findMinMean() must be called before
[805]363    /// using this function.
[808]364    LargeValue cycleLength() const {
[807]365      return _best_length;
[805]366    }
367
368    /// \brief Return the number of arcs on the found cycle.
369    ///
370    /// This function returns the number of arcs on the found cycle.
371    ///
[807]372    /// \pre \ref run() or \ref findMinMean() must be called before
[805]373    /// using this function.
374    int cycleArcNum() const {
[807]375      return _best_size;
[805]376    }
377
378    /// \brief Return the mean length of the found cycle.
379    ///
380    /// This function returns the mean length of the found cycle.
381    ///
[807]382    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
[805]383    /// following code.
384    /// \code
[807]385    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
[805]386    /// \endcode
387    ///
388    /// \pre \ref run() or \ref findMinMean() must be called before
389    /// using this function.
390    double cycleMean() const {
[807]391      return static_cast<double>(_best_length) / _best_size;
[805]392    }
393
394    /// \brief Return the found cycle.
395    ///
396    /// This function returns a const reference to the path structure
397    /// storing the found cycle.
398    ///
399    /// \pre \ref run() or \ref findCycle() must be called before using
400    /// this function.
401    const Path& cycle() const {
402      return *_cycle_path;
403    }
404
405    ///@}
406
407  private:
408
[807]409    // Initialize
410    void init() {
411      if (!_cycle_path) {
412        _local_path = true;
413        _cycle_path = new Path;
[805]414      }
[807]415      _queue.resize(countNodes(_gr));
416      _best_found = false;
417      _best_length = 0;
418      _best_size = 1;
419      _cycle_path->clear();
420    }
421   
422    // Find strongly connected components and initialize _comp_nodes
423    // and _in_arcs
424    void findComponents() {
425      _comp_num = stronglyConnectedComponents(_gr, _comp);
426      _comp_nodes.resize(_comp_num);
427      if (_comp_num == 1) {
428        _comp_nodes[0].clear();
429        for (NodeIt n(_gr); n != INVALID; ++n) {
430          _comp_nodes[0].push_back(n);
431          _in_arcs[n].clear();
432          for (InArcIt a(_gr, n); a != INVALID; ++a) {
433            _in_arcs[n].push_back(a);
434          }
435        }
436      } else {
437        for (int i = 0; i < _comp_num; ++i)
438          _comp_nodes[i].clear();
439        for (NodeIt n(_gr); n != INVALID; ++n) {
440          int k = _comp[n];
441          _comp_nodes[k].push_back(n);
442          _in_arcs[n].clear();
443          for (InArcIt a(_gr, n); a != INVALID; ++a) {
444            if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
445          }
446        }
[805]447      }
[807]448    }
449
450    // Build the policy graph in the given strongly connected component
451    // (the out-degree of every node is 1)
452    bool buildPolicyGraph(int comp) {
453      _nodes = &(_comp_nodes[comp]);
454      if (_nodes->size() < 1 ||
455          (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
456        return false;
[805]457      }
[807]458      for (int i = 0; i < int(_nodes->size()); ++i) {
[814]459        _dist[(*_nodes)[i]] = INF;
[807]460      }
461      Node u, v;
462      Arc e;
463      for (int i = 0; i < int(_nodes->size()); ++i) {
464        v = (*_nodes)[i];
465        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
466          e = _in_arcs[v][j];
467          u = _gr.source(e);
468          if (_length[e] < _dist[u]) {
469            _dist[u] = _length[e];
470            _policy[u] = e;
471          }
[805]472        }
473      }
474      return true;
475    }
476
[807]477    // Find the minimum mean cycle in the policy graph
478    void findPolicyCycle() {
479      for (int i = 0; i < int(_nodes->size()); ++i) {
480        _level[(*_nodes)[i]] = -1;
481      }
[808]482      LargeValue clength;
[805]483      int csize;
484      Node u, v;
[807]485      _curr_found = false;
486      for (int i = 0; i < int(_nodes->size()); ++i) {
487        u = (*_nodes)[i];
488        if (_level[u] >= 0) continue;
489        for (; _level[u] < 0; u = _gr.target(_policy[u])) {
490          _level[u] = i;
491        }
492        if (_level[u] == i) {
493          // A cycle is found
494          clength = _length[_policy[u]];
495          csize = 1;
496          for (v = u; (v = _gr.target(_policy[v])) != u; ) {
497            clength += _length[_policy[v]];
498            ++csize;
[805]499          }
[807]500          if ( !_curr_found ||
501               (clength * _curr_size < _curr_length * csize) ) {
502            _curr_found = true;
503            _curr_length = clength;
504            _curr_size = csize;
505            _curr_node = u;
[805]506          }
507        }
508      }
509    }
510
[807]511    // Contract the policy graph and compute node distances
[805]512    bool computeNodeDistances() {
[807]513      // Find the component of the main cycle and compute node distances
514      // using reverse BFS
515      for (int i = 0; i < int(_nodes->size()); ++i) {
516        _reached[(*_nodes)[i]] = false;
517      }
518      _qfront = _qback = 0;
519      _queue[0] = _curr_node;
520      _reached[_curr_node] = true;
521      _dist[_curr_node] = 0;
[805]522      Node u, v;
[807]523      Arc e;
524      while (_qfront <= _qback) {
525        v = _queue[_qfront++];
526        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
527          e = _in_arcs[v][j];
[805]528          u = _gr.source(e);
[807]529          if (_policy[u] == e && !_reached[u]) {
530            _reached[u] = true;
[808]531            _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
[807]532            _queue[++_qback] = u;
[805]533          }
534        }
535      }
[807]536
537      // Connect all other nodes to this component and compute node
538      // distances using reverse BFS
539      _qfront = 0;
540      while (_qback < int(_nodes->size())-1) {
541        v = _queue[_qfront++];
542        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
543          e = _in_arcs[v][j];
544          u = _gr.source(e);
545          if (!_reached[u]) {
546            _reached[u] = true;
547            _policy[u] = e;
[808]548            _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
[807]549            _queue[++_qback] = u;
550          }
551        }
552      }
553
554      // Improve node distances
[805]555      bool improved = false;
[807]556      for (int i = 0; i < int(_nodes->size()); ++i) {
557        v = (*_nodes)[i];
558        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
559          e = _in_arcs[v][j];
560          u = _gr.source(e);
[808]561          LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length;
562          if (_tolerance.less(delta, _dist[u])) {
[807]563            _dist[u] = delta;
564            _policy[u] = e;
565            improved = true;
566          }
[805]567        }
568      }
569      return improved;
570    }
571
[811]572  }; //class Howard
[805]573
574  ///@}
575
576} //namespace lemon
577
[811]578#endif //LEMON_HOWARD_H
Note: See TracBrowser for help on using the repository browser.