[25] | 1 | /* -*- C++ -*- |
---|
| 2 | * |
---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
| 4 | * |
---|
[39] | 5 | * Copyright (C) 2003-2008 |
---|
[25] | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | #ifndef LEMON_MAPS_H |
---|
| 20 | #define LEMON_MAPS_H |
---|
| 21 | |
---|
| 22 | #include <iterator> |
---|
| 23 | #include <functional> |
---|
| 24 | #include <vector> |
---|
| 25 | |
---|
| 26 | #include <lemon/bits/utility.h> |
---|
[80] | 27 | #include <lemon/bits/traits.h> |
---|
[25] | 28 | |
---|
| 29 | ///\file |
---|
| 30 | ///\ingroup maps |
---|
| 31 | ///\brief Miscellaneous property maps |
---|
[80] | 32 | |
---|
[25] | 33 | #include <map> |
---|
| 34 | |
---|
| 35 | namespace lemon { |
---|
| 36 | |
---|
| 37 | /// \addtogroup maps |
---|
| 38 | /// @{ |
---|
| 39 | |
---|
| 40 | /// Base class of maps. |
---|
| 41 | |
---|
[80] | 42 | /// Base class of maps. It provides the necessary type definitions |
---|
| 43 | /// required by the map %concepts. |
---|
| 44 | template<typename K, typename V> |
---|
[25] | 45 | class MapBase { |
---|
| 46 | public: |
---|
[80] | 47 | /// \biref The key type of the map. |
---|
[25] | 48 | typedef K Key; |
---|
[80] | 49 | /// \brief The value type of the map. |
---|
| 50 | /// (The type of objects associated with the keys). |
---|
| 51 | typedef V Value; |
---|
[25] | 52 | }; |
---|
| 53 | |
---|
[80] | 54 | |
---|
[25] | 55 | /// Null map. (a.k.a. DoNothingMap) |
---|
| 56 | |
---|
[29] | 57 | /// This map can be used if you have to provide a map only for |
---|
[80] | 58 | /// its type definitions, or if you have to provide a writable map, |
---|
| 59 | /// but data written to it is not required (i.e. it will be sent to |
---|
[29] | 60 | /// <tt>/dev/null</tt>). |
---|
[80] | 61 | /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
---|
| 62 | /// |
---|
| 63 | /// \sa ConstMap |
---|
| 64 | template<typename K, typename V> |
---|
| 65 | class NullMap : public MapBase<K, V> { |
---|
[25] | 66 | public: |
---|
[80] | 67 | typedef MapBase<K, V> Parent; |
---|
[25] | 68 | typedef typename Parent::Key Key; |
---|
| 69 | typedef typename Parent::Value Value; |
---|
[80] | 70 | |
---|
[25] | 71 | /// Gives back a default constructed element. |
---|
[80] | 72 | Value operator[](const Key&) const { return Value(); } |
---|
[25] | 73 | /// Absorbs the value. |
---|
[80] | 74 | void set(const Key&, const Value&) {} |
---|
[25] | 75 | }; |
---|
| 76 | |
---|
[80] | 77 | /// Returns a \ref NullMap class |
---|
[29] | 78 | |
---|
[80] | 79 | /// This function just returns a \ref NullMap class. |
---|
| 80 | /// \relates NullMap |
---|
| 81 | template <typename K, typename V> |
---|
[25] | 82 | NullMap<K, V> nullMap() { |
---|
| 83 | return NullMap<K, V>(); |
---|
| 84 | } |
---|
| 85 | |
---|
| 86 | |
---|
| 87 | /// Constant map. |
---|
| 88 | |
---|
[82] | 89 | /// This \ref concepts::ReadMap "readable map" assigns a specified |
---|
| 90 | /// value to each key. |
---|
[80] | 91 | /// |
---|
| 92 | /// In other aspects it is equivalent to \ref NullMap. |
---|
| 93 | /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
---|
| 94 | /// concept, but it absorbs the data written to it. |
---|
| 95 | /// |
---|
| 96 | /// The simplest way of using this map is through the constMap() |
---|
| 97 | /// function. |
---|
| 98 | /// |
---|
| 99 | /// \sa NullMap |
---|
| 100 | /// \sa IdentityMap |
---|
| 101 | template<typename K, typename V> |
---|
| 102 | class ConstMap : public MapBase<K, V> { |
---|
[25] | 103 | private: |
---|
[80] | 104 | V _value; |
---|
[25] | 105 | public: |
---|
[80] | 106 | typedef MapBase<K, V> Parent; |
---|
[25] | 107 | typedef typename Parent::Key Key; |
---|
| 108 | typedef typename Parent::Value Value; |
---|
| 109 | |
---|
| 110 | /// Default constructor |
---|
| 111 | |
---|
[29] | 112 | /// Default constructor. |
---|
[80] | 113 | /// The value of the map will be default constructed. |
---|
[25] | 114 | ConstMap() {} |
---|
[80] | 115 | |
---|
[29] | 116 | /// Constructor with specified initial value |
---|
[25] | 117 | |
---|
[29] | 118 | /// Constructor with specified initial value. |
---|
[123] | 119 | /// \param v The initial value of the map. |
---|
[80] | 120 | ConstMap(const Value &v) : _value(v) {} |
---|
[25] | 121 | |
---|
[80] | 122 | /// Gives back the specified value. |
---|
| 123 | Value operator[](const Key&) const { return _value; } |
---|
[25] | 124 | |
---|
[80] | 125 | /// Absorbs the value. |
---|
| 126 | void set(const Key&, const Value&) {} |
---|
| 127 | |
---|
| 128 | /// Sets the value that is assigned to each key. |
---|
| 129 | void setAll(const Value &v) { |
---|
| 130 | _value = v; |
---|
| 131 | } |
---|
| 132 | |
---|
| 133 | template<typename V1> |
---|
| 134 | ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {} |
---|
[25] | 135 | }; |
---|
| 136 | |
---|
[80] | 137 | /// Returns a \ref ConstMap class |
---|
[25] | 138 | |
---|
[80] | 139 | /// This function just returns a \ref ConstMap class. |
---|
| 140 | /// \relates ConstMap |
---|
| 141 | template<typename K, typename V> |
---|
[25] | 142 | inline ConstMap<K, V> constMap(const V &v) { |
---|
| 143 | return ConstMap<K, V>(v); |
---|
| 144 | } |
---|
| 145 | |
---|
[123] | 146 | template<typename K, typename V> |
---|
| 147 | inline ConstMap<K, V> constMap() { |
---|
| 148 | return ConstMap<K, V>(); |
---|
| 149 | } |
---|
| 150 | |
---|
[25] | 151 | |
---|
| 152 | template<typename T, T v> |
---|
[80] | 153 | struct Const {}; |
---|
[25] | 154 | |
---|
| 155 | /// Constant map with inlined constant value. |
---|
| 156 | |
---|
[82] | 157 | /// This \ref concepts::ReadMap "readable map" assigns a specified |
---|
| 158 | /// value to each key. |
---|
[80] | 159 | /// |
---|
| 160 | /// In other aspects it is equivalent to \ref NullMap. |
---|
| 161 | /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
---|
| 162 | /// concept, but it absorbs the data written to it. |
---|
| 163 | /// |
---|
| 164 | /// The simplest way of using this map is through the constMap() |
---|
| 165 | /// function. |
---|
| 166 | /// |
---|
| 167 | /// \sa NullMap |
---|
| 168 | /// \sa IdentityMap |
---|
[25] | 169 | template<typename K, typename V, V v> |
---|
| 170 | class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
---|
| 171 | public: |
---|
| 172 | typedef MapBase<K, V> Parent; |
---|
| 173 | typedef typename Parent::Key Key; |
---|
| 174 | typedef typename Parent::Value Value; |
---|
| 175 | |
---|
[80] | 176 | /// Constructor. |
---|
| 177 | ConstMap() {} |
---|
| 178 | |
---|
| 179 | /// Gives back the specified value. |
---|
| 180 | Value operator[](const Key&) const { return v; } |
---|
| 181 | |
---|
| 182 | /// Absorbs the value. |
---|
| 183 | void set(const Key&, const Value&) {} |
---|
[25] | 184 | }; |
---|
| 185 | |
---|
[80] | 186 | /// Returns a \ref ConstMap class with inlined constant value |
---|
[25] | 187 | |
---|
[80] | 188 | /// This function just returns a \ref ConstMap class with inlined |
---|
| 189 | /// constant value. |
---|
| 190 | /// \relates ConstMap |
---|
| 191 | template<typename K, typename V, V v> |
---|
[25] | 192 | inline ConstMap<K, Const<V, v> > constMap() { |
---|
| 193 | return ConstMap<K, Const<V, v> >(); |
---|
| 194 | } |
---|
| 195 | |
---|
| 196 | |
---|
[82] | 197 | /// Identity map. |
---|
| 198 | |
---|
| 199 | /// This \ref concepts::ReadMap "read-only map" gives back the given |
---|
| 200 | /// key as value without any modification. |
---|
[80] | 201 | /// |
---|
| 202 | /// \sa ConstMap |
---|
| 203 | template <typename T> |
---|
| 204 | class IdentityMap : public MapBase<T, T> { |
---|
| 205 | public: |
---|
| 206 | typedef MapBase<T, T> Parent; |
---|
| 207 | typedef typename Parent::Key Key; |
---|
| 208 | typedef typename Parent::Value Value; |
---|
| 209 | |
---|
| 210 | /// Gives back the given value without any modification. |
---|
[82] | 211 | Value operator[](const Key &k) const { |
---|
| 212 | return k; |
---|
[80] | 213 | } |
---|
| 214 | }; |
---|
| 215 | |
---|
| 216 | /// Returns an \ref IdentityMap class |
---|
| 217 | |
---|
| 218 | /// This function just returns an \ref IdentityMap class. |
---|
| 219 | /// \relates IdentityMap |
---|
| 220 | template<typename T> |
---|
| 221 | inline IdentityMap<T> identityMap() { |
---|
| 222 | return IdentityMap<T>(); |
---|
| 223 | } |
---|
| 224 | |
---|
| 225 | |
---|
| 226 | /// \brief Map for storing values for integer keys from the range |
---|
| 227 | /// <tt>[0..size-1]</tt>. |
---|
| 228 | /// |
---|
| 229 | /// This map is essentially a wrapper for \c std::vector. It assigns |
---|
| 230 | /// values to integer keys from the range <tt>[0..size-1]</tt>. |
---|
| 231 | /// It can be used with some data structures, for example |
---|
| 232 | /// \ref UnionFind, \ref BinHeap, when the used items are small |
---|
| 233 | /// integers. This map conforms the \ref concepts::ReferenceMap |
---|
| 234 | /// "ReferenceMap" concept. |
---|
| 235 | /// |
---|
| 236 | /// The simplest way of using this map is through the rangeMap() |
---|
| 237 | /// function. |
---|
| 238 | template <typename V> |
---|
| 239 | class RangeMap : public MapBase<int, V> { |
---|
| 240 | template <typename V1> |
---|
| 241 | friend class RangeMap; |
---|
| 242 | private: |
---|
| 243 | |
---|
| 244 | typedef std::vector<V> Vector; |
---|
| 245 | Vector _vector; |
---|
| 246 | |
---|
[25] | 247 | public: |
---|
| 248 | |
---|
[80] | 249 | typedef MapBase<int, V> Parent; |
---|
| 250 | /// Key type |
---|
[45] | 251 | typedef typename Parent::Key Key; |
---|
[80] | 252 | /// Value type |
---|
[45] | 253 | typedef typename Parent::Value Value; |
---|
[80] | 254 | /// Reference type |
---|
| 255 | typedef typename Vector::reference Reference; |
---|
| 256 | /// Const reference type |
---|
| 257 | typedef typename Vector::const_reference ConstReference; |
---|
| 258 | |
---|
| 259 | typedef True ReferenceMapTag; |
---|
| 260 | |
---|
| 261 | public: |
---|
| 262 | |
---|
| 263 | /// Constructor with specified default value. |
---|
| 264 | RangeMap(int size = 0, const Value &value = Value()) |
---|
| 265 | : _vector(size, value) {} |
---|
| 266 | |
---|
| 267 | /// Constructs the map from an appropriate \c std::vector. |
---|
| 268 | template <typename V1> |
---|
| 269 | RangeMap(const std::vector<V1>& vector) |
---|
| 270 | : _vector(vector.begin(), vector.end()) {} |
---|
| 271 | |
---|
| 272 | /// Constructs the map from another \ref RangeMap. |
---|
| 273 | template <typename V1> |
---|
| 274 | RangeMap(const RangeMap<V1> &c) |
---|
| 275 | : _vector(c._vector.begin(), c._vector.end()) {} |
---|
| 276 | |
---|
| 277 | /// Returns the size of the map. |
---|
| 278 | int size() { |
---|
| 279 | return _vector.size(); |
---|
| 280 | } |
---|
| 281 | |
---|
| 282 | /// Resizes the map. |
---|
| 283 | |
---|
| 284 | /// Resizes the underlying \c std::vector container, so changes the |
---|
| 285 | /// keyset of the map. |
---|
| 286 | /// \param size The new size of the map. The new keyset will be the |
---|
| 287 | /// range <tt>[0..size-1]</tt>. |
---|
| 288 | /// \param value The default value to assign to the new keys. |
---|
| 289 | void resize(int size, const Value &value = Value()) { |
---|
| 290 | _vector.resize(size, value); |
---|
| 291 | } |
---|
| 292 | |
---|
| 293 | private: |
---|
| 294 | |
---|
| 295 | RangeMap& operator=(const RangeMap&); |
---|
| 296 | |
---|
| 297 | public: |
---|
| 298 | |
---|
| 299 | ///\e |
---|
| 300 | Reference operator[](const Key &k) { |
---|
| 301 | return _vector[k]; |
---|
| 302 | } |
---|
| 303 | |
---|
| 304 | ///\e |
---|
| 305 | ConstReference operator[](const Key &k) const { |
---|
| 306 | return _vector[k]; |
---|
| 307 | } |
---|
| 308 | |
---|
| 309 | ///\e |
---|
| 310 | void set(const Key &k, const Value &v) { |
---|
| 311 | _vector[k] = v; |
---|
| 312 | } |
---|
| 313 | }; |
---|
| 314 | |
---|
| 315 | /// Returns a \ref RangeMap class |
---|
| 316 | |
---|
| 317 | /// This function just returns a \ref RangeMap class. |
---|
| 318 | /// \relates RangeMap |
---|
| 319 | template<typename V> |
---|
| 320 | inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
---|
| 321 | return RangeMap<V>(size, value); |
---|
| 322 | } |
---|
| 323 | |
---|
| 324 | /// \brief Returns a \ref RangeMap class created from an appropriate |
---|
| 325 | /// \c std::vector |
---|
| 326 | |
---|
| 327 | /// This function just returns a \ref RangeMap class created from an |
---|
| 328 | /// appropriate \c std::vector. |
---|
| 329 | /// \relates RangeMap |
---|
| 330 | template<typename V> |
---|
| 331 | inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
---|
| 332 | return RangeMap<V>(vector); |
---|
| 333 | } |
---|
| 334 | |
---|
| 335 | |
---|
| 336 | /// Map type based on \c std::map |
---|
| 337 | |
---|
| 338 | /// This map is essentially a wrapper for \c std::map with addition |
---|
| 339 | /// that you can specify a default value for the keys that are not |
---|
| 340 | /// stored actually. This value can be different from the default |
---|
| 341 | /// contructed value (i.e. \c %Value()). |
---|
| 342 | /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
---|
| 343 | /// concept. |
---|
| 344 | /// |
---|
| 345 | /// This map is useful if a default value should be assigned to most of |
---|
| 346 | /// the keys and different values should be assigned only to a few |
---|
| 347 | /// keys (i.e. the map is "sparse"). |
---|
| 348 | /// The name of this type also refers to this important usage. |
---|
| 349 | /// |
---|
| 350 | /// Apart form that this map can be used in many other cases since it |
---|
| 351 | /// is based on \c std::map, which is a general associative container. |
---|
| 352 | /// However keep in mind that it is usually not as efficient as other |
---|
| 353 | /// maps. |
---|
| 354 | /// |
---|
| 355 | /// The simplest way of using this map is through the sparseMap() |
---|
| 356 | /// function. |
---|
| 357 | template <typename K, typename V, typename Compare = std::less<K> > |
---|
| 358 | class SparseMap : public MapBase<K, V> { |
---|
| 359 | template <typename K1, typename V1, typename C1> |
---|
| 360 | friend class SparseMap; |
---|
| 361 | public: |
---|
| 362 | |
---|
| 363 | typedef MapBase<K, V> Parent; |
---|
| 364 | /// Key type |
---|
| 365 | typedef typename Parent::Key Key; |
---|
| 366 | /// Value type |
---|
| 367 | typedef typename Parent::Value Value; |
---|
| 368 | /// Reference type |
---|
| 369 | typedef Value& Reference; |
---|
| 370 | /// Const reference type |
---|
| 371 | typedef const Value& ConstReference; |
---|
[25] | 372 | |
---|
[45] | 373 | typedef True ReferenceMapTag; |
---|
| 374 | |
---|
[25] | 375 | private: |
---|
[80] | 376 | |
---|
| 377 | typedef std::map<K, V, Compare> Map; |
---|
| 378 | Map _map; |
---|
[25] | 379 | Value _value; |
---|
| 380 | |
---|
| 381 | public: |
---|
| 382 | |
---|
[80] | 383 | /// \brief Constructor with specified default value. |
---|
| 384 | SparseMap(const Value &value = Value()) : _value(value) {} |
---|
| 385 | /// \brief Constructs the map from an appropriate \c std::map, and |
---|
[47] | 386 | /// explicitly specifies a default value. |
---|
[80] | 387 | template <typename V1, typename Comp1> |
---|
| 388 | SparseMap(const std::map<Key, V1, Comp1> &map, |
---|
| 389 | const Value &value = Value()) |
---|
[25] | 390 | : _map(map.begin(), map.end()), _value(value) {} |
---|
[80] | 391 | |
---|
| 392 | /// \brief Constructs the map from another \ref SparseMap. |
---|
| 393 | template<typename V1, typename Comp1> |
---|
| 394 | SparseMap(const SparseMap<Key, V1, Comp1> &c) |
---|
[25] | 395 | : _map(c._map.begin(), c._map.end()), _value(c._value) {} |
---|
| 396 | |
---|
| 397 | private: |
---|
| 398 | |
---|
[80] | 399 | SparseMap& operator=(const SparseMap&); |
---|
[25] | 400 | |
---|
| 401 | public: |
---|
| 402 | |
---|
| 403 | ///\e |
---|
| 404 | Reference operator[](const Key &k) { |
---|
| 405 | typename Map::iterator it = _map.lower_bound(k); |
---|
| 406 | if (it != _map.end() && !_map.key_comp()(k, it->first)) |
---|
| 407 | return it->second; |
---|
| 408 | else |
---|
| 409 | return _map.insert(it, std::make_pair(k, _value))->second; |
---|
| 410 | } |
---|
| 411 | |
---|
[80] | 412 | ///\e |
---|
[25] | 413 | ConstReference operator[](const Key &k) const { |
---|
| 414 | typename Map::const_iterator it = _map.find(k); |
---|
| 415 | if (it != _map.end()) |
---|
| 416 | return it->second; |
---|
| 417 | else |
---|
| 418 | return _value; |
---|
| 419 | } |
---|
| 420 | |
---|
[80] | 421 | ///\e |
---|
| 422 | void set(const Key &k, const Value &v) { |
---|
[25] | 423 | typename Map::iterator it = _map.lower_bound(k); |
---|
| 424 | if (it != _map.end() && !_map.key_comp()(k, it->first)) |
---|
[80] | 425 | it->second = v; |
---|
[25] | 426 | else |
---|
[80] | 427 | _map.insert(it, std::make_pair(k, v)); |
---|
[25] | 428 | } |
---|
| 429 | |
---|
[80] | 430 | ///\e |
---|
| 431 | void setAll(const Value &v) { |
---|
| 432 | _value = v; |
---|
[25] | 433 | _map.clear(); |
---|
[80] | 434 | } |
---|
| 435 | }; |
---|
[25] | 436 | |
---|
[80] | 437 | /// Returns a \ref SparseMap class |
---|
[45] | 438 | |
---|
[80] | 439 | /// This function just returns a \ref SparseMap class with specified |
---|
| 440 | /// default value. |
---|
| 441 | /// \relates SparseMap |
---|
| 442 | template<typename K, typename V, typename Compare> |
---|
| 443 | inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) { |
---|
| 444 | return SparseMap<K, V, Compare>(value); |
---|
[54] | 445 | } |
---|
[45] | 446 | |
---|
[80] | 447 | template<typename K, typename V> |
---|
| 448 | inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) { |
---|
| 449 | return SparseMap<K, V, std::less<K> >(value); |
---|
[45] | 450 | } |
---|
[25] | 451 | |
---|
[80] | 452 | /// \brief Returns a \ref SparseMap class created from an appropriate |
---|
| 453 | /// \c std::map |
---|
[25] | 454 | |
---|
[80] | 455 | /// This function just returns a \ref SparseMap class created from an |
---|
| 456 | /// appropriate \c std::map. |
---|
| 457 | /// \relates SparseMap |
---|
| 458 | template<typename K, typename V, typename Compare> |
---|
| 459 | inline SparseMap<K, V, Compare> |
---|
| 460 | sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
---|
| 461 | { |
---|
| 462 | return SparseMap<K, V, Compare>(map, value); |
---|
[45] | 463 | } |
---|
[25] | 464 | |
---|
| 465 | /// @} |
---|
| 466 | |
---|
| 467 | /// \addtogroup map_adaptors |
---|
| 468 | /// @{ |
---|
| 469 | |
---|
[80] | 470 | /// Composition of two maps |
---|
| 471 | |
---|
[82] | 472 | /// This \ref concepts::ReadMap "read-only map" returns the |
---|
[80] | 473 | /// composition of two given maps. That is to say, if \c m1 is of |
---|
| 474 | /// type \c M1 and \c m2 is of \c M2, then for |
---|
| 475 | /// \code |
---|
| 476 | /// ComposeMap<M1, M2> cm(m1,m2); |
---|
| 477 | /// \endcode |
---|
| 478 | /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
---|
[25] | 479 | /// |
---|
[80] | 480 | /// The \c Key type of the map is inherited from \c M2 and the |
---|
| 481 | /// \c Value type is from \c M1. |
---|
| 482 | /// \c M2::Value must be convertible to \c M1::Key. |
---|
| 483 | /// |
---|
| 484 | /// The simplest way of using this map is through the composeMap() |
---|
| 485 | /// function. |
---|
| 486 | /// |
---|
| 487 | /// \sa CombineMap |
---|
| 488 | /// |
---|
| 489 | /// \todo Check the requirements. |
---|
| 490 | template <typename M1, typename M2> |
---|
| 491 | class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
---|
| 492 | const M1 &_m1; |
---|
| 493 | const M2 &_m2; |
---|
[25] | 494 | public: |
---|
[80] | 495 | typedef MapBase<typename M2::Key, typename M1::Value> Parent; |
---|
[25] | 496 | typedef typename Parent::Key Key; |
---|
| 497 | typedef typename Parent::Value Value; |
---|
| 498 | |
---|
[80] | 499 | /// Constructor |
---|
| 500 | ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
| 501 | |
---|
[25] | 502 | /// \e |
---|
[80] | 503 | typename MapTraits<M1>::ConstReturnValue |
---|
| 504 | operator[](const Key &k) const { return _m1[_m2[k]]; } |
---|
[25] | 505 | }; |
---|
| 506 | |
---|
[80] | 507 | /// Returns a \ref ComposeMap class |
---|
[25] | 508 | |
---|
[80] | 509 | /// This function just returns a \ref ComposeMap class. |
---|
| 510 | /// |
---|
| 511 | /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
---|
| 512 | /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
---|
| 513 | /// will be equal to <tt>m1[m2[x]]</tt>. |
---|
| 514 | /// |
---|
| 515 | /// \relates ComposeMap |
---|
| 516 | template <typename M1, typename M2> |
---|
| 517 | inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) { |
---|
| 518 | return ComposeMap<M1, M2>(m1, m2); |
---|
[25] | 519 | } |
---|
| 520 | |
---|
[80] | 521 | |
---|
| 522 | /// Combination of two maps using an STL (binary) functor. |
---|
| 523 | |
---|
[82] | 524 | /// This \ref concepts::ReadMap "read-only map" takes two maps and a |
---|
[80] | 525 | /// binary functor and returns the combination of the two given maps |
---|
| 526 | /// using the functor. |
---|
| 527 | /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
---|
| 528 | /// and \c f is of \c F, then for |
---|
| 529 | /// \code |
---|
| 530 | /// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
---|
| 531 | /// \endcode |
---|
| 532 | /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
---|
[26] | 533 | /// |
---|
[80] | 534 | /// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
---|
| 535 | /// must be convertible to \c M2::Key) and the \c Value type is \c V. |
---|
| 536 | /// \c M2::Value and \c M1::Value must be convertible to the |
---|
| 537 | /// corresponding input parameter of \c F and the return type of \c F |
---|
| 538 | /// must be convertible to \c V. |
---|
| 539 | /// |
---|
| 540 | /// The simplest way of using this map is through the combineMap() |
---|
| 541 | /// function. |
---|
| 542 | /// |
---|
| 543 | /// \sa ComposeMap |
---|
| 544 | /// |
---|
| 545 | /// \todo Check the requirements. |
---|
| 546 | template<typename M1, typename M2, typename F, |
---|
| 547 | typename V = typename F::result_type> |
---|
| 548 | class CombineMap : public MapBase<typename M1::Key, V> { |
---|
| 549 | const M1 &_m1; |
---|
| 550 | const M2 &_m2; |
---|
| 551 | F _f; |
---|
[25] | 552 | public: |
---|
[80] | 553 | typedef MapBase<typename M1::Key, V> Parent; |
---|
[25] | 554 | typedef typename Parent::Key Key; |
---|
| 555 | typedef typename Parent::Value Value; |
---|
| 556 | |
---|
[80] | 557 | /// Constructor |
---|
| 558 | CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
---|
| 559 | : _m1(m1), _m2(m2), _f(f) {} |
---|
| 560 | /// \e |
---|
| 561 | Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); } |
---|
| 562 | }; |
---|
[25] | 563 | |
---|
[80] | 564 | /// Returns a \ref CombineMap class |
---|
[25] | 565 | |
---|
[80] | 566 | /// This function just returns a \ref CombineMap class. |
---|
| 567 | /// |
---|
| 568 | /// For example, if \c m1 and \c m2 are both maps with \c double |
---|
| 569 | /// values, then |
---|
| 570 | /// \code |
---|
| 571 | /// combineMap(m1,m2,std::plus<double>()) |
---|
| 572 | /// \endcode |
---|
| 573 | /// is equivalent to |
---|
| 574 | /// \code |
---|
| 575 | /// addMap(m1,m2) |
---|
| 576 | /// \endcode |
---|
| 577 | /// |
---|
| 578 | /// This function is specialized for adaptable binary function |
---|
| 579 | /// classes and C++ functions. |
---|
| 580 | /// |
---|
| 581 | /// \relates CombineMap |
---|
| 582 | template<typename M1, typename M2, typename F, typename V> |
---|
| 583 | inline CombineMap<M1, M2, F, V> |
---|
| 584 | combineMap(const M1 &m1, const M2 &m2, const F &f) { |
---|
| 585 | return CombineMap<M1, M2, F, V>(m1,m2,f); |
---|
[25] | 586 | } |
---|
| 587 | |
---|
[80] | 588 | template<typename M1, typename M2, typename F> |
---|
| 589 | inline CombineMap<M1, M2, F, typename F::result_type> |
---|
| 590 | combineMap(const M1 &m1, const M2 &m2, const F &f) { |
---|
| 591 | return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
---|
| 592 | } |
---|
[25] | 593 | |
---|
[80] | 594 | template<typename M1, typename M2, typename K1, typename K2, typename V> |
---|
| 595 | inline CombineMap<M1, M2, V (*)(K1, K2), V> |
---|
| 596 | combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
---|
| 597 | return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
---|
| 598 | } |
---|
| 599 | |
---|
| 600 | |
---|
| 601 | /// Converts an STL style (unary) functor to a map |
---|
| 602 | |
---|
[82] | 603 | /// This \ref concepts::ReadMap "read-only map" returns the value |
---|
[80] | 604 | /// of a given functor. Actually, it just wraps the functor and |
---|
| 605 | /// provides the \c Key and \c Value typedefs. |
---|
[26] | 606 | /// |
---|
[80] | 607 | /// Template parameters \c K and \c V will become its \c Key and |
---|
| 608 | /// \c Value. In most cases they have to be given explicitly because |
---|
| 609 | /// a functor typically does not provide \c argument_type and |
---|
| 610 | /// \c result_type typedefs. |
---|
| 611 | /// Parameter \c F is the type of the used functor. |
---|
[29] | 612 | /// |
---|
[80] | 613 | /// The simplest way of using this map is through the functorToMap() |
---|
| 614 | /// function. |
---|
| 615 | /// |
---|
| 616 | /// \sa MapToFunctor |
---|
| 617 | template<typename F, |
---|
| 618 | typename K = typename F::argument_type, |
---|
| 619 | typename V = typename F::result_type> |
---|
| 620 | class FunctorToMap : public MapBase<K, V> { |
---|
[123] | 621 | F _f; |
---|
[80] | 622 | public: |
---|
| 623 | typedef MapBase<K, V> Parent; |
---|
| 624 | typedef typename Parent::Key Key; |
---|
| 625 | typedef typename Parent::Value Value; |
---|
[25] | 626 | |
---|
[80] | 627 | /// Constructor |
---|
| 628 | FunctorToMap(const F &f = F()) : _f(f) {} |
---|
| 629 | /// \e |
---|
| 630 | Value operator[](const Key &k) const { return _f(k); } |
---|
| 631 | }; |
---|
| 632 | |
---|
| 633 | /// Returns a \ref FunctorToMap class |
---|
| 634 | |
---|
| 635 | /// This function just returns a \ref FunctorToMap class. |
---|
| 636 | /// |
---|
| 637 | /// This function is specialized for adaptable binary function |
---|
| 638 | /// classes and C++ functions. |
---|
| 639 | /// |
---|
| 640 | /// \relates FunctorToMap |
---|
| 641 | template<typename K, typename V, typename F> |
---|
| 642 | inline FunctorToMap<F, K, V> functorToMap(const F &f) { |
---|
| 643 | return FunctorToMap<F, K, V>(f); |
---|
| 644 | } |
---|
| 645 | |
---|
| 646 | template <typename F> |
---|
| 647 | inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
---|
| 648 | functorToMap(const F &f) |
---|
| 649 | { |
---|
| 650 | return FunctorToMap<F, typename F::argument_type, |
---|
| 651 | typename F::result_type>(f); |
---|
| 652 | } |
---|
| 653 | |
---|
| 654 | template <typename K, typename V> |
---|
| 655 | inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) { |
---|
| 656 | return FunctorToMap<V (*)(K), K, V>(f); |
---|
| 657 | } |
---|
| 658 | |
---|
| 659 | |
---|
| 660 | /// Converts a map to an STL style (unary) functor |
---|
| 661 | |
---|
| 662 | /// This class converts a map to an STL style (unary) functor. |
---|
| 663 | /// That is it provides an <tt>operator()</tt> to read its values. |
---|
| 664 | /// |
---|
| 665 | /// For the sake of convenience it also works as a usual |
---|
| 666 | /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
---|
| 667 | /// and the \c Key and \c Value typedefs also exist. |
---|
| 668 | /// |
---|
| 669 | /// The simplest way of using this map is through the mapToFunctor() |
---|
| 670 | /// function. |
---|
| 671 | /// |
---|
| 672 | ///\sa FunctorToMap |
---|
| 673 | template <typename M> |
---|
| 674 | class MapToFunctor : public MapBase<typename M::Key, typename M::Value> { |
---|
| 675 | const M &_m; |
---|
[25] | 676 | public: |
---|
| 677 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
| 678 | typedef typename Parent::Key Key; |
---|
| 679 | typedef typename Parent::Value Value; |
---|
| 680 | |
---|
[80] | 681 | typedef typename Parent::Key argument_type; |
---|
| 682 | typedef typename Parent::Value result_type; |
---|
| 683 | |
---|
| 684 | /// Constructor |
---|
| 685 | MapToFunctor(const M &m) : _m(m) {} |
---|
| 686 | /// \e |
---|
| 687 | Value operator()(const Key &k) const { return _m[k]; } |
---|
| 688 | /// \e |
---|
| 689 | Value operator[](const Key &k) const { return _m[k]; } |
---|
[25] | 690 | }; |
---|
[45] | 691 | |
---|
[80] | 692 | /// Returns a \ref MapToFunctor class |
---|
| 693 | |
---|
| 694 | /// This function just returns a \ref MapToFunctor class. |
---|
| 695 | /// \relates MapToFunctor |
---|
[45] | 696 | template<typename M> |
---|
[80] | 697 | inline MapToFunctor<M> mapToFunctor(const M &m) { |
---|
| 698 | return MapToFunctor<M>(m); |
---|
[45] | 699 | } |
---|
[25] | 700 | |
---|
| 701 | |
---|
[80] | 702 | /// \brief Map adaptor to convert the \c Value type of a map to |
---|
| 703 | /// another type using the default conversion. |
---|
| 704 | |
---|
| 705 | /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
---|
| 706 | /// "readable map" to another type using the default conversion. |
---|
| 707 | /// The \c Key type of it is inherited from \c M and the \c Value |
---|
| 708 | /// type is \c V. |
---|
| 709 | /// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
---|
[26] | 710 | /// |
---|
[80] | 711 | /// The simplest way of using this map is through the convertMap() |
---|
| 712 | /// function. |
---|
| 713 | template <typename M, typename V> |
---|
| 714 | class ConvertMap : public MapBase<typename M::Key, V> { |
---|
| 715 | const M &_m; |
---|
| 716 | public: |
---|
| 717 | typedef MapBase<typename M::Key, V> Parent; |
---|
| 718 | typedef typename Parent::Key Key; |
---|
| 719 | typedef typename Parent::Value Value; |
---|
| 720 | |
---|
| 721 | /// Constructor |
---|
| 722 | |
---|
| 723 | /// Constructor. |
---|
| 724 | /// \param m The underlying map. |
---|
| 725 | ConvertMap(const M &m) : _m(m) {} |
---|
| 726 | |
---|
| 727 | /// \e |
---|
| 728 | Value operator[](const Key &k) const { return _m[k]; } |
---|
| 729 | }; |
---|
| 730 | |
---|
| 731 | /// Returns a \ref ConvertMap class |
---|
| 732 | |
---|
| 733 | /// This function just returns a \ref ConvertMap class. |
---|
| 734 | /// \relates ConvertMap |
---|
| 735 | template<typename V, typename M> |
---|
| 736 | inline ConvertMap<M, V> convertMap(const M &map) { |
---|
| 737 | return ConvertMap<M, V>(map); |
---|
| 738 | } |
---|
| 739 | |
---|
| 740 | |
---|
| 741 | /// Applies all map setting operations to two maps |
---|
| 742 | |
---|
| 743 | /// This map has two \ref concepts::WriteMap "writable map" parameters |
---|
| 744 | /// and each write request will be passed to both of them. |
---|
| 745 | /// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
---|
| 746 | /// operations will return the corresponding values of \c M1. |
---|
[29] | 747 | /// |
---|
[80] | 748 | /// The \c Key and \c Value types are inherited from \c M1. |
---|
| 749 | /// The \c Key and \c Value of \c M2 must be convertible from those |
---|
| 750 | /// of \c M1. |
---|
| 751 | /// |
---|
| 752 | /// The simplest way of using this map is through the forkMap() |
---|
| 753 | /// function. |
---|
| 754 | template<typename M1, typename M2> |
---|
| 755 | class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
| 756 | M1 &_m1; |
---|
| 757 | M2 &_m2; |
---|
| 758 | public: |
---|
| 759 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
| 760 | typedef typename Parent::Key Key; |
---|
| 761 | typedef typename Parent::Value Value; |
---|
[25] | 762 | |
---|
[80] | 763 | /// Constructor |
---|
| 764 | ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {} |
---|
| 765 | /// Returns the value associated with the given key in the first map. |
---|
| 766 | Value operator[](const Key &k) const { return _m1[k]; } |
---|
| 767 | /// Sets the value associated with the given key in both maps. |
---|
| 768 | void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); } |
---|
| 769 | }; |
---|
| 770 | |
---|
| 771 | /// Returns a \ref ForkMap class |
---|
| 772 | |
---|
| 773 | /// This function just returns a \ref ForkMap class. |
---|
| 774 | /// \relates ForkMap |
---|
| 775 | template <typename M1, typename M2> |
---|
| 776 | inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) { |
---|
| 777 | return ForkMap<M1,M2>(m1,m2); |
---|
| 778 | } |
---|
| 779 | |
---|
| 780 | |
---|
| 781 | /// Sum of two maps |
---|
| 782 | |
---|
[82] | 783 | /// This \ref concepts::ReadMap "read-only map" returns the sum |
---|
[80] | 784 | /// of the values of the two given maps. |
---|
| 785 | /// Its \c Key and \c Value types are inherited from \c M1. |
---|
| 786 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
---|
| 787 | /// \c M1. |
---|
| 788 | /// |
---|
| 789 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
| 790 | /// \code |
---|
| 791 | /// AddMap<M1,M2> am(m1,m2); |
---|
| 792 | /// \endcode |
---|
| 793 | /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
---|
| 794 | /// |
---|
| 795 | /// The simplest way of using this map is through the addMap() |
---|
| 796 | /// function. |
---|
| 797 | /// |
---|
| 798 | /// \sa SubMap, MulMap, DivMap |
---|
| 799 | /// \sa ShiftMap, ShiftWriteMap |
---|
| 800 | template<typename M1, typename M2> |
---|
[25] | 801 | class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
[80] | 802 | const M1 &_m1; |
---|
| 803 | const M2 &_m2; |
---|
[25] | 804 | public: |
---|
| 805 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
| 806 | typedef typename Parent::Key Key; |
---|
| 807 | typedef typename Parent::Value Value; |
---|
| 808 | |
---|
[80] | 809 | /// Constructor |
---|
| 810 | AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
| 811 | /// \e |
---|
| 812 | Value operator[](const Key &k) const { return _m1[k]+_m2[k]; } |
---|
[25] | 813 | }; |
---|
| 814 | |
---|
[80] | 815 | /// Returns an \ref AddMap class |
---|
| 816 | |
---|
| 817 | /// This function just returns an \ref AddMap class. |
---|
[25] | 818 | /// |
---|
[80] | 819 | /// For example, if \c m1 and \c m2 are both maps with \c double |
---|
| 820 | /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
---|
| 821 | /// <tt>m1[x]+m2[x]</tt>. |
---|
| 822 | /// |
---|
| 823 | /// \relates AddMap |
---|
| 824 | template<typename M1, typename M2> |
---|
| 825 | inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) { |
---|
[25] | 826 | return AddMap<M1, M2>(m1,m2); |
---|
| 827 | } |
---|
| 828 | |
---|
| 829 | |
---|
[80] | 830 | /// Difference of two maps |
---|
| 831 | |
---|
[82] | 832 | /// This \ref concepts::ReadMap "read-only map" returns the difference |
---|
[80] | 833 | /// of the values of the two given maps. |
---|
| 834 | /// Its \c Key and \c Value types are inherited from \c M1. |
---|
| 835 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
---|
| 836 | /// \c M1. |
---|
[25] | 837 | /// |
---|
[80] | 838 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
| 839 | /// \code |
---|
| 840 | /// SubMap<M1,M2> sm(m1,m2); |
---|
| 841 | /// \endcode |
---|
| 842 | /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
---|
[29] | 843 | /// |
---|
[80] | 844 | /// The simplest way of using this map is through the subMap() |
---|
| 845 | /// function. |
---|
| 846 | /// |
---|
| 847 | /// \sa AddMap, MulMap, DivMap |
---|
| 848 | template<typename M1, typename M2> |
---|
| 849 | class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
| 850 | const M1 &_m1; |
---|
| 851 | const M2 &_m2; |
---|
| 852 | public: |
---|
| 853 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
| 854 | typedef typename Parent::Key Key; |
---|
| 855 | typedef typename Parent::Value Value; |
---|
| 856 | |
---|
| 857 | /// Constructor |
---|
| 858 | SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
| 859 | /// \e |
---|
| 860 | Value operator[](const Key &k) const { return _m1[k]-_m2[k]; } |
---|
| 861 | }; |
---|
| 862 | |
---|
| 863 | /// Returns a \ref SubMap class |
---|
| 864 | |
---|
| 865 | /// This function just returns a \ref SubMap class. |
---|
| 866 | /// |
---|
| 867 | /// For example, if \c m1 and \c m2 are both maps with \c double |
---|
| 868 | /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
---|
| 869 | /// <tt>m1[x]-m2[x]</tt>. |
---|
| 870 | /// |
---|
| 871 | /// \relates SubMap |
---|
| 872 | template<typename M1, typename M2> |
---|
| 873 | inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
---|
| 874 | return SubMap<M1, M2>(m1,m2); |
---|
| 875 | } |
---|
| 876 | |
---|
| 877 | |
---|
| 878 | /// Product of two maps |
---|
| 879 | |
---|
[82] | 880 | /// This \ref concepts::ReadMap "read-only map" returns the product |
---|
[80] | 881 | /// of the values of the two given maps. |
---|
| 882 | /// Its \c Key and \c Value types are inherited from \c M1. |
---|
| 883 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
---|
| 884 | /// \c M1. |
---|
| 885 | /// |
---|
| 886 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
| 887 | /// \code |
---|
| 888 | /// MulMap<M1,M2> mm(m1,m2); |
---|
| 889 | /// \endcode |
---|
| 890 | /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
---|
| 891 | /// |
---|
| 892 | /// The simplest way of using this map is through the mulMap() |
---|
| 893 | /// function. |
---|
| 894 | /// |
---|
| 895 | /// \sa AddMap, SubMap, DivMap |
---|
| 896 | /// \sa ScaleMap, ScaleWriteMap |
---|
| 897 | template<typename M1, typename M2> |
---|
| 898 | class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
| 899 | const M1 &_m1; |
---|
| 900 | const M2 &_m2; |
---|
| 901 | public: |
---|
| 902 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
| 903 | typedef typename Parent::Key Key; |
---|
| 904 | typedef typename Parent::Value Value; |
---|
| 905 | |
---|
| 906 | /// Constructor |
---|
| 907 | MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
| 908 | /// \e |
---|
| 909 | Value operator[](const Key &k) const { return _m1[k]*_m2[k]; } |
---|
| 910 | }; |
---|
| 911 | |
---|
| 912 | /// Returns a \ref MulMap class |
---|
| 913 | |
---|
| 914 | /// This function just returns a \ref MulMap class. |
---|
| 915 | /// |
---|
| 916 | /// For example, if \c m1 and \c m2 are both maps with \c double |
---|
| 917 | /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
---|
| 918 | /// <tt>m1[x]*m2[x]</tt>. |
---|
| 919 | /// |
---|
| 920 | /// \relates MulMap |
---|
| 921 | template<typename M1, typename M2> |
---|
| 922 | inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
---|
| 923 | return MulMap<M1, M2>(m1,m2); |
---|
| 924 | } |
---|
| 925 | |
---|
| 926 | |
---|
| 927 | /// Quotient of two maps |
---|
| 928 | |
---|
[82] | 929 | /// This \ref concepts::ReadMap "read-only map" returns the quotient |
---|
[80] | 930 | /// of the values of the two given maps. |
---|
| 931 | /// Its \c Key and \c Value types are inherited from \c M1. |
---|
| 932 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
---|
| 933 | /// \c M1. |
---|
| 934 | /// |
---|
| 935 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
| 936 | /// \code |
---|
| 937 | /// DivMap<M1,M2> dm(m1,m2); |
---|
| 938 | /// \endcode |
---|
| 939 | /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
---|
| 940 | /// |
---|
| 941 | /// The simplest way of using this map is through the divMap() |
---|
| 942 | /// function. |
---|
| 943 | /// |
---|
| 944 | /// \sa AddMap, SubMap, MulMap |
---|
| 945 | template<typename M1, typename M2> |
---|
| 946 | class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
| 947 | const M1 &_m1; |
---|
| 948 | const M2 &_m2; |
---|
| 949 | public: |
---|
| 950 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
| 951 | typedef typename Parent::Key Key; |
---|
| 952 | typedef typename Parent::Value Value; |
---|
| 953 | |
---|
| 954 | /// Constructor |
---|
| 955 | DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
| 956 | /// \e |
---|
| 957 | Value operator[](const Key &k) const { return _m1[k]/_m2[k]; } |
---|
| 958 | }; |
---|
| 959 | |
---|
| 960 | /// Returns a \ref DivMap class |
---|
| 961 | |
---|
| 962 | /// This function just returns a \ref DivMap class. |
---|
| 963 | /// |
---|
| 964 | /// For example, if \c m1 and \c m2 are both maps with \c double |
---|
| 965 | /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
---|
| 966 | /// <tt>m1[x]/m2[x]</tt>. |
---|
| 967 | /// |
---|
| 968 | /// \relates DivMap |
---|
| 969 | template<typename M1, typename M2> |
---|
| 970 | inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
---|
| 971 | return DivMap<M1, M2>(m1,m2); |
---|
| 972 | } |
---|
| 973 | |
---|
| 974 | |
---|
| 975 | /// Shifts a map with a constant. |
---|
| 976 | |
---|
[82] | 977 | /// This \ref concepts::ReadMap "read-only map" returns the sum of |
---|
[80] | 978 | /// the given map and a constant value (i.e. it shifts the map with |
---|
| 979 | /// the constant). Its \c Key and \c Value are inherited from \c M. |
---|
| 980 | /// |
---|
| 981 | /// Actually, |
---|
| 982 | /// \code |
---|
| 983 | /// ShiftMap<M> sh(m,v); |
---|
| 984 | /// \endcode |
---|
| 985 | /// is equivalent to |
---|
| 986 | /// \code |
---|
| 987 | /// ConstMap<M::Key, M::Value> cm(v); |
---|
| 988 | /// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
---|
| 989 | /// \endcode |
---|
| 990 | /// |
---|
| 991 | /// The simplest way of using this map is through the shiftMap() |
---|
| 992 | /// function. |
---|
| 993 | /// |
---|
| 994 | /// \sa ShiftWriteMap |
---|
| 995 | template<typename M, typename C = typename M::Value> |
---|
[25] | 996 | class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
---|
[80] | 997 | const M &_m; |
---|
| 998 | C _v; |
---|
[25] | 999 | public: |
---|
| 1000 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
| 1001 | typedef typename Parent::Key Key; |
---|
| 1002 | typedef typename Parent::Value Value; |
---|
| 1003 | |
---|
[80] | 1004 | /// Constructor |
---|
[25] | 1005 | |
---|
[80] | 1006 | /// Constructor. |
---|
| 1007 | /// \param m The undelying map. |
---|
| 1008 | /// \param v The constant value. |
---|
| 1009 | ShiftMap(const M &m, const C &v) : _m(m), _v(v) {} |
---|
| 1010 | /// \e |
---|
| 1011 | Value operator[](const Key &k) const { return _m[k]+_v; } |
---|
[25] | 1012 | }; |
---|
| 1013 | |
---|
[80] | 1014 | /// Shifts a map with a constant (read-write version). |
---|
[25] | 1015 | |
---|
[80] | 1016 | /// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
---|
| 1017 | /// of the given map and a constant value (i.e. it shifts the map with |
---|
| 1018 | /// the constant). Its \c Key and \c Value are inherited from \c M. |
---|
| 1019 | /// It makes also possible to write the map. |
---|
[25] | 1020 | /// |
---|
[80] | 1021 | /// The simplest way of using this map is through the shiftWriteMap() |
---|
| 1022 | /// function. |
---|
| 1023 | /// |
---|
| 1024 | /// \sa ShiftMap |
---|
| 1025 | template<typename M, typename C = typename M::Value> |
---|
[25] | 1026 | class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> { |
---|
[80] | 1027 | M &_m; |
---|
| 1028 | C _v; |
---|
[25] | 1029 | public: |
---|
| 1030 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
| 1031 | typedef typename Parent::Key Key; |
---|
| 1032 | typedef typename Parent::Value Value; |
---|
| 1033 | |
---|
[80] | 1034 | /// Constructor |
---|
[25] | 1035 | |
---|
[80] | 1036 | /// Constructor. |
---|
| 1037 | /// \param m The undelying map. |
---|
| 1038 | /// \param v The constant value. |
---|
| 1039 | ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
---|
[25] | 1040 | /// \e |
---|
[80] | 1041 | Value operator[](const Key &k) const { return _m[k]+_v; } |
---|
[25] | 1042 | /// \e |
---|
[80] | 1043 | void set(const Key &k, const Value &v) { _m.set(k, v-_v); } |
---|
[25] | 1044 | }; |
---|
| 1045 | |
---|
[80] | 1046 | /// Returns a \ref ShiftMap class |
---|
| 1047 | |
---|
| 1048 | /// This function just returns a \ref ShiftMap class. |
---|
| 1049 | /// |
---|
| 1050 | /// For example, if \c m is a map with \c double values and \c v is |
---|
| 1051 | /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
---|
| 1052 | /// <tt>m[x]+v</tt>. |
---|
| 1053 | /// |
---|
| 1054 | /// \relates ShiftMap |
---|
| 1055 | template<typename M, typename C> |
---|
| 1056 | inline ShiftMap<M, C> shiftMap(const M &m, const C &v) { |
---|
[25] | 1057 | return ShiftMap<M, C>(m,v); |
---|
| 1058 | } |
---|
| 1059 | |
---|
[80] | 1060 | /// Returns a \ref ShiftWriteMap class |
---|
[29] | 1061 | |
---|
[80] | 1062 | /// This function just returns a \ref ShiftWriteMap class. |
---|
| 1063 | /// |
---|
| 1064 | /// For example, if \c m is a map with \c double values and \c v is |
---|
| 1065 | /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
---|
| 1066 | /// <tt>m[x]+v</tt>. |
---|
| 1067 | /// Moreover it makes also possible to write the map. |
---|
| 1068 | /// |
---|
| 1069 | /// \relates ShiftWriteMap |
---|
| 1070 | template<typename M, typename C> |
---|
| 1071 | inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) { |
---|
[25] | 1072 | return ShiftWriteMap<M, C>(m,v); |
---|
| 1073 | } |
---|
| 1074 | |
---|
| 1075 | |
---|
[80] | 1076 | /// Scales a map with a constant. |
---|
| 1077 | |
---|
[82] | 1078 | /// This \ref concepts::ReadMap "read-only map" returns the value of |
---|
[80] | 1079 | /// the given map multiplied from the left side with a constant value. |
---|
| 1080 | /// Its \c Key and \c Value are inherited from \c M. |
---|
[26] | 1081 | /// |
---|
[80] | 1082 | /// Actually, |
---|
| 1083 | /// \code |
---|
| 1084 | /// ScaleMap<M> sc(m,v); |
---|
| 1085 | /// \endcode |
---|
| 1086 | /// is equivalent to |
---|
| 1087 | /// \code |
---|
| 1088 | /// ConstMap<M::Key, M::Value> cm(v); |
---|
| 1089 | /// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
---|
| 1090 | /// \endcode |
---|
[25] | 1091 | /// |
---|
[80] | 1092 | /// The simplest way of using this map is through the scaleMap() |
---|
| 1093 | /// function. |
---|
[25] | 1094 | /// |
---|
[80] | 1095 | /// \sa ScaleWriteMap |
---|
| 1096 | template<typename M, typename C = typename M::Value> |
---|
[25] | 1097 | class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
---|
[80] | 1098 | const M &_m; |
---|
| 1099 | C _v; |
---|
[25] | 1100 | public: |
---|
| 1101 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
| 1102 | typedef typename Parent::Key Key; |
---|
| 1103 | typedef typename Parent::Value Value; |
---|
| 1104 | |
---|
[80] | 1105 | /// Constructor |
---|
[25] | 1106 | |
---|
[80] | 1107 | /// Constructor. |
---|
| 1108 | /// \param m The undelying map. |
---|
| 1109 | /// \param v The constant value. |
---|
| 1110 | ScaleMap(const M &m, const C &v) : _m(m), _v(v) {} |
---|
[25] | 1111 | /// \e |
---|
[80] | 1112 | Value operator[](const Key &k) const { return _v*_m[k]; } |
---|
[25] | 1113 | }; |
---|
| 1114 | |
---|
[80] | 1115 | /// Scales a map with a constant (read-write version). |
---|
[25] | 1116 | |
---|
[80] | 1117 | /// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
---|
| 1118 | /// the given map multiplied from the left side with a constant value. |
---|
| 1119 | /// Its \c Key and \c Value are inherited from \c M. |
---|
| 1120 | /// It can also be used as write map if the \c / operator is defined |
---|
| 1121 | /// between \c Value and \c C and the given multiplier is not zero. |
---|
[29] | 1122 | /// |
---|
[80] | 1123 | /// The simplest way of using this map is through the scaleWriteMap() |
---|
| 1124 | /// function. |
---|
| 1125 | /// |
---|
| 1126 | /// \sa ScaleMap |
---|
| 1127 | template<typename M, typename C = typename M::Value> |
---|
[25] | 1128 | class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
---|
[80] | 1129 | M &_m; |
---|
| 1130 | C _v; |
---|
[25] | 1131 | public: |
---|
| 1132 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
| 1133 | typedef typename Parent::Key Key; |
---|
| 1134 | typedef typename Parent::Value Value; |
---|
| 1135 | |
---|
[80] | 1136 | /// Constructor |
---|
[25] | 1137 | |
---|
[80] | 1138 | /// Constructor. |
---|
| 1139 | /// \param m The undelying map. |
---|
| 1140 | /// \param v The constant value. |
---|
| 1141 | ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
---|
[25] | 1142 | /// \e |
---|
[80] | 1143 | Value operator[](const Key &k) const { return _v*_m[k]; } |
---|
[25] | 1144 | /// \e |
---|
[80] | 1145 | void set(const Key &k, const Value &v) { _m.set(k, v/_v); } |
---|
[25] | 1146 | }; |
---|
| 1147 | |
---|
[80] | 1148 | /// Returns a \ref ScaleMap class |
---|
| 1149 | |
---|
| 1150 | /// This function just returns a \ref ScaleMap class. |
---|
| 1151 | /// |
---|
| 1152 | /// For example, if \c m is a map with \c double values and \c v is |
---|
| 1153 | /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
---|
| 1154 | /// <tt>v*m[x]</tt>. |
---|
| 1155 | /// |
---|
| 1156 | /// \relates ScaleMap |
---|
| 1157 | template<typename M, typename C> |
---|
| 1158 | inline ScaleMap<M, C> scaleMap(const M &m, const C &v) { |
---|
[25] | 1159 | return ScaleMap<M, C>(m,v); |
---|
| 1160 | } |
---|
| 1161 | |
---|
[80] | 1162 | /// Returns a \ref ScaleWriteMap class |
---|
[29] | 1163 | |
---|
[80] | 1164 | /// This function just returns a \ref ScaleWriteMap class. |
---|
| 1165 | /// |
---|
| 1166 | /// For example, if \c m is a map with \c double values and \c v is |
---|
| 1167 | /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
---|
| 1168 | /// <tt>v*m[x]</tt>. |
---|
| 1169 | /// Moreover it makes also possible to write the map. |
---|
| 1170 | /// |
---|
| 1171 | /// \relates ScaleWriteMap |
---|
| 1172 | template<typename M, typename C> |
---|
| 1173 | inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) { |
---|
[25] | 1174 | return ScaleWriteMap<M, C>(m,v); |
---|
| 1175 | } |
---|
| 1176 | |
---|
| 1177 | |
---|
[80] | 1178 | /// Negative of a map |
---|
[25] | 1179 | |
---|
[82] | 1180 | /// This \ref concepts::ReadMap "read-only map" returns the negative |
---|
[80] | 1181 | /// of the values of the given map (using the unary \c - operator). |
---|
| 1182 | /// Its \c Key and \c Value are inherited from \c M. |
---|
[25] | 1183 | /// |
---|
[80] | 1184 | /// If M::Value is \c int, \c double etc., then |
---|
| 1185 | /// \code |
---|
| 1186 | /// NegMap<M> neg(m); |
---|
| 1187 | /// \endcode |
---|
| 1188 | /// is equivalent to |
---|
| 1189 | /// \code |
---|
| 1190 | /// ScaleMap<M> neg(m,-1); |
---|
| 1191 | /// \endcode |
---|
[29] | 1192 | /// |
---|
[80] | 1193 | /// The simplest way of using this map is through the negMap() |
---|
| 1194 | /// function. |
---|
[29] | 1195 | /// |
---|
[80] | 1196 | /// \sa NegWriteMap |
---|
| 1197 | template<typename M> |
---|
[25] | 1198 | class NegMap : public MapBase<typename M::Key, typename M::Value> { |
---|
[80] | 1199 | const M& _m; |
---|
[25] | 1200 | public: |
---|
| 1201 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
| 1202 | typedef typename Parent::Key Key; |
---|
| 1203 | typedef typename Parent::Value Value; |
---|
| 1204 | |
---|
[80] | 1205 | /// Constructor |
---|
| 1206 | NegMap(const M &m) : _m(m) {} |
---|
[25] | 1207 | /// \e |
---|
[80] | 1208 | Value operator[](const Key &k) const { return -_m[k]; } |
---|
[25] | 1209 | }; |
---|
| 1210 | |
---|
[80] | 1211 | /// Negative of a map (read-write version) |
---|
| 1212 | |
---|
| 1213 | /// This \ref concepts::ReadWriteMap "read-write map" returns the |
---|
| 1214 | /// negative of the values of the given map (using the unary \c - |
---|
| 1215 | /// operator). |
---|
| 1216 | /// Its \c Key and \c Value are inherited from \c M. |
---|
| 1217 | /// It makes also possible to write the map. |
---|
| 1218 | /// |
---|
| 1219 | /// If M::Value is \c int, \c double etc., then |
---|
| 1220 | /// \code |
---|
| 1221 | /// NegWriteMap<M> neg(m); |
---|
| 1222 | /// \endcode |
---|
| 1223 | /// is equivalent to |
---|
| 1224 | /// \code |
---|
| 1225 | /// ScaleWriteMap<M> neg(m,-1); |
---|
| 1226 | /// \endcode |
---|
| 1227 | /// |
---|
| 1228 | /// The simplest way of using this map is through the negWriteMap() |
---|
| 1229 | /// function. |
---|
[29] | 1230 | /// |
---|
| 1231 | /// \sa NegMap |
---|
[80] | 1232 | template<typename M> |
---|
[25] | 1233 | class NegWriteMap : public MapBase<typename M::Key, typename M::Value> { |
---|
[80] | 1234 | M &_m; |
---|
[25] | 1235 | public: |
---|
| 1236 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
| 1237 | typedef typename Parent::Key Key; |
---|
| 1238 | typedef typename Parent::Value Value; |
---|
| 1239 | |
---|
[80] | 1240 | /// Constructor |
---|
| 1241 | NegWriteMap(M &m) : _m(m) {} |
---|
[25] | 1242 | /// \e |
---|
[80] | 1243 | Value operator[](const Key &k) const { return -_m[k]; } |
---|
[25] | 1244 | /// \e |
---|
[80] | 1245 | void set(const Key &k, const Value &v) { _m.set(k, -v); } |
---|
[25] | 1246 | }; |
---|
| 1247 | |
---|
[80] | 1248 | /// Returns a \ref NegMap class |
---|
[25] | 1249 | |
---|
[80] | 1250 | /// This function just returns a \ref NegMap class. |
---|
| 1251 | /// |
---|
| 1252 | /// For example, if \c m is a map with \c double values, then |
---|
| 1253 | /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
---|
| 1254 | /// |
---|
| 1255 | /// \relates NegMap |
---|
| 1256 | template <typename M> |
---|
[25] | 1257 | inline NegMap<M> negMap(const M &m) { |
---|
| 1258 | return NegMap<M>(m); |
---|
| 1259 | } |
---|
| 1260 | |
---|
[80] | 1261 | /// Returns a \ref NegWriteMap class |
---|
[29] | 1262 | |
---|
[80] | 1263 | /// This function just returns a \ref NegWriteMap class. |
---|
| 1264 | /// |
---|
| 1265 | /// For example, if \c m is a map with \c double values, then |
---|
| 1266 | /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
---|
| 1267 | /// Moreover it makes also possible to write the map. |
---|
| 1268 | /// |
---|
| 1269 | /// \relates NegWriteMap |
---|
| 1270 | template <typename M> |
---|
| 1271 | inline NegWriteMap<M> negWriteMap(M &m) { |
---|
[25] | 1272 | return NegWriteMap<M>(m); |
---|
| 1273 | } |
---|
| 1274 | |
---|
| 1275 | |
---|
[80] | 1276 | /// Absolute value of a map |
---|
| 1277 | |
---|
[82] | 1278 | /// This \ref concepts::ReadMap "read-only map" returns the absolute |
---|
[80] | 1279 | /// value of the values of the given map. |
---|
| 1280 | /// Its \c Key and \c Value are inherited from \c M. |
---|
| 1281 | /// \c Value must be comparable to \c 0 and the unary \c - |
---|
| 1282 | /// operator must be defined for it, of course. |
---|
| 1283 | /// |
---|
| 1284 | /// The simplest way of using this map is through the absMap() |
---|
| 1285 | /// function. |
---|
| 1286 | template<typename M> |
---|
[25] | 1287 | class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
---|
[80] | 1288 | const M &_m; |
---|
[25] | 1289 | public: |
---|
| 1290 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
| 1291 | typedef typename Parent::Key Key; |
---|
| 1292 | typedef typename Parent::Value Value; |
---|
| 1293 | |
---|
[80] | 1294 | /// Constructor |
---|
| 1295 | AbsMap(const M &m) : _m(m) {} |
---|
[25] | 1296 | /// \e |
---|
[80] | 1297 | Value operator[](const Key &k) const { |
---|
| 1298 | Value tmp = _m[k]; |
---|
[25] | 1299 | return tmp >= 0 ? tmp : -tmp; |
---|
| 1300 | } |
---|
| 1301 | |
---|
| 1302 | }; |
---|
| 1303 | |
---|
[80] | 1304 | /// Returns an \ref AbsMap class |
---|
| 1305 | |
---|
| 1306 | /// This function just returns an \ref AbsMap class. |
---|
| 1307 | /// |
---|
| 1308 | /// For example, if \c m is a map with \c double values, then |
---|
| 1309 | /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
---|
| 1310 | /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
---|
| 1311 | /// negative. |
---|
| 1312 | /// |
---|
| 1313 | /// \relates AbsMap |
---|
| 1314 | template<typename M> |
---|
[25] | 1315 | inline AbsMap<M> absMap(const M &m) { |
---|
| 1316 | return AbsMap<M>(m); |
---|
| 1317 | } |
---|
| 1318 | |
---|
[82] | 1319 | /// @} |
---|
| 1320 | |
---|
| 1321 | // Logical maps and map adaptors: |
---|
| 1322 | |
---|
| 1323 | /// \addtogroup maps |
---|
| 1324 | /// @{ |
---|
| 1325 | |
---|
| 1326 | /// Constant \c true map. |
---|
| 1327 | |
---|
| 1328 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
---|
| 1329 | /// each key. |
---|
| 1330 | /// |
---|
| 1331 | /// Note that |
---|
| 1332 | /// \code |
---|
| 1333 | /// TrueMap<K> tm; |
---|
| 1334 | /// \endcode |
---|
| 1335 | /// is equivalent to |
---|
| 1336 | /// \code |
---|
| 1337 | /// ConstMap<K,bool> tm(true); |
---|
| 1338 | /// \endcode |
---|
| 1339 | /// |
---|
| 1340 | /// \sa FalseMap |
---|
| 1341 | /// \sa ConstMap |
---|
| 1342 | template <typename K> |
---|
| 1343 | class TrueMap : public MapBase<K, bool> { |
---|
| 1344 | public: |
---|
| 1345 | typedef MapBase<K, bool> Parent; |
---|
| 1346 | typedef typename Parent::Key Key; |
---|
| 1347 | typedef typename Parent::Value Value; |
---|
| 1348 | |
---|
| 1349 | /// Gives back \c true. |
---|
| 1350 | Value operator[](const Key&) const { return true; } |
---|
| 1351 | }; |
---|
| 1352 | |
---|
| 1353 | /// Returns a \ref TrueMap class |
---|
| 1354 | |
---|
| 1355 | /// This function just returns a \ref TrueMap class. |
---|
| 1356 | /// \relates TrueMap |
---|
| 1357 | template<typename K> |
---|
| 1358 | inline TrueMap<K> trueMap() { |
---|
| 1359 | return TrueMap<K>(); |
---|
| 1360 | } |
---|
| 1361 | |
---|
| 1362 | |
---|
| 1363 | /// Constant \c false map. |
---|
| 1364 | |
---|
| 1365 | /// This \ref concepts::ReadMap "read-only map" assigns \c false to |
---|
| 1366 | /// each key. |
---|
| 1367 | /// |
---|
| 1368 | /// Note that |
---|
| 1369 | /// \code |
---|
| 1370 | /// FalseMap<K> fm; |
---|
| 1371 | /// \endcode |
---|
| 1372 | /// is equivalent to |
---|
| 1373 | /// \code |
---|
| 1374 | /// ConstMap<K,bool> fm(false); |
---|
| 1375 | /// \endcode |
---|
| 1376 | /// |
---|
| 1377 | /// \sa TrueMap |
---|
| 1378 | /// \sa ConstMap |
---|
| 1379 | template <typename K> |
---|
| 1380 | class FalseMap : public MapBase<K, bool> { |
---|
| 1381 | public: |
---|
| 1382 | typedef MapBase<K, bool> Parent; |
---|
| 1383 | typedef typename Parent::Key Key; |
---|
| 1384 | typedef typename Parent::Value Value; |
---|
| 1385 | |
---|
| 1386 | /// Gives back \c false. |
---|
| 1387 | Value operator[](const Key&) const { return false; } |
---|
| 1388 | }; |
---|
| 1389 | |
---|
| 1390 | /// Returns a \ref FalseMap class |
---|
| 1391 | |
---|
| 1392 | /// This function just returns a \ref FalseMap class. |
---|
| 1393 | /// \relates FalseMap |
---|
| 1394 | template<typename K> |
---|
| 1395 | inline FalseMap<K> falseMap() { |
---|
| 1396 | return FalseMap<K>(); |
---|
| 1397 | } |
---|
| 1398 | |
---|
| 1399 | /// @} |
---|
| 1400 | |
---|
| 1401 | /// \addtogroup map_adaptors |
---|
| 1402 | /// @{ |
---|
| 1403 | |
---|
| 1404 | /// Logical 'and' of two maps |
---|
| 1405 | |
---|
| 1406 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
---|
| 1407 | /// 'and' of the values of the two given maps. |
---|
| 1408 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
---|
| 1409 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
---|
| 1410 | /// |
---|
| 1411 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
| 1412 | /// \code |
---|
| 1413 | /// AndMap<M1,M2> am(m1,m2); |
---|
| 1414 | /// \endcode |
---|
| 1415 | /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
---|
| 1416 | /// |
---|
| 1417 | /// The simplest way of using this map is through the andMap() |
---|
| 1418 | /// function. |
---|
| 1419 | /// |
---|
| 1420 | /// \sa OrMap |
---|
| 1421 | /// \sa NotMap, NotWriteMap |
---|
| 1422 | template<typename M1, typename M2> |
---|
| 1423 | class AndMap : public MapBase<typename M1::Key, bool> { |
---|
| 1424 | const M1 &_m1; |
---|
| 1425 | const M2 &_m2; |
---|
| 1426 | public: |
---|
| 1427 | typedef MapBase<typename M1::Key, bool> Parent; |
---|
| 1428 | typedef typename Parent::Key Key; |
---|
| 1429 | typedef typename Parent::Value Value; |
---|
| 1430 | |
---|
| 1431 | /// Constructor |
---|
| 1432 | AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
| 1433 | /// \e |
---|
| 1434 | Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; } |
---|
| 1435 | }; |
---|
| 1436 | |
---|
| 1437 | /// Returns an \ref AndMap class |
---|
| 1438 | |
---|
| 1439 | /// This function just returns an \ref AndMap class. |
---|
| 1440 | /// |
---|
| 1441 | /// For example, if \c m1 and \c m2 are both maps with \c bool values, |
---|
| 1442 | /// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
---|
| 1443 | /// <tt>m1[x]&&m2[x]</tt>. |
---|
| 1444 | /// |
---|
| 1445 | /// \relates AndMap |
---|
| 1446 | template<typename M1, typename M2> |
---|
| 1447 | inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) { |
---|
| 1448 | return AndMap<M1, M2>(m1,m2); |
---|
| 1449 | } |
---|
| 1450 | |
---|
| 1451 | |
---|
| 1452 | /// Logical 'or' of two maps |
---|
| 1453 | |
---|
| 1454 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
---|
| 1455 | /// 'or' of the values of the two given maps. |
---|
| 1456 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
---|
| 1457 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
---|
| 1458 | /// |
---|
| 1459 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
| 1460 | /// \code |
---|
| 1461 | /// OrMap<M1,M2> om(m1,m2); |
---|
| 1462 | /// \endcode |
---|
| 1463 | /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
---|
| 1464 | /// |
---|
| 1465 | /// The simplest way of using this map is through the orMap() |
---|
| 1466 | /// function. |
---|
| 1467 | /// |
---|
| 1468 | /// \sa AndMap |
---|
| 1469 | /// \sa NotMap, NotWriteMap |
---|
| 1470 | template<typename M1, typename M2> |
---|
| 1471 | class OrMap : public MapBase<typename M1::Key, bool> { |
---|
| 1472 | const M1 &_m1; |
---|
| 1473 | const M2 &_m2; |
---|
| 1474 | public: |
---|
| 1475 | typedef MapBase<typename M1::Key, bool> Parent; |
---|
| 1476 | typedef typename Parent::Key Key; |
---|
| 1477 | typedef typename Parent::Value Value; |
---|
| 1478 | |
---|
| 1479 | /// Constructor |
---|
| 1480 | OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
| 1481 | /// \e |
---|
| 1482 | Value operator[](const Key &k) const { return _m1[k]||_m2[k]; } |
---|
| 1483 | }; |
---|
| 1484 | |
---|
| 1485 | /// Returns an \ref OrMap class |
---|
| 1486 | |
---|
| 1487 | /// This function just returns an \ref OrMap class. |
---|
| 1488 | /// |
---|
| 1489 | /// For example, if \c m1 and \c m2 are both maps with \c bool values, |
---|
| 1490 | /// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
---|
| 1491 | /// <tt>m1[x]||m2[x]</tt>. |
---|
| 1492 | /// |
---|
| 1493 | /// \relates OrMap |
---|
| 1494 | template<typename M1, typename M2> |
---|
| 1495 | inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) { |
---|
| 1496 | return OrMap<M1, M2>(m1,m2); |
---|
| 1497 | } |
---|
| 1498 | |
---|
[25] | 1499 | |
---|
[80] | 1500 | /// Logical 'not' of a map |
---|
| 1501 | |
---|
[82] | 1502 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
---|
[80] | 1503 | /// negation of the values of the given map. |
---|
| 1504 | /// Its \c Key is inherited from \c M and its \c Value is \c bool. |
---|
[25] | 1505 | /// |
---|
[80] | 1506 | /// The simplest way of using this map is through the notMap() |
---|
| 1507 | /// function. |
---|
[25] | 1508 | /// |
---|
[80] | 1509 | /// \sa NotWriteMap |
---|
| 1510 | template <typename M> |
---|
[25] | 1511 | class NotMap : public MapBase<typename M::Key, bool> { |
---|
[80] | 1512 | const M &_m; |
---|
[25] | 1513 | public: |
---|
| 1514 | typedef MapBase<typename M::Key, bool> Parent; |
---|
| 1515 | typedef typename Parent::Key Key; |
---|
| 1516 | typedef typename Parent::Value Value; |
---|
| 1517 | |
---|
| 1518 | /// Constructor |
---|
[80] | 1519 | NotMap(const M &m) : _m(m) {} |
---|
| 1520 | /// \e |
---|
| 1521 | Value operator[](const Key &k) const { return !_m[k]; } |
---|
[25] | 1522 | }; |
---|
| 1523 | |
---|
[80] | 1524 | /// Logical 'not' of a map (read-write version) |
---|
| 1525 | |
---|
| 1526 | /// This \ref concepts::ReadWriteMap "read-write map" returns the |
---|
| 1527 | /// logical negation of the values of the given map. |
---|
| 1528 | /// Its \c Key is inherited from \c M and its \c Value is \c bool. |
---|
| 1529 | /// It makes also possible to write the map. When a value is set, |
---|
| 1530 | /// the opposite value is set to the original map. |
---|
[29] | 1531 | /// |
---|
[80] | 1532 | /// The simplest way of using this map is through the notWriteMap() |
---|
| 1533 | /// function. |
---|
| 1534 | /// |
---|
| 1535 | /// \sa NotMap |
---|
| 1536 | template <typename M> |
---|
[25] | 1537 | class NotWriteMap : public MapBase<typename M::Key, bool> { |
---|
[80] | 1538 | M &_m; |
---|
[25] | 1539 | public: |
---|
| 1540 | typedef MapBase<typename M::Key, bool> Parent; |
---|
| 1541 | typedef typename Parent::Key Key; |
---|
| 1542 | typedef typename Parent::Value Value; |
---|
| 1543 | |
---|
| 1544 | /// Constructor |
---|
[80] | 1545 | NotWriteMap(M &m) : _m(m) {} |
---|
| 1546 | /// \e |
---|
| 1547 | Value operator[](const Key &k) const { return !_m[k]; } |
---|
| 1548 | /// \e |
---|
| 1549 | void set(const Key &k, bool v) { _m.set(k, !v); } |
---|
[25] | 1550 | }; |
---|
[80] | 1551 | |
---|
| 1552 | /// Returns a \ref NotMap class |
---|
| 1553 | |
---|
| 1554 | /// This function just returns a \ref NotMap class. |
---|
| 1555 | /// |
---|
| 1556 | /// For example, if \c m is a map with \c bool values, then |
---|
| 1557 | /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
---|
| 1558 | /// |
---|
| 1559 | /// \relates NotMap |
---|
| 1560 | template <typename M> |
---|
[25] | 1561 | inline NotMap<M> notMap(const M &m) { |
---|
| 1562 | return NotMap<M>(m); |
---|
| 1563 | } |
---|
[80] | 1564 | |
---|
| 1565 | /// Returns a \ref NotWriteMap class |
---|
| 1566 | |
---|
| 1567 | /// This function just returns a \ref NotWriteMap class. |
---|
| 1568 | /// |
---|
| 1569 | /// For example, if \c m is a map with \c bool values, then |
---|
| 1570 | /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
---|
| 1571 | /// Moreover it makes also possible to write the map. |
---|
| 1572 | /// |
---|
| 1573 | /// \relates NotWriteMap |
---|
| 1574 | template <typename M> |
---|
| 1575 | inline NotWriteMap<M> notWriteMap(M &m) { |
---|
[25] | 1576 | return NotWriteMap<M>(m); |
---|
| 1577 | } |
---|
| 1578 | |
---|
[82] | 1579 | |
---|
| 1580 | /// Combination of two maps using the \c == operator |
---|
| 1581 | |
---|
| 1582 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
---|
| 1583 | /// the keys for which the corresponding values of the two maps are |
---|
| 1584 | /// equal. |
---|
| 1585 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
---|
| 1586 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
---|
| 1587 | /// |
---|
| 1588 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
| 1589 | /// \code |
---|
| 1590 | /// EqualMap<M1,M2> em(m1,m2); |
---|
| 1591 | /// \endcode |
---|
| 1592 | /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
---|
| 1593 | /// |
---|
| 1594 | /// The simplest way of using this map is through the equalMap() |
---|
| 1595 | /// function. |
---|
| 1596 | /// |
---|
| 1597 | /// \sa LessMap |
---|
| 1598 | template<typename M1, typename M2> |
---|
| 1599 | class EqualMap : public MapBase<typename M1::Key, bool> { |
---|
| 1600 | const M1 &_m1; |
---|
| 1601 | const M2 &_m2; |
---|
| 1602 | public: |
---|
| 1603 | typedef MapBase<typename M1::Key, bool> Parent; |
---|
| 1604 | typedef typename Parent::Key Key; |
---|
| 1605 | typedef typename Parent::Value Value; |
---|
| 1606 | |
---|
| 1607 | /// Constructor |
---|
| 1608 | EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
| 1609 | /// \e |
---|
| 1610 | Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
---|
| 1611 | }; |
---|
| 1612 | |
---|
| 1613 | /// Returns an \ref EqualMap class |
---|
| 1614 | |
---|
| 1615 | /// This function just returns an \ref EqualMap class. |
---|
| 1616 | /// |
---|
| 1617 | /// For example, if \c m1 and \c m2 are maps with keys and values of |
---|
| 1618 | /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
---|
| 1619 | /// <tt>m1[x]==m2[x]</tt>. |
---|
| 1620 | /// |
---|
| 1621 | /// \relates EqualMap |
---|
| 1622 | template<typename M1, typename M2> |
---|
| 1623 | inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
---|
| 1624 | return EqualMap<M1, M2>(m1,m2); |
---|
| 1625 | } |
---|
| 1626 | |
---|
| 1627 | |
---|
| 1628 | /// Combination of two maps using the \c < operator |
---|
| 1629 | |
---|
| 1630 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
---|
| 1631 | /// the keys for which the corresponding value of the first map is |
---|
| 1632 | /// less then the value of the second map. |
---|
| 1633 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
---|
| 1634 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
---|
| 1635 | /// |
---|
| 1636 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
| 1637 | /// \code |
---|
| 1638 | /// LessMap<M1,M2> lm(m1,m2); |
---|
| 1639 | /// \endcode |
---|
| 1640 | /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
---|
| 1641 | /// |
---|
| 1642 | /// The simplest way of using this map is through the lessMap() |
---|
| 1643 | /// function. |
---|
| 1644 | /// |
---|
| 1645 | /// \sa EqualMap |
---|
| 1646 | template<typename M1, typename M2> |
---|
| 1647 | class LessMap : public MapBase<typename M1::Key, bool> { |
---|
| 1648 | const M1 &_m1; |
---|
| 1649 | const M2 &_m2; |
---|
| 1650 | public: |
---|
| 1651 | typedef MapBase<typename M1::Key, bool> Parent; |
---|
| 1652 | typedef typename Parent::Key Key; |
---|
| 1653 | typedef typename Parent::Value Value; |
---|
| 1654 | |
---|
| 1655 | /// Constructor |
---|
| 1656 | LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
| 1657 | /// \e |
---|
| 1658 | Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
---|
| 1659 | }; |
---|
| 1660 | |
---|
| 1661 | /// Returns an \ref LessMap class |
---|
| 1662 | |
---|
| 1663 | /// This function just returns an \ref LessMap class. |
---|
| 1664 | /// |
---|
| 1665 | /// For example, if \c m1 and \c m2 are maps with keys and values of |
---|
| 1666 | /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
---|
| 1667 | /// <tt>m1[x]<m2[x]</tt>. |
---|
| 1668 | /// |
---|
| 1669 | /// \relates LessMap |
---|
| 1670 | template<typename M1, typename M2> |
---|
| 1671 | inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
---|
| 1672 | return LessMap<M1, M2>(m1,m2); |
---|
| 1673 | } |
---|
| 1674 | |
---|
[104] | 1675 | namespace _maps_bits { |
---|
| 1676 | |
---|
| 1677 | template <typename _Iterator, typename Enable = void> |
---|
| 1678 | struct IteratorTraits { |
---|
| 1679 | typedef typename std::iterator_traits<_Iterator>::value_type Value; |
---|
| 1680 | }; |
---|
| 1681 | |
---|
| 1682 | template <typename _Iterator> |
---|
| 1683 | struct IteratorTraits<_Iterator, |
---|
| 1684 | typename exists<typename _Iterator::container_type>::type> |
---|
| 1685 | { |
---|
| 1686 | typedef typename _Iterator::container_type::value_type Value; |
---|
| 1687 | }; |
---|
| 1688 | |
---|
| 1689 | } |
---|
| 1690 | |
---|
| 1691 | /// \brief Writable bool map for logging each \c true assigned element |
---|
| 1692 | /// |
---|
[159] | 1693 | /// A \ref concepts::WriteMap "writable" bool map for logging |
---|
[104] | 1694 | /// each \c true assigned element, i.e it copies subsequently each |
---|
| 1695 | /// keys set to \c true to the given iterator. |
---|
[159] | 1696 | /// The most important usage of it is storing certain nodes or arcs |
---|
| 1697 | /// that were marked \c true by an algorithm. |
---|
[104] | 1698 | /// |
---|
[159] | 1699 | /// There are several algorithms that provide solutions through bool |
---|
| 1700 | /// maps and most of them assign \c true at most once for each key. |
---|
| 1701 | /// In these cases it is a natural request to store each \c true |
---|
| 1702 | /// assigned elements (in order of the assignment), which can be |
---|
[167] | 1703 | /// easily done with LoggerBoolMap. |
---|
[159] | 1704 | /// |
---|
[167] | 1705 | /// The simplest way of using this map is through the loggerBoolMap() |
---|
[159] | 1706 | /// function. |
---|
| 1707 | /// |
---|
| 1708 | /// \tparam It The type of the iterator. |
---|
| 1709 | /// \tparam Ke The key type of the map. The default value set |
---|
| 1710 | /// according to the iterator type should work in most cases. |
---|
[104] | 1711 | /// |
---|
| 1712 | /// \note The container of the iterator must contain enough space |
---|
[159] | 1713 | /// for the elements or the iterator should be an inserter iterator. |
---|
| 1714 | #ifdef DOXYGEN |
---|
| 1715 | template <typename It, typename Ke> |
---|
| 1716 | #else |
---|
[104] | 1717 | template <typename It, |
---|
| 1718 | typename Ke=typename _maps_bits::IteratorTraits<It>::Value> |
---|
[159] | 1719 | #endif |
---|
[167] | 1720 | class LoggerBoolMap { |
---|
[104] | 1721 | public: |
---|
| 1722 | typedef It Iterator; |
---|
| 1723 | |
---|
| 1724 | typedef Ke Key; |
---|
| 1725 | typedef bool Value; |
---|
| 1726 | |
---|
| 1727 | /// Constructor |
---|
[167] | 1728 | LoggerBoolMap(Iterator it) |
---|
[104] | 1729 | : _begin(it), _end(it) {} |
---|
| 1730 | |
---|
| 1731 | /// Gives back the given iterator set for the first key |
---|
| 1732 | Iterator begin() const { |
---|
| 1733 | return _begin; |
---|
| 1734 | } |
---|
| 1735 | |
---|
| 1736 | /// Gives back the the 'after the last' iterator |
---|
| 1737 | Iterator end() const { |
---|
| 1738 | return _end; |
---|
| 1739 | } |
---|
| 1740 | |
---|
| 1741 | /// The set function of the map |
---|
[159] | 1742 | void set(const Key& key, Value value) { |
---|
[104] | 1743 | if (value) { |
---|
| 1744 | *_end++ = key; |
---|
| 1745 | } |
---|
| 1746 | } |
---|
| 1747 | |
---|
| 1748 | private: |
---|
| 1749 | Iterator _begin; |
---|
[159] | 1750 | Iterator _end; |
---|
[104] | 1751 | }; |
---|
[159] | 1752 | |
---|
[167] | 1753 | /// Returns a \ref LoggerBoolMap class |
---|
[159] | 1754 | |
---|
[167] | 1755 | /// This function just returns a \ref LoggerBoolMap class. |
---|
[159] | 1756 | /// |
---|
| 1757 | /// The most important usage of it is storing certain nodes or arcs |
---|
| 1758 | /// that were marked \c true by an algorithm. |
---|
| 1759 | /// For example it makes easier to store the nodes in the processing |
---|
| 1760 | /// order of Dfs algorithm, as the following examples show. |
---|
| 1761 | /// \code |
---|
| 1762 | /// std::vector<Node> v; |
---|
[167] | 1763 | /// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
---|
[159] | 1764 | /// \endcode |
---|
| 1765 | /// \code |
---|
| 1766 | /// std::vector<Node> v(countNodes(g)); |
---|
[167] | 1767 | /// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); |
---|
[159] | 1768 | /// \endcode |
---|
| 1769 | /// |
---|
| 1770 | /// \note The container of the iterator must contain enough space |
---|
| 1771 | /// for the elements or the iterator should be an inserter iterator. |
---|
| 1772 | /// |
---|
[167] | 1773 | /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
---|
[159] | 1774 | /// it cannot be used when a readable map is needed, for example as |
---|
[167] | 1775 | /// \c ReachedMap for \ref Bfs, \ref Dfs and \ref Dijkstra algorithms. |
---|
[159] | 1776 | /// |
---|
[167] | 1777 | /// \relates LoggerBoolMap |
---|
[159] | 1778 | template<typename Iterator> |
---|
[167] | 1779 | inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
---|
| 1780 | return LoggerBoolMap<Iterator>(it); |
---|
[159] | 1781 | } |
---|
[104] | 1782 | |
---|
[25] | 1783 | /// @} |
---|
| 1784 | } |
---|
| 1785 | |
---|
| 1786 | #endif // LEMON_MAPS_H |
---|