/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2010 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "test_tools.h" using namespace lemon; // Test networks char test_lgf[] = "@nodes\n" "label sup1 sup2 sup3 sup4 sup5 sup6\n" " 1 20 27 0 30 20 30\n" " 2 -4 0 0 0 -8 -3\n" " 3 0 0 0 0 0 0\n" " 4 0 0 0 0 0 0\n" " 5 9 0 0 0 6 11\n" " 6 -6 0 0 0 -5 -6\n" " 7 0 0 0 0 0 0\n" " 8 0 0 0 0 0 3\n" " 9 3 0 0 0 0 0\n" " 10 -2 0 0 0 -7 -2\n" " 11 0 0 0 0 -10 0\n" " 12 -20 -27 0 -30 -30 -20\n" "\n" "@arcs\n" " cost cap low1 low2 low3\n" " 1 2 70 11 0 8 8\n" " 1 3 150 3 0 1 0\n" " 1 4 80 15 0 2 2\n" " 2 8 80 12 0 0 0\n" " 3 5 140 5 0 3 1\n" " 4 6 60 10 0 1 0\n" " 4 7 80 2 0 0 0\n" " 4 8 110 3 0 0 0\n" " 5 7 60 14 0 0 0\n" " 5 11 120 12 0 0 0\n" " 6 3 0 3 0 0 0\n" " 6 9 140 4 0 0 0\n" " 6 10 90 8 0 0 0\n" " 7 1 30 5 0 0 -5\n" " 8 12 60 16 0 4 3\n" " 9 12 50 6 0 0 0\n" "10 12 70 13 0 5 2\n" "10 2 100 7 0 0 0\n" "10 7 60 10 0 0 -3\n" "11 10 20 14 0 6 -20\n" "12 11 30 10 0 0 -10\n" "\n" "@attributes\n" "source 1\n" "target 12\n"; char test_neg1_lgf[] = "@nodes\n" "label sup\n" " 1 100\n" " 2 0\n" " 3 0\n" " 4 -100\n" " 5 0\n" " 6 0\n" " 7 0\n" "@arcs\n" " cost low1 low2\n" "1 2 100 0 0\n" "1 3 30 0 0\n" "2 4 20 0 0\n" "3 4 80 0 0\n" "3 2 50 0 0\n" "5 3 10 0 0\n" "5 6 80 0 1000\n" "6 7 30 0 -1000\n" "7 5 -120 0 0\n"; char test_neg2_lgf[] = "@nodes\n" "label sup\n" " 1 100\n" " 2 -300\n" "@arcs\n" " cost\n" "1 2 -1\n"; // Test data typedef ListDigraph Digraph; DIGRAPH_TYPEDEFS(ListDigraph); Digraph gr; Digraph::ArcMap c(gr), l1(gr), l2(gr), l3(gr), u(gr); Digraph::NodeMap s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr); ConstMap cc(1), cu(std::numeric_limits::max()); Node v, w; Digraph neg1_gr; Digraph::ArcMap neg1_c(neg1_gr), neg1_l1(neg1_gr), neg1_l2(neg1_gr); ConstMap neg1_u1(std::numeric_limits::max()), neg1_u2(5000); Digraph::NodeMap neg1_s(neg1_gr); Digraph neg2_gr; Digraph::ArcMap neg2_c(neg2_gr); ConstMap neg2_l(0), neg2_u(1000); Digraph::NodeMap neg2_s(neg2_gr); enum SupplyType { EQ, GEQ, LEQ }; // Check the interface of an MCF algorithm template class McfClassConcept { public: template struct Constraints { void constraints() { checkConcept(); const Constraints& me = *this; MCF mcf(me.g); const MCF& const_mcf = mcf; b = mcf.reset().resetParams() .lowerMap(me.lower) .upperMap(me.upper) .costMap(me.cost) .supplyMap(me.sup) .stSupply(me.n, me.n, me.k) .run(); c = const_mcf.totalCost(); x = const_mcf.template totalCost(); v = const_mcf.flow(me.a); c = const_mcf.potential(me.n); const_mcf.flowMap(fm); const_mcf.potentialMap(pm); } typedef typename GR::Node Node; typedef typename GR::Arc Arc; typedef concepts::ReadMap NM; typedef concepts::ReadMap VAM; typedef concepts::ReadMap CAM; typedef concepts::WriteMap FlowMap; typedef concepts::WriteMap PotMap; GR g; VAM lower; VAM upper; CAM cost; NM sup; Node n; Arc a; Value k; FlowMap fm; PotMap pm; bool b; double x; typename MCF::Value v; typename MCF::Cost c; }; }; // Check the feasibility of the given flow (primal soluiton) template < typename GR, typename LM, typename UM, typename SM, typename FM > bool checkFlow( const GR& gr, const LM& lower, const UM& upper, const SM& supply, const FM& flow, SupplyType type = EQ ) { TEMPLATE_DIGRAPH_TYPEDEFS(GR); for (ArcIt e(gr); e != INVALID; ++e) { if (flow[e] < lower[e] || flow[e] > upper[e]) return false; } for (NodeIt n(gr); n != INVALID; ++n) { typename SM::Value sum = 0; for (OutArcIt e(gr, n); e != INVALID; ++e) sum += flow[e]; for (InArcIt e(gr, n); e != INVALID; ++e) sum -= flow[e]; bool b = (type == EQ && sum == supply[n]) || (type == GEQ && sum >= supply[n]) || (type == LEQ && sum <= supply[n]); if (!b) return false; } return true; } // Check the feasibility of the given potentials (dual soluiton) // using the "Complementary Slackness" optimality condition template < typename GR, typename LM, typename UM, typename CM, typename SM, typename FM, typename PM > bool checkPotential( const GR& gr, const LM& lower, const UM& upper, const CM& cost, const SM& supply, const FM& flow, const PM& pi, SupplyType type ) { TEMPLATE_DIGRAPH_TYPEDEFS(GR); bool opt = true; for (ArcIt e(gr); opt && e != INVALID; ++e) { typename CM::Value red_cost = cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; opt = red_cost == 0 || (red_cost > 0 && flow[e] == lower[e]) || (red_cost < 0 && flow[e] == upper[e]); } for (NodeIt n(gr); opt && n != INVALID; ++n) { typename SM::Value sum = 0; for (OutArcIt e(gr, n); e != INVALID; ++e) sum += flow[e]; for (InArcIt e(gr, n); e != INVALID; ++e) sum -= flow[e]; if (type != LEQ) { opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0); } else { opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0); } } return opt; } // Check whether the dual cost is equal to the primal cost template < typename GR, typename LM, typename UM, typename CM, typename SM, typename PM > bool checkDualCost( const GR& gr, const LM& lower, const UM& upper, const CM& cost, const SM& supply, const PM& pi, typename CM::Value total ) { TEMPLATE_DIGRAPH_TYPEDEFS(GR); typename CM::Value dual_cost = 0; SM red_supply(gr); for (NodeIt n(gr); n != INVALID; ++n) { red_supply[n] = supply[n]; } for (ArcIt a(gr); a != INVALID; ++a) { if (lower[a] != 0) { dual_cost += lower[a] * cost[a]; red_supply[gr.source(a)] -= lower[a]; red_supply[gr.target(a)] += lower[a]; } } for (NodeIt n(gr); n != INVALID; ++n) { dual_cost -= red_supply[n] * pi[n]; } for (ArcIt a(gr); a != INVALID; ++a) { typename CM::Value red_cost = cost[a] + pi[gr.source(a)] - pi[gr.target(a)]; dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0); } return dual_cost == total; } // Run a minimum cost flow algorithm and check the results template < typename MCF, typename GR, typename LM, typename UM, typename CM, typename SM, typename PT > void checkMcf( const MCF& mcf, PT mcf_result, const GR& gr, const LM& lower, const UM& upper, const CM& cost, const SM& supply, PT result, bool optimal, typename CM::Value total, const std::string &test_id = "", SupplyType type = EQ ) { check(mcf_result == result, "Wrong result " + test_id); if (optimal) { typename GR::template ArcMap flow(gr); typename GR::template NodeMap pi(gr); mcf.flowMap(flow); mcf.potentialMap(pi); check(checkFlow(gr, lower, upper, supply, flow, type), "The flow is not feasible " + test_id); check(mcf.totalCost() == total, "The flow is not optimal " + test_id); check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type), "Wrong potentials " + test_id); check(checkDualCost(gr, lower, upper, cost, supply, pi, total), "Wrong dual cost " + test_id); } } template < typename MCF, typename Param > void runMcfGeqTests( Param param, const std::string &test_str = "", bool full_neg_cost_support = false ) { MCF mcf1(gr), mcf2(neg1_gr), mcf3(neg2_gr); // Basic tests mcf1.upperMap(u).costMap(c).supplyMap(s1); checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s1, mcf1.OPTIMAL, true, 5240, test_str + "-1"); mcf1.stSupply(v, w, 27); checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s2, mcf1.OPTIMAL, true, 7620, test_str + "-2"); mcf1.lowerMap(l2).supplyMap(s1); checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s1, mcf1.OPTIMAL, true, 5970, test_str + "-3"); mcf1.stSupply(v, w, 27); checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s2, mcf1.OPTIMAL, true, 8010, test_str + "-4"); mcf1.resetParams().supplyMap(s1); checkMcf(mcf1, mcf1.run(param), gr, l1, cu, cc, s1, mcf1.OPTIMAL, true, 74, test_str + "-5"); mcf1.lowerMap(l2).stSupply(v, w, 27); checkMcf(mcf1, mcf1.run(param), gr, l2, cu, cc, s2, mcf1.OPTIMAL, true, 94, test_str + "-6"); mcf1.reset(); checkMcf(mcf1, mcf1.run(param), gr, l1, cu, cc, s3, mcf1.OPTIMAL, true, 0, test_str + "-7"); mcf1.lowerMap(l2).upperMap(u); checkMcf(mcf1, mcf1.run(param), gr, l2, u, cc, s3, mcf1.INFEASIBLE, false, 0, test_str + "-8"); mcf1.lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4); checkMcf(mcf1, mcf1.run(param), gr, l3, u, c, s4, mcf1.OPTIMAL, true, 6360, test_str + "-9"); // Tests for the GEQ form mcf1.resetParams().upperMap(u).costMap(c).supplyMap(s5); checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s5, mcf1.OPTIMAL, true, 3530, test_str + "-10", GEQ); mcf1.lowerMap(l2); checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s5, mcf1.OPTIMAL, true, 4540, test_str + "-11", GEQ); mcf1.supplyMap(s6); checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s6, mcf1.INFEASIBLE, false, 0, test_str + "-12", GEQ); // Tests with negative costs mcf2.lowerMap(neg1_l1).costMap(neg1_c).supplyMap(neg1_s); checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l1, neg1_u1, neg1_c, neg1_s, mcf2.UNBOUNDED, false, 0, test_str + "-13"); mcf2.upperMap(neg1_u2); checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l1, neg1_u2, neg1_c, neg1_s, mcf2.OPTIMAL, true, -40000, test_str + "-14"); mcf2.resetParams().lowerMap(neg1_l2).costMap(neg1_c).supplyMap(neg1_s); checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l2, neg1_u1, neg1_c, neg1_s, mcf2.UNBOUNDED, false, 0, test_str + "-15"); mcf3.costMap(neg2_c).supplyMap(neg2_s); if (full_neg_cost_support) { checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s, mcf3.OPTIMAL, true, -300, test_str + "-16", GEQ); } else { checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s, mcf3.UNBOUNDED, false, 0, test_str + "-17", GEQ); } mcf3.upperMap(neg2_u); checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s, mcf3.OPTIMAL, true, -300, test_str + "-18", GEQ); } template < typename MCF, typename Param > void runMcfLeqTests( Param param, const std::string &test_str = "" ) { // Tests for the LEQ form MCF mcf1(gr); mcf1.supplyType(mcf1.LEQ); mcf1.upperMap(u).costMap(c).supplyMap(s6); checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s6, mcf1.OPTIMAL, true, 5080, test_str + "-19", LEQ); mcf1.lowerMap(l2); checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s6, mcf1.OPTIMAL, true, 5930, test_str + "-20", LEQ); mcf1.supplyMap(s5); checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s5, mcf1.INFEASIBLE, false, 0, test_str + "-21", LEQ); } int main() { // Read the test networks std::istringstream input(test_lgf); DigraphReader(gr, input) .arcMap("cost", c) .arcMap("cap", u) .arcMap("low1", l1) .arcMap("low2", l2) .arcMap("low3", l3) .nodeMap("sup1", s1) .nodeMap("sup2", s2) .nodeMap("sup3", s3) .nodeMap("sup4", s4) .nodeMap("sup5", s5) .nodeMap("sup6", s6) .node("source", v) .node("target", w) .run(); std::istringstream neg_inp1(test_neg1_lgf); DigraphReader(neg1_gr, neg_inp1) .arcMap("cost", neg1_c) .arcMap("low1", neg1_l1) .arcMap("low2", neg1_l2) .nodeMap("sup", neg1_s) .run(); std::istringstream neg_inp2(test_neg2_lgf); DigraphReader(neg2_gr, neg_inp2) .arcMap("cost", neg2_c) .nodeMap("sup", neg2_s) .run(); // Check the interface of NetworkSimplex { typedef concepts::Digraph GR; checkConcept< McfClassConcept, NetworkSimplex >(); checkConcept< McfClassConcept, NetworkSimplex >(); checkConcept< McfClassConcept, NetworkSimplex >(); } // Check the interface of CapacityScaling { typedef concepts::Digraph GR; checkConcept< McfClassConcept, CapacityScaling >(); checkConcept< McfClassConcept, CapacityScaling >(); checkConcept< McfClassConcept, CapacityScaling >(); typedef CapacityScaling:: SetHeap > >::Create CAS; checkConcept< McfClassConcept, CAS >(); } // Check the interface of CostScaling { typedef concepts::Digraph GR; checkConcept< McfClassConcept, CostScaling >(); checkConcept< McfClassConcept, CostScaling >(); checkConcept< McfClassConcept, CostScaling >(); typedef CostScaling:: SetLargeCost::Create COS; checkConcept< McfClassConcept, COS >(); } // Check the interface of CycleCanceling { typedef concepts::Digraph GR; checkConcept< McfClassConcept, CycleCanceling >(); checkConcept< McfClassConcept, CycleCanceling >(); checkConcept< McfClassConcept, CycleCanceling >(); } // Test NetworkSimplex { typedef NetworkSimplex MCF; runMcfGeqTests(MCF::FIRST_ELIGIBLE, "NS-FE", true); runMcfLeqTests(MCF::FIRST_ELIGIBLE, "NS-FE"); runMcfGeqTests(MCF::BEST_ELIGIBLE, "NS-BE", true); runMcfLeqTests(MCF::BEST_ELIGIBLE, "NS-BE"); runMcfGeqTests(MCF::BLOCK_SEARCH, "NS-BS", true); runMcfLeqTests(MCF::BLOCK_SEARCH, "NS-BS"); runMcfGeqTests(MCF::CANDIDATE_LIST, "NS-CL", true); runMcfLeqTests(MCF::CANDIDATE_LIST, "NS-CL"); runMcfGeqTests(MCF::ALTERING_LIST, "NS-AL", true); runMcfLeqTests(MCF::ALTERING_LIST, "NS-AL"); } // Test CapacityScaling { typedef CapacityScaling MCF; runMcfGeqTests(0, "SSP"); runMcfGeqTests(2, "CAS"); } // Test CostScaling { typedef CostScaling MCF; runMcfGeqTests(MCF::PUSH, "COS-PR"); runMcfGeqTests(MCF::AUGMENT, "COS-AR"); runMcfGeqTests(MCF::PARTIAL_AUGMENT, "COS-PAR"); } // Test CycleCanceling { typedef CycleCanceling MCF; runMcfGeqTests(MCF::SIMPLE_CYCLE_CANCELING, "SCC"); runMcfGeqTests(MCF::MINIMUM_MEAN_CYCLE_CANCELING, "MMCC"); runMcfGeqTests(MCF::CANCEL_AND_TIGHTEN, "CAT"); } return 0; }