COIN-OR::LEMON - Graph Library

Ignore:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • lemon/network_simplex.h

    r978 r1166  
    4848  /// flow problem.
    4949  ///
    50   /// In general, %NetworkSimplex is the fastest implementation available
    51   /// in LEMON for this problem.
    52   /// Moreover, it supports both directions of the supply/demand inequality
    53   /// constraints. For more information, see \ref SupplyType.
     50  /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
     51  /// implementations available in LEMON for solving this problem.
     52  /// (For more information, see \ref min_cost_flow_algs "the module page".)
     53  /// Furthermore, this class supports both directions of the supply/demand
     54  /// inequality constraints. For more information, see \ref SupplyType.
    5455  ///
    5556  /// Most of the parameters of the problem (except for the digraph)
     
    6465  /// algorithm. By default, it is the same as \c V.
    6566  ///
    66   /// \warning Both number types must be signed and all input data must
     67  /// \warning Both \c V and \c C must be signed number types.
     68  /// \warning All input data (capacities, supply values, and costs) must
    6769  /// be integer.
    6870  ///
     
    122124    /// the \ref run() function.
    123125    ///
    124     /// \ref NetworkSimplex provides five different pivot rule
    125     /// implementations that significantly affect the running time
     126    /// \ref NetworkSimplex provides five different implementations for
     127    /// the pivot strategy that significantly affects the running time
    126128    /// of the algorithm.
    127     /// By default, \ref BLOCK_SEARCH "Block Search" is used, which
    128     /// proved to be the most efficient and the most robust on various
    129     /// test inputs.
    130     /// However, another pivot rule can be selected using the \ref run()
    131     /// function with the proper parameter.
     129    /// According to experimental tests conducted on various problem
     130    /// instances, \ref BLOCK_SEARCH "Block Search" and
     131    /// \ref ALTERING_LIST "Altering Candidate List" rules turned out
     132    /// to be the most efficient.
     133    /// Since \ref BLOCK_SEARCH "Block Search" is a simpler strategy that
     134    /// seemed to be slightly more robust, it is used by default.
     135    /// However, another pivot rule can easily be selected using the
     136    /// \ref run() function with the proper parameter.
    132137    enum PivotRule {
    133138
     
    155160      /// The \e Altering \e Candidate \e List pivot rule.
    156161      /// It is a modified version of the Candidate List method.
    157       /// It keeps only the several best eligible arcs from the former
     162      /// It keeps only a few of the best eligible arcs from the former
    158163      /// candidate list and extends this list in every iteration.
    159164      ALTERING_LIST
     
    167172    typedef std::vector<Value> ValueVector;
    168173    typedef std::vector<Cost> CostVector;
    169     typedef std::vector<char> BoolVector;
    170     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
     174    typedef std::vector<signed char> CharVector;
     175    // Note: vector<signed char> is used instead of vector<ArcState> and
     176    // vector<ArcDirection> for efficiency reasons
    171177
    172178    // State constants for arcs
     
    177183    };
    178184
    179     typedef std::vector<signed char> StateVector;
    180     // Note: vector<signed char> is used instead of vector<ArcState> for
    181     // efficiency reasons
     185    // Direction constants for tree arcs
     186    enum ArcDirection {
     187      DIR_DOWN = -1,
     188      DIR_UP   =  1
     189    };
    182190
    183191  private:
     
    218226    IntVector _succ_num;
    219227    IntVector _last_succ;
     228    CharVector _pred_dir;
     229    CharVector _state;
    220230    IntVector _dirty_revs;
    221     BoolVector _forward;
    222     StateVector _state;
    223231    int _root;
    224232
    225233    // Temporary data used in the current pivot iteration
    226234    int in_arc, join, u_in, v_in, u_out, v_out;
    227     int first, second, right, last;
    228     int stem, par_stem, new_stem;
    229235    Value delta;
    230236
     
    251257      const IntVector  &_target;
    252258      const CostVector &_cost;
    253       const StateVector &_state;
     259      const CharVector &_state;
    254260      const CostVector &_pi;
    255261      int &_in_arc;
     
    303309      const IntVector  &_target;
    304310      const CostVector &_cost;
    305       const StateVector &_state;
     311      const CharVector &_state;
    306312      const CostVector &_pi;
    307313      int &_in_arc;
     
    342348      const IntVector  &_target;
    343349      const CostVector &_cost;
    344       const StateVector &_state;
     350      const CharVector &_state;
    345351      const CostVector &_pi;
    346352      int &_in_arc;
     
    415421      const IntVector  &_target;
    416422      const CostVector &_cost;
    417       const StateVector &_state;
     423      const CharVector &_state;
    418424      const CostVector &_pi;
    419425      int &_in_arc;
     
    518524      const IntVector  &_target;
    519525      const CostVector &_cost;
    520       const StateVector &_state;
     526      const CharVector &_state;
    521527      const CostVector &_pi;
    522528      int &_in_arc;
     
    537543        SortFunc(const CostVector &map) : _map(map) {}
    538544        bool operator()(int left, int right) {
    539           return _map[left] > _map[right];
     545          return _map[left] < _map[right];
    540546        }
    541547      };
     
    555561        const double BLOCK_SIZE_FACTOR = 1.0;
    556562        const int MIN_BLOCK_SIZE = 10;
    557         const double HEAD_LENGTH_FACTOR = 0.1;
     563        const double HEAD_LENGTH_FACTOR = 0.01;
    558564        const int MIN_HEAD_LENGTH = 3;
    559565
     
    571577        // Check the current candidate list
    572578        int e;
     579        Cost c;
    573580        for (int i = 0; i != _curr_length; ++i) {
    574581          e = _candidates[i];
    575           _cand_cost[e] = _state[e] *
    576             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
    577           if (_cand_cost[e] >= 0) {
     582          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
     583          if (c < 0) {
     584            _cand_cost[e] = c;
     585          } else {
    578586            _candidates[i--] = _candidates[--_curr_length];
    579587          }
     
    585593
    586594        for (e = _next_arc; e != _search_arc_num; ++e) {
    587           _cand_cost[e] = _state[e] *
    588             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
    589           if (_cand_cost[e] < 0) {
     595          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
     596          if (c < 0) {
     597            _cand_cost[e] = c;
    590598            _candidates[_curr_length++] = e;
    591599          }
     
    597605        }
    598606        for (e = 0; e != _next_arc; ++e) {
    599           _cand_cost[e] = _state[e] *
    600             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
    601           if (_cand_cost[e] < 0) {
     607          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
     608          if (c < 0) {
     609            _cand_cost[e] = c;
    602610            _candidates[_curr_length++] = e;
    603611          }
     
    612620      search_end:
    613621
    614         // Make heap of the candidate list (approximating a partial sort)
    615         make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
    616                    _sort_func );
    617 
    618         // Pop the first element of the heap
     622        // Perform partial sort operation on the candidate list
     623        int new_length = std::min(_head_length + 1, _curr_length);
     624        std::partial_sort(_candidates.begin(), _candidates.begin() + new_length,
     625                          _candidates.begin() + _curr_length, _sort_func);
     626
     627        // Select the entering arc and remove it from the list
    619628        _in_arc = _candidates[0];
    620629        _next_arc = e;
    621         pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
    622                   _sort_func );
    623         _curr_length = std::min(_head_length, _curr_length - 1);
     630        _candidates[0] = _candidates[new_length - 1];
     631        _curr_length = new_length - 1;
    624632        return true;
    625633      }
     
    634642    ///
    635643    /// \param graph The digraph the algorithm runs on.
    636     /// \param arc_mixing Indicate if the arcs have to be stored in a
     644    /// \param arc_mixing Indicate if the arcs will be stored in a
    637645    /// mixed order in the internal data structure.
    638     /// In special cases, it could lead to better overall performance,
    639     /// but it is usually slower. Therefore it is disabled by default.
    640     NetworkSimplex(const GR& graph, bool arc_mixing = false) :
     646    /// In general, it leads to similar performance as using the original
     647    /// arc order, but it makes the algorithm more robust and in special
     648    /// cases, even significantly faster. Therefore, it is enabled by default.
     649    NetworkSimplex(const GR& graph, bool arc_mixing = true) :
    641650      _graph(graph), _node_id(graph), _arc_id(graph),
    642651      _arc_mixing(arc_mixing),
     
    731740    ///
    732741    /// \return <tt>(*this)</tt>
     742    ///
     743    /// \sa supplyType()
    733744    template<typename SupplyMap>
    734745    NetworkSimplex& supplyMap(const SupplyMap& map) {
     
    747758    ///
    748759    /// Using this function has the same effect as using \ref supplyMap()
    749     /// with such a map in which \c k is assigned to \c s, \c -k is
     760    /// with a map in which \c k is assigned to \c s, \c -k is
    750761    /// assigned to \c t and all other nodes have zero supply value.
    751762    ///
     
    914925      _parent.resize(all_node_num);
    915926      _pred.resize(all_node_num);
    916       _forward.resize(all_node_num);
     927      _pred_dir.resize(all_node_num);
    917928      _thread.resize(all_node_num);
    918929      _rev_thread.resize(all_node_num);
     
    928939      if (_arc_mixing) {
    929940        // Store the arcs in a mixed order
    930         int k = std::max(int(std::sqrt(double(_arc_num))), 10);
     941        const int skip = std::max(_arc_num / _node_num, 3);
    931942        int i = 0, j = 0;
    932943        for (ArcIt a(_graph); a != INVALID; ++a) {
     
    934945          _source[i] = _node_id[_graph.source(a)];
    935946          _target[i] = _node_id[_graph.target(a)];
    936           if ((i += k) >= _arc_num) i = ++j;
     947          if ((i += skip) >= _arc_num) i = ++j;
    937948        }
    938949      } else {
     
    10001011    }
    10011012
    1002     /// \brief Return the flow map (the primal solution).
     1013    /// \brief Copy the flow values (the primal solution) into the
     1014    /// given map.
    10031015    ///
    10041016    /// This function copies the flow value on each arc into the given
     
    10241036    }
    10251037
    1026     /// \brief Return the potential map (the dual solution).
     1038    /// \brief Copy the potential values (the dual solution) into the
     1039    /// given map.
    10271040    ///
    10281041    /// This function copies the potential (dual value) of each node
     
    11171130          _state[e] = STATE_TREE;
    11181131          if (_supply[u] >= 0) {
    1119             _forward[u] = true;
     1132            _pred_dir[u] = DIR_UP;
    11201133            _pi[u] = 0;
    11211134            _source[e] = u;
     
    11241137            _cost[e] = 0;
    11251138          } else {
    1126             _forward[u] = false;
     1139            _pred_dir[u] = DIR_DOWN;
    11271140            _pi[u] = ART_COST;
    11281141            _source[e] = _root;
     
    11441157          _last_succ[u] = u;
    11451158          if (_supply[u] >= 0) {
    1146             _forward[u] = true;
     1159            _pred_dir[u] = DIR_UP;
    11471160            _pi[u] = 0;
    11481161            _pred[u] = e;
     
    11541167            _state[e] = STATE_TREE;
    11551168          } else {
    1156             _forward[u] = false;
     1169            _pred_dir[u] = DIR_DOWN;
    11571170            _pi[u] = ART_COST;
    11581171            _pred[u] = f;
     
    11851198          _last_succ[u] = u;
    11861199          if (_supply[u] <= 0) {
    1187             _forward[u] = false;
     1200            _pred_dir[u] = DIR_DOWN;
    11881201            _pi[u] = 0;
    11891202            _pred[u] = e;
     
    11951208            _state[e] = STATE_TREE;
    11961209          } else {
    1197             _forward[u] = true;
     1210            _pred_dir[u] = DIR_UP;
    11981211            _pi[u] = -ART_COST;
    11991212            _pred[u] = f;
     
    12381251      // Initialize first and second nodes according to the direction
    12391252      // of the cycle
     1253      int first, second;
    12401254      if (_state[in_arc] == STATE_LOWER) {
    12411255        first  = _source[in_arc];
     
    12471261      delta = _cap[in_arc];
    12481262      int result = 0;
    1249       Value d;
     1263      Value c, d;
    12501264      int e;
    12511265
    1252       // Search the cycle along the path form the first node to the root
     1266      // Search the cycle form the first node to the join node
    12531267      for (int u = first; u != join; u = _parent[u]) {
    12541268        e = _pred[u];
    1255         d = _forward[u] ?
    1256           _flow[e] : (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]);
     1269        d = _flow[e];
     1270        if (_pred_dir[u] == DIR_DOWN) {
     1271          c = _cap[e];
     1272          d = c >= MAX ? INF : c - d;
     1273        }
    12571274        if (d < delta) {
    12581275          delta = d;
     
    12611278        }
    12621279      }
    1263       // Search the cycle along the path form the second node to the root
     1280
     1281      // Search the cycle form the second node to the join node
    12641282      for (int u = second; u != join; u = _parent[u]) {
    12651283        e = _pred[u];
    1266         d = _forward[u] ?
    1267           (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]) : _flow[e];
     1284        d = _flow[e];
     1285        if (_pred_dir[u] == DIR_UP) {
     1286          c = _cap[e];
     1287          d = c >= MAX ? INF : c - d;
     1288        }
    12681289        if (d <= delta) {
    12691290          delta = d;
     
    12901311        _flow[in_arc] += val;
    12911312        for (int u = _source[in_arc]; u != join; u = _parent[u]) {
    1292           _flow[_pred[u]] += _forward[u] ? -val : val;
     1313          _flow[_pred[u]] -= _pred_dir[u] * val;
    12931314        }
    12941315        for (int u = _target[in_arc]; u != join; u = _parent[u]) {
    1295           _flow[_pred[u]] += _forward[u] ? val : -val;
     1316          _flow[_pred[u]] += _pred_dir[u] * val;
    12961317        }
    12971318      }
     
    13081329    // Update the tree structure
    13091330    void updateTreeStructure() {
    1310       int u, w;
    13111331      int old_rev_thread = _rev_thread[u_out];
    13121332      int old_succ_num = _succ_num[u_out];
     
    13141334      v_out = _parent[u_out];
    13151335
    1316       u = _last_succ[u_in];  // the last successor of u_in
    1317       right = _thread[u];    // the node after it
    1318 
    1319       // Handle the case when old_rev_thread equals to v_in
    1320       // (it also means that join and v_out coincide)
    1321       if (old_rev_thread == v_in) {
    1322         last = _thread[_last_succ[u_out]];
     1336      // Check if u_in and u_out coincide
     1337      if (u_in == u_out) {
     1338        // Update _parent, _pred, _pred_dir
     1339        _parent[u_in] = v_in;
     1340        _pred[u_in] = in_arc;
     1341        _pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN;
     1342
     1343        // Update _thread and _rev_thread
     1344        if (_thread[v_in] != u_out) {
     1345          int after = _thread[old_last_succ];
     1346          _thread[old_rev_thread] = after;
     1347          _rev_thread[after] = old_rev_thread;
     1348          after = _thread[v_in];
     1349          _thread[v_in] = u_out;
     1350          _rev_thread[u_out] = v_in;
     1351          _thread[old_last_succ] = after;
     1352          _rev_thread[after] = old_last_succ;
     1353        }
    13231354      } else {
    1324         last = _thread[v_in];
    1325       }
    1326 
    1327       // Update _thread and _parent along the stem nodes (i.e. the nodes
    1328       // between u_in and u_out, whose parent have to be changed)
    1329       _thread[v_in] = stem = u_in;
    1330       _dirty_revs.clear();
    1331       _dirty_revs.push_back(v_in);
    1332       par_stem = v_in;
    1333       while (stem != u_out) {
    1334         // Insert the next stem node into the thread list
    1335         new_stem = _parent[stem];
    1336         _thread[u] = new_stem;
    1337         _dirty_revs.push_back(u);
    1338 
    1339         // Remove the subtree of stem from the thread list
    1340         w = _rev_thread[stem];
    1341         _thread[w] = right;
    1342         _rev_thread[right] = w;
    1343 
    1344         // Change the parent node and shift stem nodes
    1345         _parent[stem] = par_stem;
    1346         par_stem = stem;
    1347         stem = new_stem;
    1348 
    1349         // Update u and right
    1350         u = _last_succ[stem] == _last_succ[par_stem] ?
    1351           _rev_thread[par_stem] : _last_succ[stem];
    1352         right = _thread[u];
    1353       }
    1354       _parent[u_out] = par_stem;
    1355       _thread[u] = last;
    1356       _rev_thread[last] = u;
    1357       _last_succ[u_out] = u;
    1358 
    1359       // Remove the subtree of u_out from the thread list except for
    1360       // the case when old_rev_thread equals to v_in
    1361       // (it also means that join and v_out coincide)
    1362       if (old_rev_thread != v_in) {
    1363         _thread[old_rev_thread] = right;
    1364         _rev_thread[right] = old_rev_thread;
    1365       }
    1366 
    1367       // Update _rev_thread using the new _thread values
    1368       for (int i = 0; i != int(_dirty_revs.size()); ++i) {
    1369         u = _dirty_revs[i];
    1370         _rev_thread[_thread[u]] = u;
    1371       }
    1372 
    1373       // Update _pred, _forward, _last_succ and _succ_num for the
    1374       // stem nodes from u_out to u_in
    1375       int tmp_sc = 0, tmp_ls = _last_succ[u_out];
    1376       u = u_out;
    1377       while (u != u_in) {
    1378         w = _parent[u];
    1379         _pred[u] = _pred[w];
    1380         _forward[u] = !_forward[w];
    1381         tmp_sc += _succ_num[u] - _succ_num[w];
    1382         _succ_num[u] = tmp_sc;
    1383         _last_succ[w] = tmp_ls;
    1384         u = w;
    1385       }
    1386       _pred[u_in] = in_arc;
    1387       _forward[u_in] = (u_in == _source[in_arc]);
    1388       _succ_num[u_in] = old_succ_num;
    1389 
    1390       // Set limits for updating _last_succ form v_in and v_out
    1391       // towards the root
    1392       int up_limit_in = -1;
    1393       int up_limit_out = -1;
    1394       if (_last_succ[join] == v_in) {
    1395         up_limit_out = join;
    1396       } else {
    1397         up_limit_in = join;
     1355        // Handle the case when old_rev_thread equals to v_in
     1356        // (it also means that join and v_out coincide)
     1357        int thread_continue = old_rev_thread == v_in ?
     1358          _thread[old_last_succ] : _thread[v_in];
     1359
     1360        // Update _thread and _parent along the stem nodes (i.e. the nodes
     1361        // between u_in and u_out, whose parent have to be changed)
     1362        int stem = u_in;              // the current stem node
     1363        int par_stem = v_in;          // the new parent of stem
     1364        int next_stem;                // the next stem node
     1365        int last = _last_succ[u_in];  // the last successor of stem
     1366        int before, after = _thread[last];
     1367        _thread[v_in] = u_in;
     1368        _dirty_revs.clear();
     1369        _dirty_revs.push_back(v_in);
     1370        while (stem != u_out) {
     1371          // Insert the next stem node into the thread list
     1372          next_stem = _parent[stem];
     1373          _thread[last] = next_stem;
     1374          _dirty_revs.push_back(last);
     1375
     1376          // Remove the subtree of stem from the thread list
     1377          before = _rev_thread[stem];
     1378          _thread[before] = after;
     1379          _rev_thread[after] = before;
     1380
     1381          // Change the parent node and shift stem nodes
     1382          _parent[stem] = par_stem;
     1383          par_stem = stem;
     1384          stem = next_stem;
     1385
     1386          // Update last and after
     1387          last = _last_succ[stem] == _last_succ[par_stem] ?
     1388            _rev_thread[par_stem] : _last_succ[stem];
     1389          after = _thread[last];
     1390        }
     1391        _parent[u_out] = par_stem;
     1392        _thread[last] = thread_continue;
     1393        _rev_thread[thread_continue] = last;
     1394        _last_succ[u_out] = last;
     1395
     1396        // Remove the subtree of u_out from the thread list except for
     1397        // the case when old_rev_thread equals to v_in
     1398        if (old_rev_thread != v_in) {
     1399          _thread[old_rev_thread] = after;
     1400          _rev_thread[after] = old_rev_thread;
     1401        }
     1402
     1403        // Update _rev_thread using the new _thread values
     1404        for (int i = 0; i != int(_dirty_revs.size()); ++i) {
     1405          int u = _dirty_revs[i];
     1406          _rev_thread[_thread[u]] = u;
     1407        }
     1408
     1409        // Update _pred, _pred_dir, _last_succ and _succ_num for the
     1410        // stem nodes from u_out to u_in
     1411        int tmp_sc = 0, tmp_ls = _last_succ[u_out];
     1412        for (int u = u_out, p = _parent[u]; u != u_in; u = p, p = _parent[u]) {
     1413          _pred[u] = _pred[p];
     1414          _pred_dir[u] = -_pred_dir[p];
     1415          tmp_sc += _succ_num[u] - _succ_num[p];
     1416          _succ_num[u] = tmp_sc;
     1417          _last_succ[p] = tmp_ls;
     1418        }
     1419        _pred[u_in] = in_arc;
     1420        _pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN;
     1421        _succ_num[u_in] = old_succ_num;
    13981422      }
    13991423
    14001424      // Update _last_succ from v_in towards the root
    1401       for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
    1402            u = _parent[u]) {
    1403         _last_succ[u] = _last_succ[u_out];
    1404       }
     1425      int up_limit_out = _last_succ[join] == v_in ? join : -1;
     1426      int last_succ_out = _last_succ[u_out];
     1427      for (int u = v_in; u != -1 && _last_succ[u] == v_in; u = _parent[u]) {
     1428        _last_succ[u] = last_succ_out;
     1429      }
     1430
    14051431      // Update _last_succ from v_out towards the root
    14061432      if (join != old_rev_thread && v_in != old_rev_thread) {
    1407         for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
     1433        for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
    14081434             u = _parent[u]) {
    14091435          _last_succ[u] = old_rev_thread;
    14101436        }
    1411       } else {
    1412         for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
     1437      }
     1438      else if (last_succ_out != old_last_succ) {
     1439        for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
    14131440             u = _parent[u]) {
    1414           _last_succ[u] = _last_succ[u_out];
     1441          _last_succ[u] = last_succ_out;
    14151442        }
    14161443      }
    14171444
    14181445      // Update _succ_num from v_in to join
    1419       for (u = v_in; u != join; u = _parent[u]) {
     1446      for (int u = v_in; u != join; u = _parent[u]) {
    14201447        _succ_num[u] += old_succ_num;
    14211448      }
    14221449      // Update _succ_num from v_out to join
    1423       for (u = v_out; u != join; u = _parent[u]) {
     1450      for (int u = v_out; u != join; u = _parent[u]) {
    14241451        _succ_num[u] -= old_succ_num;
    14251452      }
    14261453    }
    14271454
    1428     // Update potentials
     1455    // Update potentials in the subtree that has been moved
    14291456    void updatePotential() {
    1430       Cost sigma = _forward[u_in] ?
    1431         _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
    1432         _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
    1433       // Update potentials in the subtree, which has been moved
     1457      Cost sigma = _pi[v_in] - _pi[u_in] -
     1458                   _pred_dir[u_in] * _cost[in_arc];
    14341459      int end = _thread[_last_succ[u_in]];
    14351460      for (int u = u_in; u != end; u = _thread[u]) {
Note: See TracChangeset for help on using the changeset viewer.