COIN-OR::LEMON - Graph Library

Changeset 1767:58455e2aa13e in lemon-0.x for lemon/topology.h


Ignore:
Timestamp:
11/04/05 16:52:24 (14 years ago)
Author:
Balazs Dezso
Branch:
default
Phase:
public
Convert:
svn:c9d7d8f5-90d6-0310-b91f-818b3a526b0e/lemon/trunk@2299
Message:

Changed name

File:
1 edited

Legend:

Unmodified
Added
Removed
  • lemon/topology.h

    r1763 r1767  
    697697  /// \ingroup topology
    698698  ///
    699   /// \brief Checks the graph is node biconnected.
    700   ///
    701   /// This function checks that the undirected graph is node biconnected 
    702   /// graph. The graph is node biconnected if any two undirected edge is
     699  /// \brief Checks the graph is bi-node-connected.
     700  ///
     701  /// This function checks that the undirected graph is bi-node-connected 
     702  /// graph. The graph is bi-node-connected if any two undirected edge is
    703703  /// on same circle.
    704704  ///
    705705  /// \param graph The graph.
    706   /// \return %True when the graph node biconnected.
     706  /// \return %True when the graph bi-node-connected.
    707707  /// \todo Make it faster.
    708708  template <typename UndirGraph>
    709   bool nodeBiconnected(const UndirGraph& graph) {
     709  bool biNodeConnected(const UndirGraph& graph) {
    710710    return countNodeBiconnectedComponents(graph) == 1;
    711711  }
     
    715715  /// \brief Count the biconnected components.
    716716  ///
    717   /// This function finds the node biconnected components in an undirected
     717  /// This function finds the bi-node-connected components in an undirected
    718718  /// graph. The biconnected components are the classes of an equivalence
    719719  /// relation on the undirected edges. Two undirected edge is in relationship
     
    748748  /// \ingroup topology
    749749  ///
    750   /// \brief Find the node biconnected components.
    751   ///
    752   /// This function finds the node biconnected components in an undirected
    753   /// graph. The node biconnected components are the classes of an equivalence
     750  /// \brief Find the bi-node-connected components.
     751  ///
     752  /// This function finds the bi-node-connected components in an undirected
     753  /// graph. The bi-node-connected components are the classes of an equivalence
    754754  /// relation on the undirected edges. Two undirected edge are in relationship
    755755  /// when they are on same circle.
    756756  ///
    757757  /// \image html node_biconnected_components.png
    758   /// \image latex node_biconnected_components.eps "Node biconnected components" width=\textwidth
     758  /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
    759759  ///
    760760  /// \param graph The graph.
     
    766766  ///
    767767  template <typename UndirGraph, typename UndirEdgeMap>
    768   int nodeBiconnectedComponents(const UndirGraph& graph,
     768  int biNodeConnectedComponents(const UndirGraph& graph,
    769769                                UndirEdgeMap& compMap) {
    770770    checkConcept<concept::UndirGraph, UndirGraph>();
     
    794794  /// \ingroup topology
    795795  ///
    796   /// \brief Find the node biconnected cut nodes.
    797   ///
    798   /// This function finds the node biconnected cut nodes in an undirected
    799   /// graph. The node biconnected components are the classes of an equivalence
     796  /// \brief Find the bi-node-connected cut nodes.
     797  ///
     798  /// This function finds the bi-node-connected cut nodes in an undirected
     799  /// graph. The bi-node-connected components are the classes of an equivalence
    800800  /// relation on the undirected edges. Two undirected edges are in
    801801  /// relationship when they are on same circle. The biconnected components
     
    807807  /// \return The number of the cut nodes.
    808808  template <typename UndirGraph, typename NodeMap>
    809   int nodeBiconnectedCutNodes(const UndirGraph& graph, NodeMap& cutMap) {
     809  int biNodeConnectedCutNodes(const UndirGraph& graph, NodeMap& cutMap) {
    810810    checkConcept<concept::UndirGraph, UndirGraph>();
    811811    typedef typename UndirGraph::Node Node;
     
    10241024  /// \ingroup topology
    10251025  ///
    1026   /// \brief Checks that the graph is edge biconnected.
    1027   ///
    1028   /// This function checks that the graph is edge biconnected. The undirected
    1029   /// graph is edge biconnected when any two nodes are connected with two
     1026  /// \brief Checks that the graph is bi-edge-connected.
     1027  ///
     1028  /// This function checks that the graph is bi-edge-connected. The undirected
     1029  /// graph is bi-edge-connected when any two nodes are connected with two
    10301030  /// edge-disjoint paths.
    10311031  ///
     
    10341034  /// \todo Make it faster.
    10351035  template <typename UndirGraph>
    1036   bool edgeBiconnected(const UndirGraph& graph) {
     1036  bool biEdgeConnected(const UndirGraph& graph) {
    10371037    return countEdgeBiconnectedComponents(graph) == 1;
    10381038  }
     
    10401040  /// \ingroup topology
    10411041  ///
    1042   /// \brief Count the edge biconnected components.
    1043   ///
    1044   /// This function count the edge biconnected components in an undirected
    1045   /// graph. The edge biconnected components are the classes of an equivalence
     1042  /// \brief Count the bi-edge-connected components.
     1043  ///
     1044  /// This function count the bi-edge-connected components in an undirected
     1045  /// graph. The bi-edge-connected components are the classes of an equivalence
    10461046  /// relation on the nodes. Two nodes are in relationship when they are 
    10471047  /// connected with at least two edge-disjoint paths.
     
    10751075  /// \ingroup topology
    10761076  ///
    1077   /// \brief Find the edge biconnected components.
    1078   ///
    1079   /// This function finds the edge biconnected components in an undirected
    1080   /// graph. The edge biconnected components are the classes of an equivalence
     1077  /// \brief Find the bi-edge-connected components.
     1078  ///
     1079  /// This function finds the bi-edge-connected components in an undirected
     1080  /// graph. The bi-edge-connected components are the classes of an equivalence
    10811081  /// relation on the nodes. Two nodes are in relationship when they are 
    10821082  /// connected at least two edge-disjoint paths.
    10831083  ///
    10841084  /// \image html edge_biconnected_components.png
    1085   /// \image latex edge_biconnected_components.eps "Edge biconnected components" width=\textwidth
     1085  /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
    10861086  ///
    10871087  /// \param graph The graph.
     
    10931093  ///
    10941094  template <typename UndirGraph, typename NodeMap>
    1095   int edgeBiconnectedComponents(const UndirGraph& graph, NodeMap& compMap) {
     1095  int biEdgeConnectedComponents(const UndirGraph& graph, NodeMap& compMap) {
    10961096    checkConcept<concept::UndirGraph, UndirGraph>();
    10971097    typedef typename UndirGraph::NodeIt NodeIt;
     
    11201120  /// \ingroup topology
    11211121  ///
    1122   /// \brief Find the edge biconnected cut edges.
    1123   ///
    1124   /// This function finds the edge biconnected components in an undirected
    1125   /// graph. The edge biconnected components are the classes of an equivalence
     1122  /// \brief Find the bi-edge-connected cut edges.
     1123  ///
     1124  /// This function finds the bi-edge-connected components in an undirected
     1125  /// graph. The bi-edge-connected components are the classes of an equivalence
    11261126  /// relation on the nodes. Two nodes are in relationship when they are
    1127   /// connected with at least two edge-disjoint paths. The edge biconnected
     1127  /// connected with at least two edge-disjoint paths. The bi-edge-connected
    11281128  /// components are separted by edges which are the cut edges of the
    11291129  /// components.
     
    11341134  /// \return The number of cut edges.
    11351135  template <typename UndirGraph, typename UndirEdgeMap>
    1136   int edgeBiconnectedCutEdges(const UndirGraph& graph, UndirEdgeMap& cutMap) {
     1136  int biEdgeConnectedCutEdges(const UndirGraph& graph, UndirEdgeMap& cutMap) {
    11371137    checkConcept<concept::UndirGraph, UndirGraph>();
    11381138    typedef typename UndirGraph::NodeIt NodeIt;
Note: See TracChangeset for help on using the changeset viewer.