Changeset 835:c92296660262 in lemon for doc

Ignore:
Timestamp:
11/18/09 14:38:02 (10 years ago)
Branch:
default
Parents:
834:c2230649a493 (diff), 833:e20173729589 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Phase:
public
Message:

Merge

Files:
2 edited

Legend:

Unmodified
 r833 minimum total cost from a set of supply nodes to a set of demand nodes in a network with capacity constraints (lower and upper bounds) and arc costs. and arc costs \ref amo93networkflows. Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
 r802 - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. - For all \f$u\in V\f$ nodes: - \f$\pi(u)<=0\f$; - \f$\pi(u)\leq 0\f$; - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, then \f$\pi(u)=0\f$. - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. - For all \f$u\in V\f$ nodes: - \f$\pi(u)>=0\f$; - \f$\pi(u)\geq 0\f$; - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, then \f$\pi(u)=0\f$.