COIN-OR::LEMON - Graph Library

Ignore:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/groups.dox

    r879 r959  
    33 * This file is a part of LEMON, a generic C++ optimization library.
    44 *
    5  * Copyright (C) 2003-2009
     5 * Copyright (C) 2003-2010
    66 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    77 * (Egervary Research Group on Combinatorial Optimization, EGRES).
     
    264264
    265265/**
    266 @defgroup matrices Matrices
    267 @ingroup datas
    268 \brief Two dimensional data storages implemented in LEMON.
    269 
    270 This group contains two dimensional data storages implemented in LEMON.
    271 */
    272 
    273 /**
    274266@defgroup auxdat Auxiliary Data Structures
    275267@ingroup datas
     
    387379problem of maximum flow.
    388380
    389 \ref Circulation is a preflow push-relabel algorithm implemented directly 
     381\ref Circulation is a preflow push-relabel algorithm implemented directly
    390382for finding feasible circulations, which is a somewhat different problem,
    391383but it is strongly related to maximum flow.
     
    473465
    474466LEMON contains three algorithms for solving the minimum mean cycle problem:
    475 - \ref Karp "Karp"'s original algorithm \ref amo93networkflows,
     467- \ref KarpMmc Karp's original algorithm \ref amo93networkflows,
    476468  \ref dasdan98minmeancycle.
    477 - \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved
     469- \ref HartmannOrlinMmc Hartmann-Orlin's algorithm, which is an improved
    478470  version of Karp's algorithm \ref dasdan98minmeancycle.
    479 - \ref Howard "Howard"'s policy iteration algorithm
     471- \ref HowardMmc Howard's policy iteration algorithm
    480472  \ref dasdan98minmeancycle.
    481473
    482 In practice, the Howard algorithm proved to be by far the most efficient
    483 one, though the best known theoretical bound on its running time is
    484 exponential.
    485 Both Karp and HartmannOrlin algorithms run in time O(ne) and use space
    486 O(n<sup>2</sup>+e), but the latter one is typically faster due to the
    487 applied early termination scheme.
     474In practice, the \ref HowardMmc "Howard" algorithm proved to be by far the
     475most efficient one, though the best known theoretical bound on its running
     476time is exponential.
     477Both \ref KarpMmc "Karp" and \ref HartmannOrlinMmc "Hartmann-Orlin" algorithms
     478run in time O(ne) and use space O(n<sup>2</sup>+e), but the latter one is
     479typically faster due to the applied early termination scheme.
    488480*/
    489481
     
    523515  Edmond's blossom shrinking algorithm for calculating maximum weighted
    524516  perfect matching in general graphs.
    525 
    526 \image html bipartite_matching.png
    527 \image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
     517- \ref MaxFractionalMatching Push-relabel algorithm for calculating
     518  maximum cardinality fractional matching in general graphs.
     519- \ref MaxWeightedFractionalMatching Augmenting path algorithm for calculating
     520  maximum weighted fractional matching in general graphs.
     521- \ref MaxWeightedPerfectFractionalMatching
     522  Augmenting path algorithm for calculating maximum weighted
     523  perfect fractional matching in general graphs.
     524
     525\image html matching.png
     526\image latex matching.eps "Min Cost Perfect Matching" width=\textwidth
    528527*/
    529528
Note: See TracChangeset for help on using the changeset viewer.