COIN-OR::LEMON - Graph Library

Changeset 730:9f529abcaebf in lemon for lemon/fib_heap.h


Ignore:
Timestamp:
06/11/09 23:13:24 (15 years ago)
Author:
Balazs Dezso <deba@…>
Branch:
default
Children:
733:7439dc5fe1b9, 738:9e54e3b27db0, 740:7bda7860e0a8, 743:c9b9da1a90a0, 748:d1a9224f1e30, 756:0747f332c478, 760:4ac30454f1c1, 765:703ebf476a1d, 805:b31e130db13d
Phase:
public
Message:

Unification of names in heaps (#50)

File:
1 edited

Legend:

Unmodified
Added
Removed
  • lemon/fib_heap.h

    r728 r730  
    3737  ///is a data structure for storing items with specified values called \e
    3838  ///priorities in such a way that finding the item with minimum priority is
    39   ///efficient. \c Compare specifies the ordering of the priorities. In a heap
     39  ///efficient. \c CMP specifies the ordering of the priorities. In a heap
    4040  ///one can change the priority of an item, add or erase an item, etc.
    4141  ///
     
    4444  ///\ref BinHeap "binary heap".
    4545  ///
    46   ///\param _Prio Type of the priority of the items.
    47   ///\param _ItemIntMap A read and writable Item int map, used internally
     46  ///\param PRIO Type of the priority of the items.
     47  ///\param IM A read and writable Item int map, used internally
    4848  ///to handle the cross references.
    49   ///\param _Compare A class for the ordering of the priorities. The
    50   ///default is \c std::less<_Prio>.
     49  ///\param CMP A class for the ordering of the priorities. The
     50  ///default is \c std::less<PRIO>.
    5151  ///
    5252  ///\sa BinHeap
    5353  ///\sa Dijkstra
    5454#ifdef DOXYGEN
    55   template <typename _Prio,
    56             typename _ItemIntMap,
    57             typename _Compare>
     55  template <typename PRIO, typename IM, typename CMP>
    5856#else
    59   template <typename _Prio,
    60             typename _ItemIntMap,
    61             typename _Compare = std::less<_Prio> >
     57  template <typename PRIO, typename IM, typename CMP = std::less<PRIO> >
    6258#endif
    6359  class FibHeap {
    6460  public:
    6561    ///\e
    66     typedef _ItemIntMap ItemIntMap;
     62    typedef IM ItemIntMap;
    6763    ///\e
    68     typedef _Prio Prio;
     64    typedef PRIO Prio;
    6965    ///\e
    7066    typedef typename ItemIntMap::Key Item;
     
    7268    typedef std::pair<Item,Prio> Pair;
    7369    ///\e
    74     typedef _Compare Compare;
     70    typedef CMP Compare;
    7571
    7672  private:
    77     class store;
    78 
    79     std::vector<store> container;
    80     int minimum;
    81     ItemIntMap &iimap;
    82     Compare comp;
    83     int num_items;
     73    class Store;
     74
     75    std::vector<Store> _data;
     76    int _minimum;
     77    ItemIntMap &_iim;
     78    Compare _comp;
     79    int _num;
    8480
    8581  public:
    86     ///Status of the nodes
     82
     83    /// \brief Type to represent the items states.
     84    ///
     85    /// Each Item element have a state associated to it. It may be "in heap",
     86    /// "pre heap" or "post heap". The latter two are indifferent from the
     87    /// heap's point of view, but may be useful to the user.
     88    ///
     89    /// The item-int map must be initialized in such way that it assigns
     90    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    8791    enum State {
    88       ///The node is in the heap
    89       IN_HEAP = 0,
    90       ///The node has never been in the heap
    91       PRE_HEAP = -1,
    92       ///The node was in the heap but it got out of it
    93       POST_HEAP = -2
     92      IN_HEAP = 0,    ///< = 0.
     93      PRE_HEAP = -1,  ///< = -1.
     94      POST_HEAP = -2  ///< = -2.
    9495    };
    9596
    9697    /// \brief The constructor
    9798    ///
    98     /// \c _iimap should be given to the constructor, since it is
     99    /// \c map should be given to the constructor, since it is
    99100    ///   used internally to handle the cross references.
    100     explicit FibHeap(ItemIntMap &_iimap)
    101       : minimum(0), iimap(_iimap), num_items() {}
     101    explicit FibHeap(ItemIntMap &map)
     102      : _minimum(0), _iim(map), _num() {}
    102103
    103104    /// \brief The constructor
    104105    ///
    105     /// \c _iimap should be given to the constructor, since it is used
    106     /// internally to handle the cross references. \c _comp is an
     106    /// \c map should be given to the constructor, since it is used
     107    /// internally to handle the cross references. \c comp is an
    107108    /// object for ordering of the priorities.
    108     FibHeap(ItemIntMap &_iimap, const Compare &_comp)
    109       : minimum(0), iimap(_iimap), comp(_comp), num_items() {}
     109    FibHeap(ItemIntMap &map, const Compare &comp)
     110      : _minimum(0), _iim(map), _comp(comp), _num() {}
    110111
    111112    /// \brief The number of items stored in the heap.
    112113    ///
    113114    /// Returns the number of items stored in the heap.
    114     int size() const { return num_items; }
     115    int size() const { return _num; }
    115116
    116117    /// \brief Checks if the heap stores no items.
    117118    ///
    118119    ///   Returns \c true if and only if the heap stores no items.
    119     bool empty() const { return num_items==0; }
     120    bool empty() const { return _num==0; }
    120121
    121122    /// \brief Make empty this heap.
     
    126127    /// cross reference map for each item to \c PRE_HEAP.
    127128    void clear() {
    128       container.clear(); minimum = 0; num_items = 0;
     129      _data.clear(); _minimum = 0; _num = 0;
    129130    }
    130131
     
    136137    /// \ref increase(\c item, \c value) otherwise.
    137138    void set (const Item& item, const Prio& value) {
    138       int i=iimap[item];
    139       if ( i >= 0 && container[i].in ) {
    140         if ( comp(value, container[i].prio) ) decrease(item, value);
    141         if ( comp(container[i].prio, value) ) increase(item, value);
     139      int i=_iim[item];
     140      if ( i >= 0 && _data[i].in ) {
     141        if ( _comp(value, _data[i].prio) ) decrease(item, value);
     142        if ( _comp(_data[i].prio, value) ) increase(item, value);
    142143      } else push(item, value);
    143144    }
     
    148149    /// \pre \c item must not be stored in the heap.
    149150    void push (const Item& item, const Prio& value) {
    150       int i=iimap[item];
     151      int i=_iim[item];
    151152      if ( i < 0 ) {
    152         int s=container.size();
    153         iimap.set( item, s );
    154         store st;
     153        int s=_data.size();
     154        _iim.set( item, s );
     155        Store st;
    155156        st.name=item;
    156         container.push_back(st);
     157        _data.push_back(st);
    157158        i=s;
    158159      } else {
    159         container[i].parent=container[i].child=-1;
    160         container[i].degree=0;
    161         container[i].in=true;
    162         container[i].marked=false;
    163       }
    164 
    165       if ( num_items ) {
    166         container[container[minimum].right_neighbor].left_neighbor=i;
    167         container[i].right_neighbor=container[minimum].right_neighbor;
    168         container[minimum].right_neighbor=i;
    169         container[i].left_neighbor=minimum;
    170         if ( comp( value, container[minimum].prio) ) minimum=i;
     160        _data[i].parent=_data[i].child=-1;
     161        _data[i].degree=0;
     162        _data[i].in=true;
     163        _data[i].marked=false;
     164      }
     165
     166      if ( _num ) {
     167        _data[_data[_minimum].right_neighbor].left_neighbor=i;
     168        _data[i].right_neighbor=_data[_minimum].right_neighbor;
     169        _data[_minimum].right_neighbor=i;
     170        _data[i].left_neighbor=_minimum;
     171        if ( _comp( value, _data[_minimum].prio) ) _minimum=i;
    171172      } else {
    172         container[i].right_neighbor=container[i].left_neighbor=i;
    173         minimum=i;
    174       }
    175       container[i].prio=value;
    176       ++num_items;
     173        _data[i].right_neighbor=_data[i].left_neighbor=i;
     174        _minimum=i;
     175      }
     176      _data[i].prio=value;
     177      ++_num;
    177178    }
    178179
     
    182183    /// Compare.
    183184    /// \pre The heap must be nonempty.
    184     Item top() const { return container[minimum].name; }
     185    Item top() const { return _data[_minimum].name; }
    185186
    186187    /// \brief Returns the minimum priority relative to \c Compare.
     
    188189    /// It returns the minimum priority relative to \c Compare.
    189190    /// \pre The heap must be nonempty.
    190     const Prio& prio() const { return container[minimum].prio; }
     191    const Prio& prio() const { return _data[_minimum].prio; }
    191192
    192193    /// \brief Returns the priority of \c item.
     
    195196    /// \pre \c item must be in the heap.
    196197    const Prio& operator[](const Item& item) const {
    197       return container[iimap[item]].prio;
     198      return _data[_iim[item]].prio;
    198199    }
    199200
     
    205206    void pop() {
    206207      /*The first case is that there are only one root.*/
    207       if ( container[minimum].left_neighbor==minimum ) {
    208         container[minimum].in=false;
    209         if ( container[minimum].degree!=0 ) {
    210           makeroot(container[minimum].child);
    211           minimum=container[minimum].child;
     208      if ( _data[_minimum].left_neighbor==_minimum ) {
     209        _data[_minimum].in=false;
     210        if ( _data[_minimum].degree!=0 ) {
     211          makeroot(_data[_minimum].child);
     212          _minimum=_data[_minimum].child;
    212213          balance();
    213214        }
    214215      } else {
    215         int right=container[minimum].right_neighbor;
    216         unlace(minimum);
    217         container[minimum].in=false;
    218         if ( container[minimum].degree > 0 ) {
    219           int left=container[minimum].left_neighbor;
    220           int child=container[minimum].child;
    221           int last_child=container[child].left_neighbor;
     216        int right=_data[_minimum].right_neighbor;
     217        unlace(_minimum);
     218        _data[_minimum].in=false;
     219        if ( _data[_minimum].degree > 0 ) {
     220          int left=_data[_minimum].left_neighbor;
     221          int child=_data[_minimum].child;
     222          int last_child=_data[child].left_neighbor;
    222223
    223224          makeroot(child);
    224225
    225           container[left].right_neighbor=child;
    226           container[child].left_neighbor=left;
    227           container[right].left_neighbor=last_child;
    228           container[last_child].right_neighbor=right;
    229         }
    230         minimum=right;
     226          _data[left].right_neighbor=child;
     227          _data[child].left_neighbor=left;
     228          _data[right].left_neighbor=last_child;
     229          _data[last_child].right_neighbor=right;
     230        }
     231        _minimum=right;
    231232        balance();
    232233      } // the case where there are more roots
    233       --num_items;
     234      --_num;
    234235    }
    235236
     
    239240    /// stored in the heap. It is quite inefficient in Fibonacci heaps.
    240241    void erase (const Item& item) {
    241       int i=iimap[item];
    242 
    243       if ( i >= 0 && container[i].in ) {
    244         if ( container[i].parent!=-1 ) {
    245           int p=container[i].parent;
     242      int i=_iim[item];
     243
     244      if ( i >= 0 && _data[i].in ) {
     245        if ( _data[i].parent!=-1 ) {
     246          int p=_data[i].parent;
    246247          cut(i,p);
    247248          cascade(p);
    248249        }
    249         minimum=i;     //As if its prio would be -infinity
     250        _minimum=i;     //As if its prio would be -infinity
    250251        pop();
    251252      }
     
    258259    ///   value relative to \c Compare.
    259260    void decrease (Item item, const Prio& value) {
    260       int i=iimap[item];
    261       container[i].prio=value;
    262       int p=container[i].parent;
    263 
    264       if ( p!=-1 && comp(value, container[p].prio) ) {
     261      int i=_iim[item];
     262      _data[i].prio=value;
     263      int p=_data[i].parent;
     264
     265      if ( p!=-1 && _comp(value, _data[p].prio) ) {
    265266        cut(i,p);
    266267        cascade(p);
    267268      }
    268       if ( comp(value, container[minimum].prio) ) minimum=i;
     269      if ( _comp(value, _data[_minimum].prio) ) _minimum=i;
    269270    }
    270271
     
    290291    /// get back to the heap again.
    291292    State state(const Item &item) const {
    292       int i=iimap[item];
     293      int i=_iim[item];
    293294      if( i>=0 ) {
    294         if ( container[i].in ) i=0;
     295        if ( _data[i].in ) i=0;
    295296        else i=-2;
    296297      }
     
    302303    /// Sets the state of the \c item in the heap. It can be used to
    303304    /// manually clear the heap when it is important to achive the
    304     /// better time complexity.
     305    /// better time _complexity.
    305306    /// \param i The item.
    306307    /// \param st The state. It should not be \c IN_HEAP.
     
    312313          erase(i);
    313314        }
    314         iimap[i] = st;
     315        _iim[i] = st;
    315316        break;
    316317      case IN_HEAP:
     
    323324    void balance() {
    324325
    325       int maxdeg=int( std::floor( 2.08*log(double(container.size()))))+1;
     326      int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1;
    326327
    327328      std::vector<int> A(maxdeg,-1);
     
    331332       *We set minimum to this during balance().
    332333       */
    333       int anchor=container[minimum].left_neighbor;
    334       int next=minimum;
     334      int anchor=_data[_minimum].left_neighbor;
     335      int next=_minimum;
    335336      bool end=false;
    336337
     
    338339        int active=next;
    339340        if ( anchor==active ) end=true;
    340         int d=container[active].degree;
    341         next=container[active].right_neighbor;
     341        int d=_data[active].degree;
     342        next=_data[active].right_neighbor;
    342343
    343344        while (A[d]!=-1) {
    344           if( comp(container[active].prio, container[A[d]].prio) ) {
     345          if( _comp(_data[active].prio, _data[A[d]].prio) ) {
    345346            fuse(active,A[d]);
    346347          } else {
     
    355356
    356357
    357       while ( container[minimum].parent >=0 )
    358         minimum=container[minimum].parent;
    359       int s=minimum;
    360       int m=minimum;
     358      while ( _data[_minimum].parent >=0 )
     359        _minimum=_data[_minimum].parent;
     360      int s=_minimum;
     361      int m=_minimum;
    361362      do {
    362         if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
    363         s=container[s].right_neighbor;
     363        if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
     364        s=_data[s].right_neighbor;
    364365      } while ( s != m );
    365366    }
     
    368369      int s=c;
    369370      do {
    370         container[s].parent=-1;
    371         s=container[s].right_neighbor;
     371        _data[s].parent=-1;
     372        s=_data[s].right_neighbor;
    372373      } while ( s != c );
    373374    }
     
    377378       *Replacing a from the children of b.
    378379       */
    379       --container[b].degree;
    380 
    381       if ( container[b].degree !=0 ) {
    382         int child=container[b].child;
     380      --_data[b].degree;
     381
     382      if ( _data[b].degree !=0 ) {
     383        int child=_data[b].child;
    383384        if ( child==a )
    384           container[b].child=container[child].right_neighbor;
     385          _data[b].child=_data[child].right_neighbor;
    385386        unlace(a);
    386387      }
     
    388389
    389390      /*Lacing a to the roots.*/
    390       int right=container[minimum].right_neighbor;
    391       container[minimum].right_neighbor=a;
    392       container[a].left_neighbor=minimum;
    393       container[a].right_neighbor=right;
    394       container[right].left_neighbor=a;
    395 
    396       container[a].parent=-1;
    397       container[a].marked=false;
     391      int right=_data[_minimum].right_neighbor;
     392      _data[_minimum].right_neighbor=a;
     393      _data[a].left_neighbor=_minimum;
     394      _data[a].right_neighbor=right;
     395      _data[right].left_neighbor=a;
     396
     397      _data[a].parent=-1;
     398      _data[a].marked=false;
    398399    }
    399400
    400401    void cascade(int a) {
    401       if ( container[a].parent!=-1 ) {
    402         int p=container[a].parent;
    403 
    404         if ( container[a].marked==false ) container[a].marked=true;
     402      if ( _data[a].parent!=-1 ) {
     403        int p=_data[a].parent;
     404
     405        if ( _data[a].marked==false ) _data[a].marked=true;
    405406        else {
    406407          cut(a,p);
     
    414415
    415416      /*Lacing b under a.*/
    416       container[b].parent=a;
    417 
    418       if (container[a].degree==0) {
    419         container[b].left_neighbor=b;
    420         container[b].right_neighbor=b;
    421         container[a].child=b;
     417      _data[b].parent=a;
     418
     419      if (_data[a].degree==0) {
     420        _data[b].left_neighbor=b;
     421        _data[b].right_neighbor=b;
     422        _data[a].child=b;
    422423      } else {
    423         int child=container[a].child;
    424         int last_child=container[child].left_neighbor;
    425         container[child].left_neighbor=b;
    426         container[b].right_neighbor=child;
    427         container[last_child].right_neighbor=b;
    428         container[b].left_neighbor=last_child;
    429       }
    430 
    431       ++container[a].degree;
    432 
    433       container[b].marked=false;
     424        int child=_data[a].child;
     425        int last_child=_data[child].left_neighbor;
     426        _data[child].left_neighbor=b;
     427        _data[b].right_neighbor=child;
     428        _data[last_child].right_neighbor=b;
     429        _data[b].left_neighbor=last_child;
     430      }
     431
     432      ++_data[a].degree;
     433
     434      _data[b].marked=false;
    434435    }
    435436
     
    438439     */
    439440    void unlace(int a) {
    440       int leftn=container[a].left_neighbor;
    441       int rightn=container[a].right_neighbor;
    442       container[leftn].right_neighbor=rightn;
    443       container[rightn].left_neighbor=leftn;
    444     }
    445 
    446 
    447     class store {
     441      int leftn=_data[a].left_neighbor;
     442      int rightn=_data[a].right_neighbor;
     443      _data[leftn].right_neighbor=rightn;
     444      _data[rightn].left_neighbor=leftn;
     445    }
     446
     447
     448    class Store {
    448449      friend class FibHeap;
    449450
     
    458459      Prio prio;
    459460
    460       store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
     461      Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
    461462    };
    462463  };
Note: See TracChangeset for help on using the changeset viewer.