
GNU Linear Programming Kit

Graph and Network Routines

for GLPK Version 4.45

(DRAFT, December 2010)

The GLPK package is part of the GNU Project released under the aegis of
GNU.

Copyright c© 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
2010 Andrew Makhorin, Department for Applied Informatics, Moscow Avi-
ation Institute, Moscow, Russia. All rights reserved.

Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301, USA.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on
all copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided also that the entire
resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions.

2

Contents

1 Basic Graph API Routines 6
1.1 Graph program object . 6
1.2 Graph creating and modifying routines 9

1.2.1 glp create graph—create graph 9
1.2.2 glp set graph name—assign (change) graph name . . . 9
1.2.3 glp add vertices—add new vertices to graph 10
1.2.4 glp set vertex name—assign (change) vertex name . . 10
1.2.5 glp add arc—add new arc to graph 11
1.2.6 glp del vertices—delete vertices from graph 11
1.2.7 glp del arc—delete arc from graph 11
1.2.8 glp erase graph—erase graph content 12
1.2.9 glp delete graph—delete graph 12

1.3 Graph searching routines . 13
1.3.1 glp create v index—create vertex name index 13
1.3.2 glp find vertex—find vertex by its name 13
1.3.3 glp delete v index—delete vertex name index 13

1.4 Graph reading/writing routines 14
1.4.1 glp read graph—read graph from plain text file 14
1.4.2 glp write graph—write graph to plain text file 14
1.4.3 glp read ccdata—read graph from text file in DIMACS

clique/coloring format 15
1.4.4 glp write ccdata—write graph to text file in DIMACS

clique/coloring format 18
1.5 Graph analysis routines . 19

1.5.1 glp weak comp—find all weakly connected components
of graph . 19

1.5.2 glp strong comp—find all strongly connected compo-
nents of graph . 19

1.5.3 glp top sort—topological sorting of acyclic digraph . . 21

3

2 Network optimization API routines 24
2.1 Minimum cost flow problem 24

2.1.1 Background . 24
2.1.2 glp read mincost—read minimum cost flow problem

data in DIMACS format 26
2.1.3 glp write mincost—write minimum cost flow problem

data in DIMACS format 30
2.1.4 glp mincost lp—convert minimum cost flow problem

to LP . 31
2.1.5 glp mincost okalg—solve minimum cost flow problem

with out-of-kilter algorithm 33
2.1.6 glp netgen—Klingman’s network problem generator . 37
2.1.7 glp gridgen—grid-like network problem generator . . . 38

2.2 Maximum flow problem . 41
2.2.1 Background . 41
2.2.2 glp read maxflow—read maximum flow problem data

in DIMACS format . 42
2.2.3 glp write maxflow—write maximum flow problem data

in DIMACS format . 45
2.2.4 glp maxflow lp—convert maximum flow problem to LP 46
2.2.5 glp maxflow ffalg—solve maximum flow problem with

Ford-Fulkerson algorithm 48
2.2.6 glp rmfgen—Goldfarb’s maximum flow problem gen-

erator . 51
2.3 Assignment problem . 53

2.3.1 Background . 53
2.3.2 glp read asnprob—read assignment problem data in

DIMACS format . 55
2.3.3 glp write asnprob—write assignment problem data in

DIMACS format . 59
2.3.4 glp check asnprob—check correctness of assignment prob-

lem data . 60
2.3.5 glp asnprob lp—convert assignment problem to LP . . 60
2.3.6 glp asnprob okalg—solve assignment problem with out-

of-kilter algorithm . 63
2.3.7 glp asnprob hall—find bipartite matching of maximum

cardinality . 67
2.4 Critical path problem . 70

2.4.1 Background . 70
2.4.2 glp cpp—solve critical path problem 71

4

3 Graph Optimization API Routines 75
3.1 Maximum clique problem . 75

3.1.1 Background . 75
3.1.2 glp wclique exact—find maximum weight clique with

exact algorithm . 75

5

Chapter 1

Basic Graph API Routines

1.1 Graph program object

In GLPK the base program object used to represent graphs and networks is
a directed graph (digraph).

Formally, digraph (or simply, graph) is a pair G = (V,A), where V is a
set of vertices, and A is a set arcs.1 Each arc a ∈ A is an ordered pair of
vertices a = (x, y), where x ∈ V is called tail vertex of arc a, and y ∈ V is
called its head vertex.

Representation of a graph in the program includes three structs defined
by typedef in the header glpk.h:

• glp_graph, which represents the graph in a whole,
• glp_vertex, which represents a vertex of the graph, and
• glp_arc, which represents an arc of the graph.

All these three structs are “semi-opaque”, i.e. the application program
can directly access their fields through pointers, however, changing the fields
directly is not allowed—all changes should be performed only with appro-
priate GLPK API routines.

1A may be a multiset.

6

glp graph. The struct glp_graph has the following fields available to the
application program:

char *name;
Symbolic name assigned to the graph. It is a pointer to a null terminated
character string of length from 1 to 255 characters. If no name is assigned
to the graph, this field contains NULL.

int nv;
The number of vertices in the graph, nv ≥ 0.

int na;
The number of arcs in the graph, na ≥ 0.

glp_vertex **v;
Pointer to an array containing the list of vertices. Element v[0] is not
used. Element v[i], 1 ≤ i ≤ nv, is a pointer to i-th vertex of the graph.
Note that on adding new vertices to the graph the field v may be al-
tered due to reallocation. However, pointers v[i] are not changed while
corresponding vertices exist in the graph.

int v_size;
Size of vertex data blocks, in bytes, 0 ≤ v size ≤ 256. (See also the field
data in the struct glp_vertex.)

int a_size;
Size of arc data blocks, in bytes, 0 ≤ v size ≤ 256. (See also the field
data in the struct glp_arc.)

glp vertex. The struct glp_vertex has the following fields available to the
application program:

int i;
Ordinal number of the vertex, 1 ≤ i ≤ nv. Note that element v[i] in the
struct glp_graph points to the vertex, whose ordinal number is i.

char *name;
Symbolic name assigned to the vertex. It is a pointer to a null terminated
character string of length from 1 to 255 characters. If no name is assigned
to the vertex, this field contains NULL.

void *data;
Pointer to a data block associated with the vertex. This data block is
automatically allocated on creating a new vertex and freed on deleting

7

the vertex. If v size = 0, the block is not allocated, and this field
contains NULL.

void *temp;
Working pointer, which may be used freely for any purposes. The appli-
cation program can change this field directly.

glp_arc *in;
Pointer to the (unordered) list of incoming arcs. If the vertex has no
incoming arcs, this field contains NULL.

glp_arc *out;
Pointer to the (unordered) list of outgoing arcs. If the vertex has no
outgoing arcs, this field contains NULL.

glp arc. The struct glp_arc has the following fields available to the appli-
cation program:

glp_vertex *tail;
Pointer to a vertex, which is tail endpoint of the arc.

glp_vertex *head;
Pointer to a vertex, which is head endpoint of the arc.

void *data;
Pointer to a data block associated with the arc. This data block is
automatically allocated on creating a new arc and freed on deleting the
arc. If v size = 0, the block is not allocated, and this field contains
NULL.

void *temp;
Working pointer, which may be used freely for any purposes. The appli-
cation program can change this field directly.

glp_arc *t_next;
Pointer to another arc, which has the same tail endpoint as this one.
NULL in this field indicates the end of the list of outgoing arcs.

glp_arc *h_next;
Pointer to another arc, which has the same head endpoint as this one.
NULL in this field indicates the end of the list of incoming arcs.

8

1.2 Graph creating and modifying routines

1.2.1 glp create graph—create graph

Synopsis

glp_graph *glp_create_graph(int v_size, int a_size);

Description

The routine glp_create_graph creates a new graph, which initially is
empty, i.e. has no vertices and arcs.

The parameter v_size specifies the size of vertex data blocks, in bytes,
0 ≤ v size ≤ 256.

The parameter a_size specifies the size of arc data blocks, in bytes,
0 ≤ a size ≤ 256.

Returns

The routine returns a pointer to the graph created.

1.2.2 glp set graph name—assign (change) graph name

Synopsis

void glp_set_graph_name(glp_graph *G, const char *name);

Description

The routine glp_set_graph_name assigns a symbolic name specified by the
character string name (1 to 255 chars) to the graph.

If the parameter name is NULL or an empty string, the routine erases the
existing symbolic name of the graph.

9

1.2.3 glp add vertices—add new vertices to graph

Synopsis

int glp_add_vertices(glp_graph *G, int nadd);

Description

The routine glp_add_vertices adds nadd vertices to the specified graph.
New vertices are always added to the end of the vertex list, so ordinal num-
bers of existing vertices remain unchanged. Note that this operation may
change the field v in the struct glp_graph (pointer to the vertex array) due
to reallocation.

Being added each new vertex is isolated, i.e. has no incident arcs.
If the size of vertex data blocks specified on creating the graph is non-

zero, the routine also allocates a memory block of that size for each new
vertex added, fills it by binary zeros, and stores a pointer to it in the field
data of the struct glp_vertex. Otherwise, if the block size is zero, the field
data is set to NULL.

Returns

The routine glp_add_vertices returns the ordinal number of the first new
vertex added to the graph.

1.2.4 glp set vertex name—assign (change) vertex name

Synopsis

void glp_set_vertex_name(glp_graph *G, int i, const char *name);

Description

The routine glp_set_vertex_name assigns a given symbolic name (1 up to
255 characters) to i-th vertex of the specified graph.

If the parameter name is NULL or empty string, the routine erases an
existing name of i-th vertex.

10

1.2.5 glp add arc—add new arc to graph

Synopsis

glp_arc *glp_add_arc(glp_graph *G, int i, int j);

Description

The routine glp_add_arc adds one new arc to the specified graph.
The parameters i and j specify the ordinal numbers of, resp., tail and

head endpoints (vertices) of the arc. Note that self-loops and multiple arcs
are allowed.

If the size of arc data blocks specified on creating the graph is non-zero,
the routine also allocates a memory block of that size, fills it by binary zeros,
and stores a pointer to it in the field data of the struct glp_arc. Otherwise,
if the block size is zero, the field data is set to NULL.

1.2.6 glp del vertices—delete vertices from graph

Synopsis

void glp_del_vertices(glp_graph *G, int ndel, const int num[]);

Description

The routine glp_del_vertices deletes vertices along with all incident arcs
from the specified graph. Ordinal numbers of vertices to be deleted should
be placed in locations num[1], . . . , num[ndel], ndel > 0.

Note that deleting vertices involves changing ordinal numbers of other
vertices remaining in the graph. New ordinal numbers of the remaining
vertices are assigned under the assumption that the original order of vertices
is not changed.

1.2.7 glp del arc—delete arc from graph

Synopsis

void glp_del_arc(glp_graph *G, glp_arc *a);

Description

The routine glp_del_arc deletes an arc from the specified graph. The arc
to be deleted must exist.

11

1.2.8 glp erase graph—erase graph content

Synopsis

void glp_erase_graph(glp_graph *G, int v_size, int a_size);

Description

The routine glp_erase_graph erases the content of the specified graph.
The effect of this operation is the same as if the graph would be deleted
with the routine glp_delete_graph and then created anew with the routine
glp_create_graph, with exception that the handle (pointer) to the graph
remains valid.

The parameters v_size and a_size have the same meaning as for the
routine glp_create_graph.

1.2.9 glp delete graph—delete graph

Synopsis

void glp_delete_graph(glp_graph *G);

Description

The routine glp_delete_graph deletes the specified graph and frees all the
memory allocated to this program object.

12

1.3 Graph searching routines

1.3.1 glp create v index—create vertex name index

Synopsis

void glp_create_v_index(glp_graph *G);

Description

The routine glp_create_v_index creates the name index for the specified
graph. The name index is an auxiliary data structure, which is intended to
quickly (i.e. for logarithmic time) find vertices by their names.

This routine can be called at any time. If the name index already exists,
the routine does nothing.

1.3.2 glp find vertex—find vertex by its name

Synopsis

int glp_find_vertex(glp_graph *G, const char *name);

Returns

The routine glp_find_vertex returns the ordinal number of a vertex, which
is assigned (by the routine glp_set_vertex_name) the specified symbolic
name. If no such vertex exists, the routine returns 0.

1.3.3 glp delete v index—delete vertex name index

Synopsis

void glp_delete_v_index(glp_graph *G);

Description

The routine glp_delete_v_index deletes the name index previously created
by the routine glp_create_v_index and frees the memory allocated to this
auxiliary data structure.

This routine can be called at any time. If the name index does not exist,
the routine does nothing.

13

1.4 Graph reading/writing routines

1.4.1 glp read graph—read graph from plain text file

Synopsis

int glp_read_graph(glp_graph *G, const char *fname);

Description

The routine glp_read_graph reads a graph from a plain text file, whose
name is specified by the parameter fname. Note that before reading data
the current content of the graph object is completely erased with the routine
glp_erase_graph.

For the file format see description of the routine glp_write_graph.

Returns

If the operation was successful, the routine returns zero. Otherwise it prints
an error message and returns non-zero.

1.4.2 glp write graph—write graph to plain text file

Synopsis

int glp_write_graph(glp_graph *G, const char *fname);

Description

The routine glp_write_graph writes the graph to a plain text file, whose
name is specified by the parameter fname.

Returns

If the operation was successful, the routine returns zero. Otherwise it prints
an error message and returns non-zero.

File format

The file created by the routine glp_write_graph is a plain text file, which
contains the following information:

14

nv na
i[1] j[1]
i[2] j[2]
. . .
i[na] j[na]

where:
nv is the number of vertices (nodes);
na is the number of arcs;
i[k], k = 1, . . . , na, is the index of tail vertex of arc k;
j[k], k = 1, . . . , na, is the index of head vertex of arc k.

1.4.3 glp read ccdata—read graph from text file in DIMACS
clique/coloring format

Synopsis

int glp_read_ccdata(glp_graph *G, int v_wgt,
const char *fname);

Description

The routine glp read ccdata reads a graph from a text file in DIMACS
clique/coloring format. (Though this format is originally designed to repre-
sent data for the minimal vertex coloring and maximal clique problems, it
may be used to represent general undirected and directed graphs, because
the routine allows reading self-loops and multiple edges/arcs keeping the
order of vertices specified for each edge/arc of the graph.)

The parameter G specifies the graph object to be read in. Note that
before reading data the current content of the graph object is completely
erased with the routine glp erase graph.

The parameter v wgt specifies an offset of the field of type double in the
vertex data block, to which the routine stores the vertex weight. If v wgt
< 0, the vertex weights are not stored.

The character string fname specifies the name of a text file to be read
in. (If the file name ends with the suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine decompresses it “on the fly”.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints
an error message and returns non-zero.

15

DIMACS clique/coloring format2

The DIMACS input file is a plain ASCII text file. It contains lines of several
types described below. A line is terminated with an end-of-line character.
Fields in each line are separated by at least one blank space. Each line
begins with a one-character designator to identify the line type.

Note that DIMACS requires all numerical quantities to be integers in the
range [−231, 231 − 1] while GLPK allows the quantities to be floating-point
numbers.

Comment lines. Comment lines give human-readable information about
the file and are ignored by programs. Comment lines can appear anywhere
in the file. Each comment line begins with a lower-case character c.

c This is a comment line

Problem line. There is one problem line per data file. The problem line
must appear before any node or edge descriptor lines. It has the following
format:

p edge NODES EDGES

The lower-case letter p signifies that this is a problem line. The four-
character problem designator edge identifies the file as containing data for
the minimal vertex coloring or maximal clique problem. The NODES field
contains an integer value specifying the number of vertices in the graph.
The EDGES field contains an integer value specifying the number of edges
(arcs) in the graph.

Vertex descriptors. These lines give the weight assigned to a vertex of
the graph. There is one vertex descriptor line for each vertex, with the
following format. Vertices without a descriptor take on a default value of 1.

n ID VALUE

The lower-case character n signifies that this is a vertex descriptor line. The
ID field gives a vertex identification number, an integer between 1 and n,
where n is the number of vertices in the graph. The VALUE field gives a
vertex weight, which can either positive or negative (or zero).

2This material is based on the paper “Clique and Coloring Problems Graph Format”,
which is publically available at http://dimacs.rutgers.edu/Challenges/.

16

Edge descriptors. There is one edge descriptor line for each edge (arc)
of the graph, each with the following format:

e I J

The lower-case character e signifies that this is an edge descriptor line. For
an edge (arc) (i, j) the fields I and J specify its endpoints.

Example. The following example of an undirected graph:

v1

���������������

CCCCCCCC v2

||||||||

11111111111111

v7

{{{{{{{{

BBBBBBBB

v6

222222222222222 v10

CCCCCCCC v8

||||||||
v3

v9

{{{{{{{{

BBBBBBBB

v5 v4

might be coded in DIMACS clique/coloring format as follows:

c sample.col

c

c This is an example of the vertex coloring problem data

c in DIMACS format.

c

p edge 10 21

c

e 1 2

e 1 6

e 1 7

e 1 10

e 2 3

e 2 7

e 2 8

e 3 4

e 3 8

e 4 5

e 4 8

e 4 9

17

e 5 6

e 5 9

e 5 10

e 6 10

e 7 8

e 7 10

e 8 9

e 8 10

e 9 10

c

c eof

1.4.4 glp write ccdata—write graph to text file in DIMACS
clique/coloring format

Synopsis

int glp_write_ccdata(glp_graph *G, int v_wgt,
const char *fname);

Description

The routine glp write ccdata writes the graph object specified by the param-
eter G to a text file in DIMACS clique/coloring format. (Though this format
is originally designed to represent data for the minimal vertex coloring and
maximal clique problems, it may be used to represent general undirected
and directed graphs, because the routine allows writing self-loops and mul-
tiple edges/arcs keeping the order of vertices specified for each edge/arc of
the graph.)

The parameter v wgt specifies an offset of the field of type double in
the vertex data block, which contains the vertex weight. If v wgt < 0, it is
assumed that the weight of each vertex is 1.

The character string fname specifies a name of the text file to be writ-
ten out. (If the file name ends with suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine performs automatic compression on
writing it.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints
an error message and returns non-zero.

18

1.5 Graph analysis routines

1.5.1 glp weak comp—find all weakly connected components
of graph

Synopsis

int glp_weak_comp(glp_graph *G, int v_num);

Description

The routine glp_weak_comp finds all weakly connected components of the
specified graph.

The parameter v_num specifies an offset of the field of type int in the
vertex data block, to which the routine stores the number of a weakly con-
nected component containing that vertex. If v_num < 0, no component
numbers are stored.

The components are numbered in arbitrary order from 1 to nc, where
nc is the total number of components found, 0 ≤ nc ≤ |V |.

Returns

The routine returns nc, the total number of components found.

1.5.2 glp strong comp—find all strongly connected compo-
nents of graph

Synopsis

int glp_strong_comp(glp_graph *G, int v_num);

Description

The routine glp_strong_comp finds all strongly connected components of
the specified graph.

The parameter v_num specifies an offset of the field of type int in the
vertex data block, to which the routine stores the number of a strongly
connected component containing that vertex. If v_num < 0, no component
numbers are stored.

The components are numbered in arbitrary order from 1 to nc, where
nc is the total number of components found, 0 ≤ nc ≤ |V |. However, the
component numbering has the property that for every arc (i → j) in the
graph the condition num(i) ≥ num(j) holds.

19

Returns

The routine returns nc, the total number of components found.

References

I. S. Duff, J. K. Reid, Algorithm 529: Permutations to block triangular form,
ACM Trans. on Math. Softw. 4 (1978), 189-92.

Example

The following program reads a graph from a plain text file ‘graph.txt’ and
finds all its strongly connected components.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { int num; } v_data;

#define vertex(v) ((v_data *)((v)->data))

int main(void)

{ glp_graph *G;

int i, nc;

G = glp_create_graph(sizeof(v_data), 0);

glp_read_graph(G, "graph.txt");

nc = glp_strong_comp(G, offsetof(v_data, num));

printf("nc = %d\n", nc);

for (i = 1; i <= G->nv; i++)

printf("num[%d] = %d\n", i, vertex(G->v[i])->num);

glp_delete_graph(G);

return 0;

}

If the file ‘graph.txt’ contains the graph shown below:

20

1 // 2 // 3 //

��

4

��

5

OO

6oo

7

OO

8

__@@@@@@@@
oo // 9 // 10 //

��

11

��
12

OO 77oooooooooooooo
33 13oo

OO

// 14

__@@@@@@@@

15oo

the program output may look like follows:

Reading graph from ‘graph.txt’...

Graph has 15 vertices and 30 arcs

31 lines were read

nc = 4

num[1] = 3

num[2] = 3

num[3] = 3

num[4] = 2

num[5] = 3

num[6] = 3

num[7] = 3

num[8] = 3

num[9] = 1

num[10] = 1

num[11] = 1

num[12] = 4

num[13] = 4

num[14] = 1

num[15] = 1

1.5.3 glp top sort—topological sorting of acyclic digraph

Synopsis

int glp_top_sort(glp_graph *G, int v_num);

Description

The routine glp_top_sort performs topological sorting of vertices of the
specified acyclic digraph.

21

The parameter v_num specifies an offset of the field of type int in the
vertex data block, to which the routine stores the vertex number assigned.
If v_num < 0, vertex numbers are not stored.

The vertices are numbered from 1 to n, where n is the total number of
vertices in the graph. The vertex numbering has the property that for every
arc (i → j) in the graph the condition num(i) < num(j) holds. Special
case num(i) = 0 means that vertex i is not assigned a number, because the
graph is not acyclic.

Returns

If the graph is acyclic and therefore all the vertices have been assigned
numbers, the routine glp_top_sort returns zero. Otherwise, if the graph is
not acyclic, the routine returns the number of vertices which have not been
numbered, i.e. for which num(i) = 0.

Example

The following program reads a digraph from a plain text file ‘graph.txt’
and performs topological sorting of its vertices.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { int num; } v_data;

#define vertex(v) ((v_data *)((v)->data))

int main(void)

{ glp_graph *G;

int i, cnt;

G = glp_create_graph(sizeof(v_data), 0);

glp_read_graph(G, "graph.txt");

cnt = glp_top_sort(G, offsetof(v_data, num));

printf("cnt = %d\n", cnt);

for (i = 1; i <= G->nv; i++)

printf("num[%d] = %d\n", i, vertex(G->v[i])->num);

glp_delete_graph(G);

return 0;

}

If the file ‘graph.txt’ contains the graph shown below:

22

1 // 2 //

��+
++++++++++++++++++ 3

!!BBBBBBB

4

==|||||||
5 // 6

!!BBBBBBB

��

7 // 8 // 9

GG�������������

>>~~~~~~~
//

 @@@@@@@ 10 //

66mmmmmmmmmmmmmm
11

==|||||||
12 // 13

14 // 15

44iiiiiiiiiiiiiiiiiiii // 16

66mmmmmmmmmmmmm // 17

the program output may look like follows:

Reading graph from ‘graph.txt’...

Graph has 17 vertices and 23 arcs

24 lines were read

cnt = 0

num[1] = 8

num[2] = 9

num[3] = 10

num[4] = 4

num[5] = 11

num[6] = 12

num[7] = 1

num[8] = 2

num[9] = 3

num[10] = 5

num[11] = 6

num[12] = 14

num[13] = 16

num[14] = 7

num[15] = 13

num[16] = 15

num[17] = 17

The output corresponds to the following vertex numbering:

8 // 9 //

��*
****************** 10

!!BBBBBBB

4

>>~~~~~~~
11 // 12

!!BBBBBBB

��

1 // 2 // 3

GG������������

@@������
//

��====== 5 //

66nnnnnnnnnnnnn 6

==|||||||
14 // 16

7 // 13

44iiiiiiiiiiiiiiiiiiii // 15

66mmmmmmmmmmmmm // 17

23

Chapter 2

Network optimization API
routines

2.1 Minimum cost flow problem

2.1.1 Background

The minimum cost flow problem (MCFP) is stated as follows. Let there
be given a directed graph (flow network) G = (V,A), where V is a set of
vertices (nodes), and A ⊆ V × V is a set of arcs. Let for each node i ∈ V
there be given a quantity bi having the following meaning:

if bi > 0, then |bi| is a supply at node i, which shows how many flow
units are generated at node i (or, equivalently, entering the network through
node i from the outside);

if bi < 0, then |bi| is a demand at node i, which shows how many flow
units are lost at node i (or, equivalently, leaving the network through node
i to the outside);

if bi = 0, then i is a transshipment node, at which the flow is conserved,
i.e. neither generated nor lost.

Let also for each arc a = (i, j) ∈ A there be given the following three
quantities:

lij , a (non-negative) lower bound to the flow through arc (i, j);
uij , an upper bound to the flow through arc (i, j), which is the arc

capacity;
cij , a per-unit cost of the flow through arc (i, j).
The problem is to find flows xij through every arc of the network, which

satisfy the specified bounds and the conservation constraints at all nodes,

24

and minimize the total flow cost. Here the conservation constraint at a node
means that the total flow entering this node through its incoming arcs plus
the supply at this node must be equal to the total flow leaving this node
through its outgoing arcs plus the demand at this node.

An example of the minimum cost flow problem is shown on Fig. 1.

20

��
�O
�O
�O

v2 0,10,$2 //

0,9,$3

��

v3

2,12,$1

��

0,18,$0 // v8

0,20,$9
MMMMM

&&MMMMM

v1

0,14,$0qqqqq

88qqqqq

0,23,$0
MMMMM

&&MMMMM

v6

0,7,$0

��

4,8,$0

OO

v9

��
�O
�O
�O

v4 0,26,$0 // v5

0,11,$1;;;;;;;;

]];;;;;;;;

0,25,$5qqqqq

88qqqqq

0,4,$7 // v7

0,15,$3qqqqq

88qqqqq

20

vi l,u,$c // vj supply ///o/o/o vi vi ///o/o/o demand

Fig. 1. An example of the minimum cost flow problem.

The minimum cost flow problem can be naturally formulated as the
following LP problem:

minimize
z =

∑
(i,j)∈A

cijxij (1)

subject to ∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji = bi for all i ∈ V (2)

lij ≤ xij ≤ uij for all (i, j) ∈ A (3)

25

2.1.2 glp read mincost—read minimum cost flow problem
data in DIMACS format

Synopsis

int glp_read_mincost(glp_graph *G, int v_rhs, int a_low,
int a_cap, int a_cost, const char *fname);

Description

The routine glp_read_mincost reads the minimum cost flow problem data
from a text file in DIMACS format.

The parameter G specifies the graph object, to which the problem data
have to be stored. Note that before reading data the current content of the
graph object is completely erased with the routine glp_erase_graph.

The parameter v_rhs specifies an offset of the field of type double in
the vertex data block, to which the routine stores bi, the supply/demand
value. If v_rhs < 0, the value is not stored.

The parameter a_low specifies an offset of the field of type double in
the arc data block, to which the routine stores lij , the lower bound to the
arc flow. If a_low < 0, the lower bound is not stored.

The parameter a_cap specifies an offset of the field of type double in
the arc data block, to which the routine stores uij , the upper bound to the
arc flow (the arc capacity). If a_cap < 0, the upper bound is not stored.

The parameter a_cost specifies an offset of the field of type double in
the arc data block, to which the routine stores cij , the per-unit cost of the
arc flow. If a_cost < 0, the cost is not stored.

The character string fname specifies the name of a text file to be read
in. (If the file name name ends with the suffix ‘.gz’, the file is assumed to
be compressed, in which case the routine decompresses it “on the fly”.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints
an error message and returns non-zero.

26

Example

typedef struct

{ /* vertex data block */

...

double rhs;

...

} v_data;

typedef struct

{ /* arc data block */

...

double low, cap, cost;

...

} a_data;

int main(void)

{ glp_graph *G;

int ret;

G = glp_create_graph(sizeof(v_data), sizeof(a_data));

ret = glp_read_mincost(G, offsetof(v_data, rhs),

offsetof(a_data, low), offsetof(a_data, cap),

offsetof(a_data, cost), "sample.min");

if (ret != 0) goto ...

...

}

DIMACS minimum cost flow problem format1

The DIMACS input file is a plain ASCII text file. It contains lines of several
types described below. A line is terminated with an end-of-line character.
Fields in each line are separated by at least one blank space. Each line
begins with a one-character designator to identify the line type.

Note that DIMACS requires all numerical quantities to be integers in the
range [−231, 231− 1] while GLPK allows the quantities to be floating-point
numbers.

1This material is based on the paper “The First DIMACS International Algorithm
Implementation Challenge: Problem Definitions and Specifications”, which is publically
available at http://dimacs.rutgers.edu/Challenges/.

27

Comment lines. Comment lines give human-readable information about
the file and are ignored by programs. Comment lines can appear anywhere
in the file. Each comment line begins with a lower-case character c.

c This is a comment line

Problem line. There is one problem line per data file. The problem line
must appear before any node or arc descriptor lines. It has the following
format:

p min NODES ARCS

The lower-case character p signifies that this is a problem line. The three-
character problem designator min identifies the file as containing specifi-
cation information for the minimum cost flow problem. The NODES field
contains an integer value specifying the number of nodes in the network.
The ARCS field contains an integer value specifying the number of arcs in
the network.

Node descriptors. All node descriptor lines must appear before all arc
descriptor lines. The node descriptor lines describe supply and demand
nodes, but not transshipment nodes. That is, only nodes with non-zero
node supply/demand values appear. There is one node descriptor line for
each such node, with the following format:

n ID FLOW

The lower-case character n signifies that this is a node descriptor line. The ID
field gives a node identification number, an integer between 1 and NODES. The
FLOW field gives the amount of supply (if positive) or demand (if negative)
at node ID.

Arc descriptors. There is one arc descriptor line for each arc in the
network. Arc descriptor lines are of the following format:

a SRC DST LOW CAP COST

The lower-case character a signifies that this is an arc descriptor line. For a
directed arc (i, j) the SRC field gives the identification number i for the tail
endpoint, and the DST field gives the identification number j for the head
endpoint. Identification numbers are integers between 1 and NODES. The

28

LOW field specifies the minimum amount of flow that can be sent along arc
(i, j), and the CAP field gives the maximum amount of flow that can be sent
along arc (i, j) in a feasible flow. The COST field contains the per-unit cost
of flow sent along arc (i, j).

Example. Below here is an example of the data file in DIMACS format
corresponding to the minimum cost flow problem shown on Fig 1.

c sample.min

c

c This is an example of the minimum cost flow problem data

c in DIMACS format.

c

p min 9 14

c

n 1 20

n 9 -20

c

a 1 2 0 14 0

a 1 4 0 23 0

a 2 3 0 10 2

a 2 4 0 9 3

a 3 5 2 12 1

a 3 8 0 18 0

a 4 5 0 26 0

a 5 2 0 11 1

a 5 6 0 25 5

a 5 7 0 4 7

a 6 7 0 7 0

a 6 8 4 8 0

a 7 9 0 15 3

a 8 9 0 20 9

c

c eof

29

2.1.3 glp write mincost—write minimum cost flow problem
data in DIMACS format

Synopsis

int glp_write_mincost(glp_graph *G, int v_rhs, int a_low,
int a_cap, int a_cost, const char *fname);

Description

The routine glp_write_mincost writes the minimum cost flow problem
data to a text file in DIMACS format.

The parameter G is the graph (network) program object, which specifies
the minimum cost flow problem instance.

The parameter v_rhs specifies an offset of the field of type double in
the vertex data block, which contains bi, the supply/demand value. If v_rhs
< 0, it is assumed that bi = 0 for all nodes.

The parameter a_low specifies an offset of the field of type double in
the arc data block, which contains lij , the lower bound to the arc flow. If
a_low < 0, it is assumed that lij = 0 for all arcs.

The parameter a_cap specifies an offset of the field of type double in
the arc data block, which contains uij , the upper bound to the arc flow (the
arc capacity). If the upper bound is specified as DBL_MAX, it is assumed that
uij = ∞, i.e. the arc is uncapacitated. If a_cap < 0, it is assumed that
uij = 1 for all arcs.

The parameter a_cost specifies an offset of the field of type double in
the arc data block, which contains cij , the per-unit cost of the arc flow. If
a_cost < 0, it is assumed that cij = 0 for all arcs.

The character string fname specifies a name of the text file to be writ-
ten out. (If the file name ends with suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine performs automatic compression on
writing it.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints
an error message and returns non-zero.

30

2.1.4 glp mincost lp—convert minimum cost flow problem
to LP

Synopsis

void glp_mincost_lp(glp_prob *lp, glp_graph *G, int names,
int v_rhs, int a_low, int a_cap, int a_cost);

Description

The routine glp_mincost_lp builds LP problem (1)—(3), which corre-
sponds to the specified minimum cost flow problem.

The parameter lp is the resultant LP problem object to be built. Note
that on entry its current content is erased with the routine glp_erase_prob.

The parameter G is the graph (network) program object, which specifies
the minimum cost flow problem instance.

The parameter names is a flag. If it is GLP_ON, the routine uses symbolic
names of the graph object components to assign symbolic names to the LP
problem object components. If the flag is GLP_OFF, no symbolic names are
assigned.

The parameter v_rhs specifies an offset of the field of type double in
the vertex data block, which contains bi, the supply/demand value. If v_rhs
< 0, it is assumed that bi = 0 for all nodes.

The parameter a_low specifies an offset of the field of type double in
the arc data block, which contains lij , the lower bound to the arc flow. If
a_low < 0, it is assumed that lij = 0 for all arcs.

The parameter a_cap specifies an offset of the field of type double in
the arc data block, which contains uij , the upper bound to the arc flow (the
arc capacity). If the upper bound is specified as DBL_MAX, it is assumed that
uij = ∞, i.e. the arc is uncapacitated. If a_cap < 0, it is assumed that
uij = 1 for all arcs.

The parameter a_cost specifies an offset of the field of type double in
the arc data block, which contains cij , the per-unit cost of the arc flow. If
a_cost < 0, it is assumed that cij = 0 for all arcs.

Example

The example program below reads the minimum cost problem instance in
DIMACS format from file ‘sample.min’, converts the instance to LP, and
then writes the resultant LP in CPLEX format to file ‘mincost.lp’.

31

#include <stddef.h>

#include <glpk.h>

typedef struct { double rhs; } v_data;

typedef struct { double low, cap, cost; } a_data;

int main(void)

{ glp_graph *G;

glp_prob *lp;

G = glp_create_graph(sizeof(v_data), sizeof(a_data));

glp_read_mincost(G, offsetof(v_data, rhs),

offsetof(a_data, low), offsetof(a_data, cap),

offsetof(a_data, cost), "sample.min");

lp = glp_create_prob();

glp_mincost_lp(lp, G, GLP_ON, offsetof(v_data, rhs),

offsetof(a_data, low), offsetof(a_data, cap),

offsetof(a_data, cost));

glp_delete_graph(G);

glp_write_lp(lp, NULL, "mincost.lp");

glp_delete_prob(lp);

return 0;

}

If ‘sample.min’ is the example data file from the subsection describing
the routine glp_read_mincost, file ‘mincost.lp’ may look like follows:

Minimize

obj: + 3 x(2,4) + 2 x(2,3) + x(3,5) + 7 x(5,7) + 5 x(5,6)

+ x(5,2) + 3 x(7,9) + 9 x(8,9)

Subject To

r_1: + x(1,2) + x(1,4) = 20

r_2: - x(5,2) + x(2,3) + x(2,4) - x(1,2) = 0

r_3: + x(3,5) + x(3,8) - x(2,3) = 0

r_4: + x(4,5) - x(2,4) - x(1,4) = 0

r_5: + x(5,2) + x(5,6) + x(5,7) - x(4,5) - x(3,5) = 0

r_6: + x(6,7) + x(6,8) - x(5,6) = 0

r_7: + x(7,9) - x(6,7) - x(5,7) = 0

r_8: + x(8,9) - x(6,8) - x(3,8) = 0

r_9: - x(8,9) - x(7,9) = -20

Bounds

0 <= x(1,4) <= 23

0 <= x(1,2) <= 14

0 <= x(2,4) <= 9

0 <= x(2,3) <= 10

0 <= x(3,8) <= 18

2 <= x(3,5) <= 12

0 <= x(4,5) <= 26

32

0 <= x(5,7) <= 4

0 <= x(5,6) <= 25

0 <= x(5,2) <= 11

4 <= x(6,8) <= 8

0 <= x(6,7) <= 7

0 <= x(7,9) <= 15

0 <= x(8,9) <= 20

End

2.1.5 glp mincost okalg—solve minimum cost flow problem
with out-of-kilter algorithm

Synopsis

int glp_mincost_okalg(glp_graph *G, int v_rhs, int a_low,
int a_cap, int a_cost, double *sol, int a_x, int v_pi);

Description

The routine glp_mincost_okalg finds optimal solution to the minimum
cost flow problem with the out-of-kilter algorithm.2 Note that this routine
requires all the problem data to be integer-valued.

The parameter G is a graph (network) program object which specifies
the minimum cost flow problem instance to be solved.

The parameter v_rhs specifies an offset of the field of type double in
the vertex data block, which contains bi, the supply/demand value. This
value must be integer in the range [−INT_MAX, +INT_MAX]. If v_rhs < 0, it
is assumed that bi = 0 for all nodes.

The parameter a_low specifies an offset of the field of type double in
the arc data block, which contains lij , the lower bound to the arc flow. This
bound must be integer in the range [0, INT_MAX]. If a_low < 0, it is assumed
that lij = 0 for all arcs.

The parameter a_cap specifies an offset of the field of type double in the
arc data block, which contains uij , the upper bound to the arc flow (the arc
capacity). This bound must be integer in the range [lij , INT_MAX]. If a_cap
< 0, it is assumed that uij = 1 for all arcs.

The parameter a_cost specifies an offset of the field of type double in
the arc data block, which contains cij , the per-unit cost of the arc flow. This

2GLPK implementation of the out-of-kilter algorithm is based on the following book:
L. R. Ford, Jr., and D. R. Fulkerson, “Flows in Networks,” The RAND Corp., Report
R-375-PR (August 1962), Chap. III “Minimal Cost Flow Problems,” pp. 113-26.

33

value must be integer in the range [−INT_MAX, +INT_MAX]. If a_cost < 0,
it is assumed that cij = 0 for all arcs.

The parameter sol specifies a location, to which the routine stores the
objective value (that is, the total cost) found. If sol is NULL, the objective
value is not stored.

The parameter a_x specifies an offset of the field of type double in the
arc data block, to which the routine stores xij , the arc flow found. If a_x
< 0, the arc flow value is not stored.

The parameter v_pi specifies an offset of the field of type double in
the vertex data block, to which the routine stores πi, the node potential,
which is the Lagrange multiplier for the corresponding flow conservation
equality constraint (see (2) in Subsection “Background”). If necessary, the
application program may use the node potentials to compute λij , reduced
costs of the arc flows xij , which are the Lagrange multipliers for the arc flow
bound constraints (see (3) ibid.), using the following formula:

λij = cij − (πi − πj),

where cij is the per-unit cost for arc (i, j).
Note that all solution components (the objective value, arc flows, and

node potentials) computed by the routine are always integer-valued.

Returns

0 Optimal solution found.
GLP_ENOPFS No (primal) feasible solution exists.
GLP_EDATA Unable to start the search, because some problem data are

either not integer-valued or out of range. This code is also
returned if the total supply, which is the sum of bi over all
source nodes (nodes with bi > 0), exceeds INT_MAX.

GLP_ERANGE The search was prematurely terminated because of integer
overflow.

GLP_EFAIL An error has been detected in the program logic. (If this
code is returned for your problem instance, please report
to <bug-glpk@gnu.org>.)

Comments

By design the out-of-kilter algorithm is applicable only to networks, where
bi = 0 for all nodes, i.e. actually this algorithm finds a minimal cost cir-
culation. Due to this requirement the routine glp_mincost_okalg converts

34

the original network to a network suitable for the out-of-kilter algorithm in
the following way:3

1) it adds two auxiliary nodes s and t;
2) for each original node i with bi > 0 the routine adds auxiliary supply

arc (s → i), flow xsi through which is costless (csi = 0) and fixed to +bi
(lsi = usi = +bi);

3) for each original node i with bi < 0 the routine adds auxiliary demand
arc (i → t), flow xit through which is costless (cit = 0) and fixed to −bi
(lit = uit = −bi);

4) finally, the routine adds auxiliary feedback arc (t → s), flow xts

through which is also costless (cts = 0) and fixed to F (lts = uts = F),
where F =

∑
bi>0

bi is the total supply.

Example

The example program below reads the minimum cost problem instance
in DIMACS format from file ‘sample.min’, solves it by using the routine
glp_mincost_okalg, and writes the solution found to the standard output.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { double rhs, pi; } v_data;

typedef struct { double low, cap, cost, x; } a_data;

#define node(v) ((v_data *)((v)->data))

#define arc(a) ((a_data *)((a)->data))

int main(void)

{ glp_graph *G;

glp_vertex *v, *w;

glp_arc *a;

int i, ret;

double sol;

G = glp_create_graph(sizeof(v_data), sizeof(a_data));

glp_read_mincost(G, offsetof(v_data, rhs),

offsetof(a_data, low), offsetof(a_data, cap),

offsetof(a_data, cost), "sample.min");

ret = glp_mincost_okalg(G, offsetof(v_data, rhs),

3The conversion is performed internally and does not change the original network
program object passed to the routine.

35

offsetof(a_data, low), offsetof(a_data, cap),

offsetof(a_data, cost), &sol, offsetof(a_data, x),

offsetof(v_data, pi));

printf("ret = %d; sol = %5g\n", ret, sol);

for (i = 1; i <= G->nv; i++)

{ v = G->v[i];

printf("node %d: pi = %5g\n", i, node(v)->pi);

for (a = v->out; a != NULL; a = a->t_next)

{ w = a->head;

printf("arc %d->%d: x = %5g; lambda = %5g\n",

v->i, w->i, arc(a)->x,

arc(a)->cost - (node(v)->pi - node(w)->pi));

}

}

glp_delete_graph(G);

return 0;

}

If ‘sample.min’ is the example data file from the subsection describing
the routine glp_read_mincost, the output may look like follows:

Reading min-cost flow problem data from ‘sample.min’...

Flow network has 9 nodes and 14 arcs

24 lines were read

ret = 0; sol = 213

node 1: pi = -12

arc 1->4: x = 13; lambda = 0

arc 1->2: x = 7; lambda = 0

node 2: pi = -12

arc 2->4: x = 0; lambda = 3

arc 2->3: x = 7; lambda = 0

node 3: pi = -14

arc 3->8: x = 5; lambda = 0

arc 3->5: x = 2; lambda = 3

node 4: pi = -12

arc 4->5: x = 13; lambda = 0

node 5: pi = -12

arc 5->7: x = 4; lambda = -1

arc 5->6: x = 11; lambda = 0

arc 5->2: x = 0; lambda = 1

node 6: pi = -17

arc 6->8: x = 4; lambda = 3

arc 6->7: x = 7; lambda = -3

node 7: pi = -20

arc 7->9: x = 11; lambda = 0

node 8: pi = -14

arc 8->9: x = 9; lambda = 0

node 9: pi = -23

36

2.1.6 glp netgen—Klingman’s network problem generator

Synopsis

int glp_netgen(glp_graph *G, int v_rhs, int a_cap, int a_cost,
const int parm[1+15]);

Description

The routine glp_netgen is a GLPK version of the network problem gen-
erator developed by Dr. Darwin Klingman.4 It can create capacitated and
uncapacitated minimum cost flow (or transshipment), transportation, and
assignment problems.

The parameter G specifies the graph object, to which the generated prob-
lem data have to be stored. Note that on entry the graph object is erased
with the routine glp_erase_graph.

The parameter v_rhs specifies an offset of the field of type double in the
vertex data block, to which the routine stores the supply or demand value.
If v_rhs < 0, the value is not stored.

The parameter a_cap specifies an offset of the field of type double in
the arc data block, to which the routine stores the arc capacity. If a_cap
< 0, the capacity is not stored.

The parameter a_cost specifies an offset of the field of type double in
the arc data block, to which the routine stores the per-unit cost if the arc
flow. If a_cost < 0, the cost is not stored.

The array parm contains description of the network to be generated:
parm[0] not used
parm[1] iseed 8-digit positive random number seed
parm[2] nprob 8-digit problem id number
parm[3] nodes total number of nodes
parm[4] nsorc total number of source nodes

(including transshipment nodes)
parm[5] nsink total number of sink nodes

(including transshipment nodes)
parm[6] iarcs number of arc
parm[7] mincst minimum cost for arcs
parm[8] maxcst maximum cost for arcs
parm[9] itsup total supply

4D. Klingman, A. Napier, and J. Stutz. NETGEN: A program for generating large scale
capacitated assignment, transportation, and minimum cost flow networks. Management
Science 20 (1974), 814-20.

37

parm[10] ntsorc number of transshipment source nodes
parm[11] ntsink number of transshipment sink nodes
parm[12] iphic percentage of skeleton arcs to be given the maxi-

mum cost
parm[13] ipcap percentage of arcs to be capacitated
parm[14] mincap minimum upper bound for capacitated arcs
parm[15] maxcap maximum upper bound for capacitated arcs

Notes

1. The routine generates a transportation problem if:

nsorc + nsink = nodes, ntsorc = 0, and ntsink = 0.

2. The routine generates an assignment problem if the requirements for
a transportation problem are met and:

nsorc = nsink and itsup = nsorc.

3. The routine always generates connected graphs. So, if the number of
requested arcs has been reached and the generated instance is not fully con-
nected, the routine generates a few remaining arcs to ensure connectedness.
Thus, the actual number of arcs generated by the routine may be greater
than the requested number of arcs.

Returns

If the instance was successfully generated, the routine glp_netgen returns
zero; otherwise, if specified parameters are inconsistent, the routine returns
a non-zero error code.

2.1.7 glp gridgen—grid-like network problem generator

Synopsis

int glp_gridgen(glp_graph *G, int v_rhs, int a_cap, int a_cost,
const int parm[1+14]);

Description

The routine glp_gridgen is a GLPK version of the grid-like network prob-
lem generator developed by Yusin Lee and Jim Orlin.5

5Y. Lee and J. Orlin. GRIDGEN generator., 1991. The original code is publically avail-
able from <ftp://dimacs.rutgers.edu/pub/netflow/generators/network/gridgen>.

38

The parameter G specifies the graph object, to which the generated prob-
lem data have to be stored. Note that on entry the graph object is erased
with the routine glp_erase_graph.

The parameter v_rhs specifies an offset of the field of type double in the
vertex data block, to which the routine stores the supply or demand value.
If v_rhs < 0, the value is not stored.

The parameter a_cap specifies an offset of the field of type double in
the arc data block, to which the routine stores the arc capacity. If a_cap
< 0, the capacity is not stored.

The parameter a_cost specifies an offset of the field of type double in
the arc data block, to which the routine stores the per-unit cost if the arc
flow. If a_cost < 0, the cost is not stored.

The array parm contains parameters of the network to be generated:
parm[0] not used
parm[1] two-ways arcs indicator:

1 — if links in both direction should be generated
0 — otherwise

parm[2] random number seed (a positive integer)
parm[3] number of nodes (the number of nodes generated might be

slightly different to make the network a grid)
parm[4] grid width
parm[5] number of sources
parm[6] number of sinks
parm[7] average degree
parm[8] total flow
parm[9] distribution of arc costs:

1 — uniform
2 — exponential

parm[10] lower bound for arc cost (uniform)
100λ (exponential)

parm[11] upper bound for arc cost (uniform)
not used (exponential)

parm[12] distribution of arc capacities:
1 — uniform
2 — exponential

parm[13] lower bound for arc capacity (uniform)
100λ (exponential)

parm[14] upper bound for arc capacity (uniform)
not used (exponential)

39

Returns

If the instance was successfully generated, the routine glp_gridgen returns
zero; otherwise, if specified parameters are inconsistent, the routine returns
a non-zero error code.

Comments6

This network generator generates a grid-like network plus a super node. In
additional to the arcs connecting the nodes in the grid, there is an arc from
each supply node to the super node and from the super node to each demand
node to guarantee feasiblity. These arcs have very high costs and very big
capacities.

The idea of this network generator is as follows: First, a grid of n1×n2 is
generated. For example, 5× 3. The nodes are numbered as 1 to 15, and the
supernode is numbered as n1×n2+1. Then arcs between adjacent nodes are
generated. For these arcs, the user is allowed to specify either to generate
two-way arcs or one-way arcs. If two-way arcs are to be generated, two arcs,
one in each direction, will be generated between each adjacent node pairs.
Otherwise, only one arc will be generated. If this is the case, the arcs will
be generated in alterntive directions as shown below.

1 //

��

2 // 3 //

��

4 // 5

��
6

��

7oo

OO

8oo

��

9oo

OO

10oo

��
11 // 12 //

OO

13 // 14 //

OO

15

Then the arcs between the super node and the source/sink nodes are
added as mentioned before. If the number of arcs still doesn’t reach the
requirement, additional arcs will be added by uniformly picking random
node pairs. There is no checking to prevent multiple arcs between any pair
of nodes. However, there will be no self-arcs (arcs that poins back to its tail
node) in the network.

The source and sink nodes are selected uniformly in the network, and
the imbalances of each source/sink node are also assigned by uniform dis-
tribution.

6This material is based on comments to the original version of GRIDGEN.

40

2.2 Maximum flow problem

2.2.1 Background

The maximum flow problem (MAXFLOW) is stated as follows. Let there be
given a directed graph (flow network) G = (V,A), where V is a set of vertices
(nodes), and A ⊆ V × V is a set of arcs. Let also for each arc a = (i, j) ∈ A
there be given its capacity uij . The problem is, for given source node s ∈ V
and sink node t ∈ V , to find flows xij through every arc of the network,
which satisfy the specified arc capacities and the conservation constraints
at all nodes, and maximize the total flow F through the network from s
to t. Here the conservation constraint at a node means that the total flow
entering this node through its incoming arcs (plus F , if it is the source node)
must be equal to the total flow leaving this node through its outgoing arcs
(plus F , if it is the sink node).

An example of the maximum flow problem, where s = v1 and t = v9, is
shown on Fig. 2.

F

�� �O
�O
�O

v2 10 //

9

��

v3

12

��

18 // v8

20
MMMMM

&&MMMMM

v1

14qqqqq

88qqqqq

23
MMMMM

&&MMMMM

v6

7

��

8

OO

v9

�� �O
�O
�O

v4 26 // v5

11;;;;;;;;

]];;;;;;;;

25qqqqq

88qqqqq

4 // v7

15qqqqq

88qqqqq

F

Fig. 2. An example of the maximum flow problem.

The maximum flow problem can be naturally formulated as the following
LP problem:

maximize
F (4)

subject to

∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji =

+F, for i = s

0, for all i ∈ V \{s, t}
−F, for i = t

(5)

0 ≤ xij ≤ uij for all (i, j) ∈ A (6)

where F ≥ 0 is an additional variable playing the role of the objective.

41

Another LP formulation of the maximum flow problem, which does not
include the variable F , is the following:

maximize

z =
∑

(s,j)∈A

xsj −
∑

(j,s)∈A

xjs (= F) (7)

subject to

∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji

≥ 0, for i = s
= 0, for all i ∈ V \{s, t}
≤ 0, for i = t

(8)

0 ≤ xij ≤ uij for all (i, j) ∈ A (9)

2.2.2 glp read maxflow—read maximum flow problem data
in DIMACS format

Synopsis

int glp_read_maxflow(glp_graph *G, int *s, int *t, int a_cap,
const char *fname);

Description

The routine glp_read_maxflow reads the maximum flow problem data from
a text file in DIMACS format.

The parameter G specifies the graph object, to which the problem data
have to be stored. Note that before reading data the current content of the
graph object is completely erased with the routine glp_erase_graph.

The pointer s specifies a location, to which the routine stores the ordinal
number of the source node. If s is NULL, the source node number is not
stored.

The pointer t specifies a location, to which the routine stores the ordinal
number of the sink node. If t is NULL, the sink node number is not stored.

The parameter a_cap specifies an offset of the field of type double in the
arc data block, to which the routine stores uij , the arc capacity. If a_cap
< 0, the arc capacity is not stored.

The character string fname specifies the name of a text file to be read
in. (If the file name name ends with the suffix ‘.gz’, the file is assumed to
be compressed, in which case the routine decompresses it “on the fly”.)

42

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints
an error message and returns non-zero.

Example

typedef struct

{ /* arc data block */

...

double cap;

...

} a_data;

int main(void)

{ glp_graph *G;

int s, t, ret;

G = glp_create_graph(..., sizeof(a_data));

ret = glp_read_maxflow(G, &s, &t, offsetof(a_data, cap),

"sample.max");

if (ret != 0) goto ...

...

}

DIMACS maximum flow problem format7

The DIMACS input file is a plain ASCII text file. It contains lines of several
types described below. A line is terminated with an end-of-line character.
Fields in each line are separated by at least one blank space. Each line
begins with a one-character designator to identify the line type.

Note that DIMACS requires all numerical quantities to be integers in the
range [−231, 231− 1] while GLPK allows the quantities to be floating-point
numbers.

Comment lines. Comment lines give human-readable information about
the file and are ignored by programs. Comment lines can appear anywhere
in the file. Each comment line begins with a lower-case character c.

c This is a comment line

7This material is based on the paper “The First DIMACS International Algorithm
Implementation Challenge: Problem Definitions and Specifications”, which is publically
available at http://dimacs.rutgers.edu/Challenges/.

43

Problem line. There is one problem line per data file. The problem line
must appear before any node or arc descriptor lines. It has the following
format:

p max NODES ARCS

The lower-case character p signifies that this is a problem line. The three-
character problem designator max identifies the file as containing specifica-
tion information for the maximum flow problem. The NODES field contains
an integer value specifying the number of nodes in the network. The ARCS
field contains an integer value specifying the number of arcs in the network.

Node descriptors. Two node descriptor lines for the source and sink
nodes must appear before all arc descriptor lines. They may appear in
either order, each with the following format:

n ID WHICH

The lower-case character n signifies that this a node descriptor line. The ID
field gives a node identification number, an integer between 1 and NODES.
The WHICH field gives either a lower-case s or t, designating the source and
sink, respectively.

Arc descriptors. There is one arc descriptor line for each arc in the
network. Arc descriptor lines are of the following format:

a SRC DST CAP

The lower-case character a signifies that this is an arc descriptor line. For a
directed arc (i, j) the SRC field gives the identification number i for the tail
endpoint, and the DST field gives the identification number j for the head
endpoint. Identification numbers are integers between 1 and NODES. The
CAP field gives the arc capacity, i.e. maximum amount of flow that can be
sent along arc (i, j) in a feasible flow.

Example. Below here is an example of the data file in DIMACS format
corresponding to the maximum flow problem shown on Fig 2.

44

c sample.max

c

c This is an example of the maximum flow problem data

c in DIMACS format.

c

p max 9 14

c

n 1 s

n 9 t

c

a 1 2 14

a 1 4 23

a 2 3 10

a 2 4 9

a 3 5 12

a 3 8 18

a 4 5 26

a 5 2 11

a 5 6 25

a 5 7 4

a 6 7 7

a 6 8 8

a 7 9 15

a 8 9 20

c

c eof

2.2.3 glp write maxflow—write maximum flow problem data
in DIMACS format

Synopsis

int glp_write_maxflow(glp_graph *G, int s, int t, int a_cap,
const char *fname);

Description

The routine glp_write_maxflow writes the maximum flow problem data to
a text file in DIMACS format.

The parameter G is the graph (network) program object, which specifies
the maximum flow problem instance.

The parameter s specifies the ordinal number of the source node.
The parameter t specifies the ordinal number of the sink node.
The parameter a_cap specifies an offset of the field of type double in

the arc data block, which contains uij , the upper bound to the arc flow (the

45

arc capacity). If the upper bound is specified as DBL_MAX, it is assumed that
uij = ∞, i.e. the arc is uncapacitated. If a_cap < 0, it is assumed that
uij = 1 for all arcs.

The character string fname specifies a name of the text file to be writ-
ten out. (If the file name ends with suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine performs automatic compression on
writing it.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints
an error message and returns non-zero.

2.2.4 glp maxflow lp—convert maximum flow problem to LP

Synopsis

void glp_maxflow_lp(glp_prob *lp, glp_graph *G, int names,
int s, int t, int a_cap);

Description

The routine glp_maxflow_lp builds LP problem (7)—(9), which corre-
sponds to the specified maximum flow problem.

The parameter lp is the resultant LP problem object to be built. Note
that on entry its current content is erased with the routine glp_erase_prob.

The parameter G is the graph (network) program object, which specifies
the maximum flow problem instance.

The parameter names is a flag. If it is GLP_ON, the routine uses symbolic
names of the graph object components to assign symbolic names to the LP
problem object components. If the flag is GLP_OFF, no symbolic names are
assigned.

The parameter s specifies the ordinal number of the source node.
The parameter t specifies the ordinal number of the sink node.
The parameter a_cap specifies an offset of the field of type double in

the arc data block, which contains uij , the upper bound to the arc flow (the
arc capacity). If the upper bound is specified as DBL_MAX, it is assumed that
uij = ∞, i.e. the arc is uncapacitated. If a_cap < 0, it is assumed that
uij = 1 for all arcs.

46

Example

The example program below reads the maximum flow problem in DIMACS
format from file ‘sample.max’, converts the instance to LP, and then writes
the resultant LP in CPLEX format to file ‘maxflow.lp’.

#include <stddef.h>

#include <glpk.h>

int main(void)

{ glp_graph *G;

glp_prob *lp;

int s, t;

G = glp_create_graph(0, sizeof(double));

glp_read_maxflow(G, &s, &t, 0, "sample.max");

lp = glp_create_prob();

glp_maxflow_lp(lp, G, GLP_ON, s, t, 0);

glp_delete_graph(G);

glp_write_lp(lp, NULL, "maxflow.lp");

glp_delete_prob(lp);

return 0;

}

If ‘sample.max’ is the example data file from the previous subsection,
the output ‘maxflow.lp’ may look like follows:

Maximize

obj: + x(1,4) + x(1,2)

Subject To

r_1: + x(1,2) + x(1,4) >= 0

r_2: - x(5,2) + x(2,3) + x(2,4) - x(1,2) = 0

r_3: + x(3,5) + x(3,8) - x(2,3) = 0

r_4: + x(4,5) - x(2,4) - x(1,4) = 0

r_5: + x(5,2) + x(5,6) + x(5,7) - x(4,5) - x(3,5) = 0

r_6: + x(6,7) + x(6,8) - x(5,6) = 0

r_7: + x(7,9) - x(6,7) - x(5,7) = 0

r_8: + x(8,9) - x(6,8) - x(3,8) = 0

r_9: - x(8,9) - x(7,9) <= 0

Bounds

0 <= x(1,4) <= 23

0 <= x(1,2) <= 14

0 <= x(2,4) <= 9

0 <= x(2,3) <= 10

0 <= x(3,8) <= 18

0 <= x(3,5) <= 12

0 <= x(4,5) <= 26

47

0 <= x(5,7) <= 4

0 <= x(5,6) <= 25

0 <= x(5,2) <= 11

0 <= x(6,8) <= 8

0 <= x(6,7) <= 7

0 <= x(7,9) <= 15

0 <= x(8,9) <= 20

End

2.2.5 glp maxflow ffalg—solve maximum flow problem with
Ford-Fulkerson algorithm

Synopsis

int glp_maxflow_ffalg(glp_graph *G, int s, int t, int a_cap,
double *sol, int a_x, int v_cut);

Description

The routine glp_mincost_ffalg finds optimal solution to the maximum
flow problem with the Ford-Fulkerson algorithm.8 Note that this routine
requires all the problem data to be integer-valued.

The parameter G is a graph (network) program object which specifies
the maximum flow problem instance to be solved.

The parameter s specifies the ordinal number of the source node.
The parameter t specifies the ordinal number of the sink node.
The parameter a_cap specifies an offset of the field of type double in the

arc data block, which contains uij , the upper bound to the arc flow (the arc
capacity). This bound must be integer in the range [0, INT_MAX]. If a_cap
< 0, it is assumed that uij = 1 for all arcs.

The parameter sol specifies a location, to which the routine stores the
objective value (that is, the total flow from s to t) found. If sol is NULL,
the objective value is not stored.

The parameter a_x specifies an offset of the field of type double in the
arc data block, to which the routine stores xij , the arc flow found. If a_x
< 0, the arc flow values are not stored.

The parameter v_cut specifies an offset of the field of type int in the
vertex data block, to which the routine stores node flags corresponding to

8GLPK implementation of the Ford-Fulkerson algorithm is based on the following book:
L. R. Ford, Jr., and D. R. Fulkerson, “Flows in Networks,” The RAND Corp., Report
R-375-PR (August 1962), Chap. I “Static Maximal Flow,” pp. 30-33.

48

the optimal solution found: if the node flag is 1, the node is labelled, and if
the node flag is 0, the node is unlabelled. The calling program may use these
node flags to determine the minimal cut, which is a subset of arcs whose one
endpoint is labelled and other is not. If v_cut < 0, the node flags are not
stored.

Note that all solution components (the objective value and arc flows)
computed by the routine are always integer-valued.

Returns

0 Optimal solution found.
GLP_EDATA Unable to start the search, because some problem data are

either not integer-valued or out of range.

Example

The example program shown below reads the maximum flow problem in-
stance in DIMACS format from file ‘sample.max’, solves it using the routine
glp_maxflow_ffalg, and write the solution found to the standard output.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { int cut; } v_data;

typedef struct { double cap, x; } a_data;

#define node(v) ((v_data *)((v)->data))

#define arc(a) ((a_data *)((a)->data))

int main(void)

{ glp_graph *G;

glp_vertex *v, *w;

glp_arc *a;

int i, s, t, ret;

double sol;

G = glp_create_graph(sizeof(v_data), sizeof(a_data));

glp_read_maxflow(G, &s, &t, offsetof(a_data, cap),

"sample.max");

ret = glp_maxflow_ffalg(G, s, t, offsetof(a_data, cap),

&sol, offsetof(a_data, x), offsetof(v_data, cut));

printf("ret = %d; sol = %5g\n", ret, sol);

for (i = 1; i <= G->nv; i++)

{ v = G->v[i];

for (a = v->out; a != NULL; a = a->t_next)

49

{ w = a->head;

printf("x[%d->%d] = %5g (%d)\n", v->i, w->i,

arc(a)->x, node(v)->cut ^ node(w)->cut);

}

}

glp_delete_graph(G);

return 0;

}

If ‘sample.max’ is the example data file from the subsection describing
the routine glp_read_maxflow, the output may look like follows:

Reading maximum flow problem data from ‘sample.max’...

Flow network has 9 nodes and 14 arcs

24 lines were read

ret = 0; sol = 29

x[1->4] = 19 (0)

x[1->2] = 10 (0)

x[2->4] = 0 (0)

x[2->3] = 10 (1)

x[3->8] = 10 (0)

x[3->5] = 0 (1)

x[4->5] = 19 (0)

x[5->7] = 4 (1)

x[5->6] = 15 (0)

x[5->2] = 0 (0)

x[6->8] = 8 (1)

x[6->7] = 7 (1)

x[7->9] = 11 (0)

x[8->9] = 18 (0)

50

2.2.6 glp rmfgen—Goldfarb’s maximum flow problem gen-
erator

Synopsis

int glp_rmfgen(glp_graph *G, int *s, int *t, int a_cap,
const int parm[1+5]);

Description

The routine glp_rmfgen is a GLPK version of the maximum flow problem
generator developed by D. Goldfarb and M. Grigoriadis.9,10,11

The parameter G specifies the graph object, to which the generated prob-
lem data have to be stored. Note that on entry the graph object is erased
with the routine glp_erase_graph.

The pointers s and t specify locations, to which the routine stores the
source and sink node numbers, respectively. If s or t is NULL, corresponding
node number is not stored.

The parameter a_cap specifies an offset of the field of type double in
the arc data block, to which the routine stores the arc capacity. If a_cap
< 0, the capacity is not stored.

The array parm contains description of the network to be generated:
parm[0] not used
parm[1] seed random number seed (a positive integer)
parm[2] a frame size
parm[3] b depth
parm[4] c1 minimal arc capacity
parm[5] c2 maximal arc capacity

Returns

If the instance was successfully generated, the routine glp_netgen returns
zero; otherwise, if specified parameters are inconsistent, the routine returns
a non-zero error code.

9D. Goldfarb and M. D. Grigoriadis, “A computational comparison of the Dinic and
network simplex methods for maximum flow.” Annals of Op. Res. 13 (1988), pp. 83-123.

10U. Derigs and W. Meier, “Implementing Goldberg’s max-flow algorithm: A computa-
tional investigation.” Zeitschrift für Operations Research 33 (1989), pp. 383-403.

11The original code of RMFGEN implemented by Tamas Badics is publically available
from <ftp://dimacs.rutgers.edu/pub/netflow/generators/network/genrmf>.

51

Comments12

The generated network is as follows. It has b pieces of frames of size a× a.
(So alltogether the number of vertices is a× a× b.)

In each frame all the vertices are connected with their neighbours (forth
and back). In addition the vertices of a frame are connected one to one with
the vertices of next frame using a random permutation of those vertices.

The source is the lower left vertex of the first frame, the sink is the upper
right vertex of the b-th frame.

t
+-------+
| .|
| . |

/ | / |
+-------+/ -+ b
| | |/.

a | -v- |/
| | |/
+-------+ 1
s a

The capacities are randomly chosen integers from the range of [c1, c2] in
the case of interconnecting edges, and c2 · a2 for the in-frame edges.

12This material is based on comments to the original version of RMFGEN.

52

2.3 Assignment problem

2.3.1 Background

Let there be given an undirected bipartite graph G = (R ∪ S,E), where R
and S are disjoint sets of vertices (nodes), and E ⊆ R× S is a set of edges.
Let also for each edge e = (i, j) ∈ E there be given its cost cij . A matching
(which in case of bipartite graph is also called assignment) M ⊆ E in G
is a set of pairwise non-adjacent edges, that is, no two edges in M share
a common vertex. A matching, which matches all vertices of the graph, is
called a perfect matching. Obviously, a perfect matching in bipartite graph
G = (R ∪ S,E) defines some bijection R↔ S.

The assignment problem has two different variants. In the first variant
the problem is to find matching (assignment) M , which maximizes the sum:∑

(i,j)∈M

cij (10)

(so this variant is also called the maximum weighted bipartite matching prob-
lem or, if all cij = 1, the maximum cardinality bipartite matching problem).
In the second, classic variant the problem is to find perfect matching (as-
signment) M , which minimizes or maximizes the sum (10).

An example of the assignment problem, which is the maximum weighted
bipartite matching problem, is shown on Fig. 3.

The maximum weighted bipartite matching problem can be naturally
formulated as the following LP problem:

maximize
z =

∑
(i,j)∈E

cijxij (11)

subject to ∑
(i,j)∈E

xij ≤ 1 for all i ∈ R (12)

∑
(i,j)∈E

xij ≤ 1 for all j ∈ S (13)

0 ≤ xij ≤ 1 for all (i, j) ∈ E (14)

where xij = 1 means that (i, j) ∈M , and xij = 0 means that (i, j) /∈M .13

13The constraint matrix of LP formulation (11)—(14) is totally unimodular, due to
which xij ∈ {0, 1} for any basic solution.

53

v1 13

21
UUUUUUUUUUU

UUUUUUUUUU
20

BBBBB

BBBBBBBBBBBBBBBBBBBBBBBB

v9

v2 12

8
LLLLLLL

LLLLLLLLLLLLLLLLL

26
BBBBBBBBBBB

BBBBBBBBBBBBBBBBBB

v10

v3 22

11
LLLLLL

LLLLLLLLLLLLLLLLL

v11

v4

12||||||||||||||||||

|||||||||||

36

25
LLLLLLLLLLLLLLLLL

LLLLLL

v12

v5

41rrrrrrrrrr

rrrrrrrrrrrrrr

40iiiiiiii

iiiiiiiiiiiii

11

4
UUUUUUUUUUUUU

UUUUUUUU

8
LLLLLLLLLLLL

LLLLLLLLLLLL

35
BBBBBBBBBBBBBB

BBBBBBBBBBBBBB

32

99999999999999999

99999999999999999

v13

v6

13

v14

v7

19

v15

v8

39

15

v16

v17

Fig. 3. An example of the assignment problem.

Similarly, the perfect assignment problem can be naturally formulated
as the following LP problem:

minimize (or maximize)

z =
∑

(i,j)∈E

cijxij (15)

subject to ∑
(i,j)∈E

xij = 1 for all i ∈ R (16)

∑
(i,j)∈E

xij = 1 for all j ∈ S (17)

0 ≤ xij ≤ 1 for all (i, j) ∈ E (18)

where variables xij have the same meaning as for (11)—(14) above.

54

In GLPK an undirected bipartite graph G = (R∪S,E) is represented as
directed graph G = (V,A), where V = R ∪ S and A = {(i, j) : (i, j) ∈ E},
i.e. every edge (i, j) ∈ E in G corresponds to arc (i→ j) ∈ A in G.

2.3.2 glp read asnprob—read assignment problem data in
DIMACS format

Synopsis

int glp_read_asnprob(glp_graph *G, int v_set, int a_cost,
const char *fname);

Description

The routine glp_read_asnprob reads the assignment problem data from a
text file in DIMACS format.

The parameter G specifies the graph object, to which the problem data
have to be stored. Note that before reading data the current content of the
graph object is completely erased with the routine glp_erase_graph.

The parameter v_set specifies an offset of the field of type int in the
vertex data block, to which the routine stores the node set indicator:

0 — the node is in set R;
1 — the node is in set S.

If v_set < 0, the node set indicator is not stored.
The parameter a_cost specifies an offset of the field of type double in

the arc data block, to which the routine stores the edge cost cij . If a_cost
< 0, the edge cost is not stored.

The character string fname specifies the name of a text file to be read
in. (If the file name name ends with the suffix ‘.gz’, the file is assumed to
be compressed, in which case the routine decompresses it “on the fly”.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints
an error message and returns non-zero.

55

Example

typedef struct

{ /* vertex data block */

...

int set;

...

} v_data;

typedef struct

{ /* arc data block */

...

double cost;

...

} a_data;

int main(void)

{ glp_graph *G;

int ret;

G = glp_create_graph(sizeof(v_data), sizeof(a_data));

ret = glp_read_asnprob(G, offsetof(v_data, set),

offsetof(a_data, cost), "sample.asn");

if (ret != 0) goto ...

...

}

DIMACS assignment problem format14

The DIMACS input file is a plain ASCII text file. It contains lines of several
types described below. A line is terminated with an end-of-line character.
Fields in each line are separated by at least one blank space. Each line
begins with a one-character designator to identify the line type.

Note that DIMACS requires all numerical quantities to be integers in the
range [−231, 231− 1] while GLPK allows the quantities to be floating-point
numbers.

Comment lines. Comment lines give human-readable information about
the file and are ignored by programs. Comment lines can appear anywhere
in the file. Each comment line begins with a lower-case character c.

c This is a comment line

14This material is based on the paper “The First DIMACS International Algorithm
Implementation Challenge: Problem Definitions and Specifications”, which is publically
available at http://dimacs.rutgers.edu/Challenges/.

56

Problem line. There is one problem line per data file. The problem line
must appear before any node or arc descriptor lines. It has the following
format:

p asn NODES EDGES

The lower-case character p signifies that this is a problem line. The three-
character problem designator asn identifies the file as containing specifica-
tion information for the assignment problem. The NODES field contains an
integer value specifying the total number of nodes in the graph (i.e. in both
sets R and S). The EDGES field contains an integer value specifying the
number of edges in the graph.

Node descriptors. All node descriptor lines must appear before all edge
descriptor lines. The node descriptor lines lists the nodes in set R only, and
all other nodes are assumed to be in set S. There is one node descriptor line
for each such node, with the following format:

n ID

The lower-case character n signifies that this is a node descriptor line. The
ID field gives a node identification number, an integer between 1 and NODES.

Edge descriptors. There is one edge descriptor line for each edge in the
graph. Edge descriptor lines are of the following format:

a SRC DST COST

The lower-case character a signifies that this is an edge descriptor line. For
each edge (i, j), where i ∈ R and j ∈ S, the SRC field gives the identification
number of vertex i, and the DST field gives the identification number of vertex
j. Identification numbers are integers between 1 and NODES. The COST field
contains the cost of edge (i, j).

Example. Below here is an example of the data file in DIMACS format
corresponding to the assignment problem shown on Fig 3.

57

c sample.asn

c

c This is an example of the assignment problem data

c in DIMACS format.

c

p asn 17 22

c

n 1

n 2

n 3

n 4

n 5

n 6

n 7

n 8

c

a 1 9 13

a 1 10 21

a 1 12 20

a 2 10 12

a 2 12 8

a 2 13 26

a 3 11 22

a 3 13 11

a 4 9 12

a 4 12 36

a 4 14 25

a 5 11 41

a 5 12 40

a 5 13 11

a 5 14 4

a 5 15 8

a 5 16 35

a 5 17 32

a 6 9 13

a 7 10 19

a 8 10 39

a 8 11 15

c

c eof

58

2.3.3 glp write asnprob—write assignment problem data in
DIMACS format

Synopsis

int glp_write_asnprob(glp_graph *G, int v_set, int a_cost,
const char *fname);

Description

The routine glp_write_asnprob writes the assignment problem data to a
text file in DIMACS format.

The parameter G is the graph program object, which specifies the assign-
ment problem instance.

The parameter v_set specifies an offset of the field of type int in the
vertex data block, which contains the node set indicator:

0 — the node is in set R;
1 — the node is in set S.

If v_set < 0, it is assumed that a node having no incoming arcs is in set R,
and a node having no outgoing arcs is in set S.

The parameter a_cost specifies an offset of the field of type double in
the arc data block, which contains cij , the edge cost. If a_cost < 0, it is
assumed that cij = 1 for all edges.

The character string fname specifies a name of the text file to be writ-
ten out. (If the file name ends with suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine performs automatic compression on
writing it.)

Note

The routine glp_write_asnprob does not check that the specified graph
object correctly represents a bipartite graph. To make sure that the problem
data are correct, use the routine glp_check_asnprob.

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints
an error message and returns non-zero.

59

2.3.4 glp check asnprob—check correctness of assignment prob-
lem data

Synopsis

int glp_check_asnprob(glp_graph *G, int v_set);

Description

The routine glp_check_asnprob checks that the specified graph object G
correctly represents a bipartite graph.

The parameter v_set specifies an offset of the field of type int in the
vertex data block, which contains the node set indicator:

0 — the node is in set R;
1 — the node is in set S.

If v_set < 0, it is assumed that a node having no incoming arcs is in set R,
and a node having no outgoing arcs is in set S.

Returns

The routine glp_check_asnprob may return the following codes:
0 — the data are correct;
1 — the set indicator of some node is 0, however, that node has one or

more incoming arcs;
2 — the set indicator of some node is 1, however, that node has one or

more outgoing arcs;
3 — the set indicator of some node is invalid (neither 0 nor 1);
4 — some node has both incoming and outgoing arcs.

2.3.5 glp asnprob lp—convert assignment problem to LP

Synopsis

int glp_asnprob_lp(glp_prob *P, int form, glp_graph *G,
int names, int v_set, int a_cost);

Description

The routine glp_asnprob_lp builds LP problem, which corresponds to the
specified assignment problem.

The parameter lp is the resultant LP problem object to be built. Note
that on entry its current content is erased with the routine glp_erase_prob.

60

The parameter form defines which LP formulation should be used:
GLP_ASN_MIN — perfect matching (15)—(18), minimization;
GLP_ASN_MAX — perfect matching (15)—(18), maximization;
GLP_ASN_MMP — maximum weighted matching (11)—(14).
The parameter G is the graph program object, which specifies the assign-

ment problem instance.
The parameter names is a flag. If it is GLP_ON, the routine uses symbolic

names of the graph object components to assign symbolic names to the LP
problem object components. If the flag is GLP_OFF, no symbolic names are
assigned.

The parameter v_set specifies an offset of the field of type int in the
vertex data block, which contains the node set indicator:

0 — the node is in set R;
1 — the node is in set S.

If v_set < 0, it is assumed that a node having no incoming arcs is in set R,
and a node having no outgoing arcs is in set S.

The parameter a_cost specifies an offset of the field of type double in
the arc data block, which contains cij , the edge cost. If a_cost < 0, it is
assumed that cij = 1 for all edges.

Returns

If the LP problem has been successfully built, the routine glp_asnprob_lp
returns zero, otherwise, non-zero (see the routine glp_check_asnprob).

Example

The example program below reads the assignment problem instance in DI-
MACS format from file ‘sample.asn’, converts the instance to LP (11)—
(14), and writes the resultant LP in CPLEX format to file ‘matching.lp’.

#include <stddef.h>

#include <glpk.h>

typedef struct { int set; } v_data;

typedef struct { double cost; } a_data;

int main(void)

{ glp_graph *G;

glp_prob *P;

G = glp_create_graph(sizeof(v_data), sizeof(a_data));

glp_read_asnprob(G, offsetof(v_data, set),

offsetof(a_data, cost), "sample.asn");

61

P = glp_create_prob();

glp_asnprob_lp(P, GLP_ASN_MMP, G, GLP_ON,

offsetof(v_data, set), offsetof(a_data, cost));

glp_delete_graph(G);

glp_write_lp(P, NULL, "matching.lp");

glp_delete_prob(P);

return 0;

}

If ‘sample.asn’ is the example data file from the subsection describing
the routine glp_read_asnprob, file ‘matching.lp’ may look like follows:

Maximize

obj: + 20 x(1,12) + 21 x(1,10) + 13 x(1,9) + 26 x(2,13) + 8 x(2,12)

+ 12 x(2,10) + 11 x(3,13) + 22 x(3,11) + 25 x(4,14) + 36 x(4,12)

+ 12 x(4,9) + 32 x(5,17) + 35 x(5,16) + 8 x(5,15) + 4 x(5,14)

+ 11 x(5,13) + 40 x(5,12) + 41 x(5,11) + 13 x(6,9) + 19 x(7,10)

+ 15 x(8,11) + 39 x(8,10)

Subject To

r_1: + x(1,9) + x(1,10) + x(1,12) <= 1

r_2: + x(2,10) + x(2,12) + x(2,13) <= 1

r_3: + x(3,11) + x(3,13) <= 1

r_4: + x(4,9) + x(4,12) + x(4,14) <= 1

r_5: + x(5,11) + x(5,12) + x(5,13) + x(5,14) + x(5,15) + x(5,16)

+ x(5,17) <= 1

r_6: + x(6,9) <= 1

r_7: + x(7,10) <= 1

r_8: + x(8,10) + x(8,11) <= 1

r_9: + x(6,9) + x(4,9) + x(1,9) <= 1

r_10: + x(8,10) + x(7,10) + x(2,10) + x(1,10) <= 1

r_11: + x(8,11) + x(5,11) + x(3,11) <= 1

r_12: + x(5,12) + x(4,12) + x(2,12) + x(1,12) <= 1

r_13: + x(5,13) + x(3,13) + x(2,13) <= 1

r_14: + x(5,14) + x(4,14) <= 1

r_15: + x(5,15) <= 1

r_16: + x(5,16) <= 1

r_17: + x(5,17) <= 1

Bounds

0 <= x(1,12) <= 1

0 <= x(1,10) <= 1

0 <= x(1,9) <= 1

0 <= x(2,13) <= 1

0 <= x(2,12) <= 1

0 <= x(2,10) <= 1

0 <= x(3,13) <= 1

0 <= x(3,11) <= 1

0 <= x(4,14) <= 1

62

0 <= x(4,12) <= 1

0 <= x(4,9) <= 1

0 <= x(5,17) <= 1

0 <= x(5,16) <= 1

0 <= x(5,15) <= 1

0 <= x(5,14) <= 1

0 <= x(5,13) <= 1

0 <= x(5,12) <= 1

0 <= x(5,11) <= 1

0 <= x(6,9) <= 1

0 <= x(7,10) <= 1

0 <= x(8,11) <= 1

0 <= x(8,10) <= 1

End

2.3.6 glp asnprob okalg—solve assignment problem with out-
of-kilter algorithm

Synopsis

int glp_asnprob_okalg(int form, glp_graph *G, int v_set,
int a_cost, double *sol, int a_x);

Description

The routine glp_mincost_okalg finds optimal solution to the assignment
problem with the out-of-kilter algorithm.15 Note that this routine requires
all the problem data to be integer-valued.

The parameter form defines which LP formulation should be used:
GLP_ASN_MIN — perfect matching (15)—(18), minimization;
GLP_ASN_MAX — perfect matching (15)—(18), maximization;
GLP_ASN_MMP — maximum weighted matching (11)—(14).
The parameter G is the graph program object, which specifies the assign-

ment problem instance.
The parameter v_set specifies an offset of the field of type int in the

vertex data block, which contains the node set indicator:
0 — the node is in set R;
1 — the node is in set S.

15GLPK implementation of the out-of-kilter algorithm is based on the following book:
L. R. Ford, Jr., and D. R. Fulkerson, “Flows in Networks,” The RAND Corp., Report
R-375-PR (August 1962), Chap. III “Minimal Cost Flow Problems,” pp. 113-26.

63

If v_set < 0, it is assumed that a node having no incoming arcs is in set R,
and a node having no outgoing arcs is in set S.

The parameter a_cost specifies an offset of the field of type double in
the arc data block, which contains cij , the edge cost. This value must be
integer in the range [-INT_MAX, +INT_MAX]. If a_cost < 0, it is assumed that
cij = 1 for all edges.

The parameter sol specifies a location, to which the routine stores the
objective value (that is, the total cost) found. If sol is NULL, the objective
value is not stored.

The parameter a_x specifies an offset of the field of type int in the arc
data block, to which the routine stores xij . If a_x < 0, this value is not
stored.

Returns

0 Optimal solution found.
GLP_ENOPFS No (primal) feasible solution exists.
GLP_EDATA Unable to start the search, because the assignment prob-

lem data are either incorrect (this error is detected by the
routine glp_check_asnprob), not integer-valued or out of
range.

GLP_ERANGE The search was prematurely terminated because of integer
overflow.

GLP_EFAIL An error has been detected in the program logic. (If this
code is returned for your problem instance, please report
to <bug-glpk@gnu.org>.)

Comments

Since the out-of-kilter algorithm is designed to find a minimal cost circu-
lation, the routine glp_asnprob_okalg converts the original graph to a
network suitable for this algorithm in the following way:16

1) it replaces each edge (i, j) by arc (i → j), flow xij through which
has zero lower bound (lij = 0), unity upper bound (uij = 1), and per-unit
cost +cij (in case of GLP_ASN_MIN), or −cij (in case of GLP_ASN_MAX and
GLP_ASN_MMP);

2) then it adds one auxiliary feedback node k;

16The conversion is performed internally and does not change the original graph program
object passed to the routine.

64

3) for each original node i ∈ R the routine adds auxiliary supply arc
(k → i), flow xki through which is costless (cki = 0) and either fixed at 1
(lki = uki = 1, in case of GLP_ASN_MIN and GLP_ASN_MAX) or has zero lower
bound and unity upper bound (lij = 0, uij = 1, in case of GLP_ASN_MMP);

4) similarly, for each original node j ∈ S the routine adds auxiliary
demand arc (j → k), flow xjk through which is costless (cjk = 0) and either
fixed at 1 (ljk = ujk = 1, in case of GLP_ASN_MIN and GLP_ASN_MAX) or
has zero lower bound and unity upper bound (ljk = 0, ujk = 1, in case of
GLP_ASN_MMP).

Example

The example program shown below reads the assignment problem instance
in DIMACS format from file ‘sample.asn’, solves it by using the routine
glp_asnprob_okalg, and writes the solution found to the standard output.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { int set; } v_data;

typedef struct { double cost; int x; } e_data;

#define node(v) ((v_data *)((v)->data))

#define edge(e) ((e_data *)((e)->data))

int main(void)

{ glp_graph *G;

glp_vertex *v;

glp_arc *e;

int i, ret;

double sol;

G = glp_create_graph(sizeof(v_data), sizeof(e_data));

glp_read_asnprob(G, offsetof(v_data, set),

offsetof(e_data, cost), "sample.asn");

ret = glp_asnprob_okalg(GLP_ASN_MMP, G,

offsetof(v_data, set), offsetof(e_data, cost), &sol,

offsetof(e_data, x));

printf("ret = %d; sol = %5g\n", ret, sol);

for (i = 1; i <= G->nv; i++)

{ v = G->v[i];

for (e = v->out; e != NULL; e = e->t_next)

printf("edge %2d %2d: x = %d; c = %g\n",

e->tail->i, e->head->i, edge(e)->x, edge(e)->cost);

}

65

glp_delete_graph(G);

return 0;

}

If ‘sample.asn’ is the example data file from the subsection describing
the routine glp_read_asnprob, the output may look like follows:

Reading assignment problem data from ‘sample.asn’...

Assignment problem has 8 + 9 = 17 nodes and 22 arcs

38 lines were read

ret = 0; sol = 180

edge 1 12: x = 1; c = 20

edge 1 10: x = 0; c = 21

edge 1 9: x = 0; c = 13

edge 2 13: x = 1; c = 26

edge 2 12: x = 0; c = 8

edge 2 10: x = 0; c = 12

edge 3 13: x = 0; c = 11

edge 3 11: x = 1; c = 22

edge 4 14: x = 1; c = 25

edge 4 12: x = 0; c = 36

edge 4 9: x = 0; c = 12

edge 5 17: x = 0; c = 32

edge 5 16: x = 1; c = 35

edge 5 15: x = 0; c = 8

edge 5 14: x = 0; c = 4

edge 5 13: x = 0; c = 11

edge 5 12: x = 0; c = 40

edge 5 11: x = 0; c = 41

edge 6 9: x = 1; c = 13

edge 7 10: x = 0; c = 19

edge 8 11: x = 0; c = 15

edge 8 10: x = 1; c = 39

66

2.3.7 glp asnprob hall—find bipartite matching of maximum
cardinality

Synopsis

int glp_asnprob_hall(glp_graph *G, int v_set, int a_x);

Description

The routine glp_asnprob_hall finds a matching of maximal cardinality in
the specified bipartite graph. It uses a version of the Fortran routine MC21A
developed by I. S. Duff17, which implements Hall’s algorithm.18

The parameter G is a pointer to the graph program object.
The parameter v_set specifies an offset of the field of type int in the

vertex data block, which contains the node set indicator:
0 — the node is in set R;
1 — the node is in set S.

If v_set < 0, it is assumed that a node having no incoming arcs is in set R,
and a node having no outgoing arcs is in set S.

The parameter a_x specifies an offset of the field of type int in the arc
data block, to which the routine stores xij . If a_x < 0, this value is not
stored.

Returns

The routine glp_asnprob_hall returns the cardinality of the matching
found. However, if the specified graph is incorrect (as detected by the rou-
tine glp_check_asnprob), this routine returns a negative value.

Comments

The same solution may be obtained with the routine glp_asnprob_okalg
(for LP formulation GLP_ASN_MMP and all edge costs equal to 1). However,
the routine glp_asnprob_hall is much faster.

17I. S. Duff, Algorithm 575: Permutations for zero-free diagonal, ACM Trans. on Math.
Softw. 7 (1981), pp. 387-390.

18M. Hall, “An Algorithm for Distinct Representatives,” Am. Math. Monthly 63 (1956),
pp. 716-717.

67

Example

The example program shown below reads the assignment problem instance
in DIMACS format from file ‘sample.asn’, finds a bipartite matching of
maximal cardinality by using the routine glp_asnprob_hall, and writes
the solution found to the standard output.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { int set; } v_data;

typedef struct { int x; } e_data;

#define node(v) ((v_data *)((v)->data))

#define edge(e) ((e_data *)((e)->data))

int main(void)

{ glp_graph *G;

glp_vertex *v;

glp_arc *e;

int i, card;

G = glp_create_graph(sizeof(v_data), sizeof(e_data));

glp_read_asnprob(G, offsetof(v_data, set), -1,

"sample.asn");

card = glp_asnprob_hall(G, offsetof(v_data, set),

offsetof(e_data, x));

printf("card = %d\n", card);

for (i = 1; i <= G->nv; i++)

{ v = G->v[i];

for (e = v->out; e != NULL; e = e->t_next)

printf("edge %2d %2d: x = %d\n",

e->tail->i, e->head->i, edge(e)->x);

}

glp_delete_graph(G);

return 0;

}

If ‘sample.asn’ is the example data file from the subsection describing
the routine glp_read_asnprob, the output may look like follows:

Reading assignment problem data from ‘sample.asn’...

Assignment problem has 8 + 9 = 17 nodes and 22 arcs

38 lines were read

card = 7

edge 1 12: x = 1

edge 1 10: x = 0

68

edge 1 9: x = 0

edge 2 13: x = 1

edge 2 12: x = 0

edge 2 10: x = 0

edge 3 13: x = 0

edge 3 11: x = 1

edge 4 14: x = 1

edge 4 12: x = 0

edge 4 9: x = 0

edge 5 17: x = 1

edge 5 16: x = 0

edge 5 15: x = 0

edge 5 14: x = 0

edge 5 13: x = 0

edge 5 12: x = 0

edge 5 11: x = 0

edge 6 9: x = 1

edge 7 10: x = 1

edge 8 11: x = 0

edge 8 10: x = 0

69

2.4 Critical path problem

2.4.1 Background

The critical path problem (CPP) is stated as follows. Let there be given a
project J , which a set of jobs (tasks, activities, etc.). Performing each job
i ∈ J requires time ti ≥ 0. Besides, over the set J there is given a precedence
relation R ⊆ J × J , where (i, j) ∈ R means that job i immediately precedes
job j, i.e. performing job j cannot start until job i has been completely
performed. The problem is to find starting times xi for each job i ∈ J ,
which satisfy to the precedence relation and minimize the total duration
(makespan) of the project.

The following is an example of the critical path problem:

Job Desription Time Predecessors
A Excavate 3 —
B Lay foundation 4 A
C Rough plumbing 3 B
D Frame 10 B
E Finish exterior 8 D
F Install HVAC 4 D
G Rough electric 6 D
H Sheet rock 8 C, E, F, G
I Install cabinets 5 H
J Paint 5 H
K Final plumbing 4 I
L Final electric 2 J
M Install flooring 4 K, L

Obviously, the project along with the precedence relation can be repre-
sented as a directed graph G = (J,R) called project network, where each
node i ∈ J corresponds to a job, and arc (i → j) ∈ R means that job i
immediately precedes job j.19 The project network for the example above
is shown on Fig. 4.

May note that the project network must be acyclic; otherwise, it would
be impossible to satisfy to the precedence relation for any job that belongs
to a cycle.

19There exists another network representation of the critical path problem, where jobs
correspond to arcs while nodes correspond to events introduced to express the precedence
relation. That representation, however, is much less convenient than the one, where jobs
are represented as nodes of the network.

70

C|3

!!DDDDDDDD
I|5 // K|4

""EEEEEEEE

A|3 // B|4

66lllllllllllllllll

""EEEEEEEE
E|8 // H|8

=={{{{{{{{

!!CCCCCCCC
M |4

D|10

<<yyyyyyyy
//

""EEEEEEEE
F |4

==zzzzzzzz
J |5 // L|2

<<zzzzzzzz

G|6

FF����������������

Fig. 4. An example of the project network.

The critical path problem can be naturally formulated as the following
LP problem:

minimize
z (19)

subject to
xi + ti ≤ z for all i ∈ J (20)

xi + ti ≤ xj for all (i, j) ∈ R (21)

xi ≥ 0 for all i ∈ J (22)

The inequality constraints (21), which are active in the optimal solution,
define so called critical path having the following property: the minimal
project duration z can be decreased only by decreasing the times tj for jobs
on the critical path, and delaying any critical job delays the entire project.

2.4.2 glp cpp—solve critical path problem

Synopsis

double glp_cpp(glp_graph *G, int v_t, int v_es, int v_ls);

Description

The routine glp_cpp solves the critical path problem represented in the form
of the project network.

The parameter G is a pointer to the graph object, which specifies the
project network. This graph must be acyclic. Multiple arcs are allowed
being considered as single arcs.

71

The parameter v_t specifies an offset of the field of type double in the
vertex data block, which contains time ti ≥ 0 needed to perform correspond-
ing job j ∈ J . If v_t < 0, it is assumed that ti = 1 for all jobs.

The parameter v_es specifies an offset of the field of type double in
the vertex data block, to which the routine stores the earliest start time for
corresponding job. If v_es < 0, this time is not stored.

The parameter v_ls specifies an offset of the field of type double in
the vertex data block, to which the routine stores the latest start time for
corresponding job. If v_ls < 0, this time is not stored.

The difference between the latest and earliest start times of some job is
called its time reserve. Delaying a job within its time reserve does not affect
the project duration, so if the time reserve is zero, the corresponding job is
critical.

Returns

The routine glp_cpp returns the minimal project duration, i.e. minimal
time needed to perform all jobs in the project.

Example

The example program below solves the critical path problem shown on Fig. 4
by using the routine glp_cpp and writes the solution found to the standard
output.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { double t, es, ls; } v_data;

#define node(v) ((v_data *)((v)->data))

int main(void)

{ glp_graph *G;

int i;

double t, es, ef, ls, lf, total;

G = glp_create_graph(sizeof(v_data), 0);

glp_add_vertices(G, 13);

node(G->v[1])->t = 3; /* A: Excavate */

node(G->v[2])->t = 4; /* B: Lay foundation */

node(G->v[3])->t = 3; /* C: Rough plumbing */

node(G->v[4])->t = 10; /* D: Frame */

72

node(G->v[5])->t = 8; /* E: Finish exterior */

node(G->v[6])->t = 4; /* F: Install HVAC */

node(G->v[7])->t = 6; /* G: Rough elecrtic */

node(G->v[8])->t = 8; /* H: Sheet rock */

node(G->v[9])->t = 5; /* I: Install cabinets */

node(G->v[10])->t = 5; /* J: Paint */

node(G->v[11])->t = 4; /* K: Final plumbing */

node(G->v[12])->t = 2; /* L: Final electric */

node(G->v[13])->t = 4; /* M: Install flooring */

glp_add_arc(G, 1, 2); /* A precedes B */

glp_add_arc(G, 2, 3); /* B precedes C */

glp_add_arc(G, 2, 4); /* B precedes D */

glp_add_arc(G, 4, 5); /* D precedes E */

glp_add_arc(G, 4, 6); /* D precedes F */

glp_add_arc(G, 4, 7); /* D precedes G */

glp_add_arc(G, 3, 8); /* C precedes H */

glp_add_arc(G, 5, 8); /* E precedes H */

glp_add_arc(G, 6, 8); /* F precedes H */

glp_add_arc(G, 7, 8); /* G precedes H */

glp_add_arc(G, 8, 9); /* H precedes I */

glp_add_arc(G, 8, 10); /* H precedes J */

glp_add_arc(G, 9, 11); /* I precedes K */

glp_add_arc(G, 10, 12); /* J precedes L */

glp_add_arc(G, 11, 13); /* K precedes M */

glp_add_arc(G, 12, 13); /* L precedes M */

total = glp_cpp(G, offsetof(v_data, t), offsetof(v_data, es),

offsetof(v_data, ls));

printf("Minimal project duration is %.2f\n\n", total);

printf("Job Time ES EF LS LF\n");

printf("--- ------ ------ ------ ------ ------\n");

for (i = 1; i <= G->nv; i++)

{ t = node(G->v[i])->t;

es = node(G->v[i])->es;

ef = es + node(G->v[i])->t;

ls = node(G->v[i])->ls;

lf = ls + node(G->v[i])->t;

printf("%3d %6.2f %s %6.2f %6.2f %6.2f %6.2f\n",

i, t, ls - es < 0.001 ? "*" : " ", es, ef, ls, lf);

}

glp_delete_graph(G);

return 0;

}

The output from the example program shown below includes job number,
the time needed to perform a job, earliest start time (ES), earliest finish time
(EF), latest start time (LS), and latest finish time (LF) for each job in the
project. Critical jobs are marked by asterisks.

73

Minimal project duration is 46.00

Job Time ES EF LS LF

--- ------ ------ ------ ------ ------

1 3.00 * 0.00 3.00 0.00 3.00

2 4.00 * 3.00 7.00 3.00 7.00

3 3.00 7.00 10.00 22.00 25.00

4 10.00 * 7.00 17.00 7.00 17.00

5 8.00 * 17.00 25.00 17.00 25.00

6 4.00 17.00 21.00 21.00 25.00

7 6.00 17.00 23.00 19.00 25.00

8 8.00 * 25.00 33.00 25.00 33.00

9 5.00 * 33.00 38.00 33.00 38.00

10 5.00 33.00 38.00 35.00 40.00

11 4.00 * 38.00 42.00 38.00 42.00

12 2.00 38.00 40.00 40.00 42.00

13 4.00 * 42.00 46.00 42.00 46.00

74

Chapter 3

Graph Optimization API
Routines

3.1 Maximum clique problem

3.1.1 Background

The maximum clique problem (MCP) is a classic combinatorial optimization
problem. Given an undirected graph G = (V,E), where V is a set of vertices,
and E is a set of edges, this problem is to find the largest clique C ⊆ G, i.e.
the largest induced complete subgraph. A generalization of this problem
is the maximum weight clique problem (MWCP), which is to find a clique
C ⊆ G of the largest weight

∑
v∈C

w(v) → max, where w(v) is a weight of

vertex v ∈ V .
An example of the maximum weight clique problem is shown on Fig. 5.

3.1.2 glp wclique exact—find maximum weight clique with
exact algorithm

Synopsis

int glp_wclique_exact(glp_graph *G, int v_wgt, double *sol,
int v_set);

75

v1

}}}}}}}}}}}}}}}}}}}}}}}}}}}

����������������������������������

AAAAAAAAAAAAAAAAAAAAAAAAAAA

v2

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, v3

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

v4

AAAAAAAAAAAAAAAAAAAAAAAAAAA v5

}}}}}}}}}}}}}}}}}}}}}}}}}}}

�������������

v6 v7

v8

w(v1) = 3
w(v2) = 4
w(v3) = 8
w(v4) = 1
w(v5) = 5
w(v6) = 2
w(v7) = 1
w(v8) = 3

Fig. 5. An example of the maximum weight clique problem.

Description

The routine glp wclique exact finds a maximum weight clique in the specified
undirected graph with the exact algorithm developed by Patric Österg̊ard.1

The parameter G is the program object, which specifies an undirected
graph. Each arc (x → y) in G is considered as edge (x, y), self-loops are
ignored, and multiple edges, if present, are replaced (internally) by simple
edges.

The parameter v wgt specifies an offset of the field of type double in the
vertex data block, which contains a weight of corresponding vertex. Vertex
weights must be integer-valued in the range [0, INT MAX]. If v wgt < 0, it
is assumed that all vertices of the graph have the weight 1.

The parameter sol specifies a location, to which the routine stores the
weight of the clique found (the clique weight is the sum of weights of all
vertices included in the clique.) If sol is NULL, the solution is not stored.

The parameter v set specifies an offset of the field of type int in the
vertex data block, to which the routines stores a vertex flag: 1 means that

1P. R. J. Österg̊ard, A new algorithm for the maximum-weight clique problem, Nordic
J. of Computing, Vol. 8, No. 4, 2001, pp. 424–36.

76

the corresponding vertex is included in the clique found, and 0 otherwise. If
v set < 0, vertex flags are not stored.

Returns

0 Optimal solution found.
GLP_EDATA Unable to start the search, because some vertex weights

are either not integer-valued or out of range. This code is
also returned if the sum of weights of all vertices exceeds
INT MAX.

Notes

1. The routine glp wclique exact finds exact solution. Since both MCP
and MWCP problems are NP-complete, the algorithm may require expo-
nential time in worst cases.

2. Internally the specified graph is converted to an adjacency matrix in
dense format. This requires about |V |2/16 bytes of memory, where |V | is
the number of vertices in the graph.

Example

The example program shown below reads a MWCP instance in DIMACS
clique/coloring format from file ‘sample.clq’, finds the clique of largest
weight, and writes the solution found to the standard output.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { double wgt; int set; } v_data;

#define vertex(v) ((v_data *)((v)->data))

int main(void)

{ glp_graph *G;

glp_vertex *v;

int i, ret;

double sol;

G = glp_create_graph(sizeof(v_data), 0);

glp_read_ccdata(G, offsetof(v_data, wgt), "sample.clq");

ret = glp_wclique_exact(G, offsetof(v_data, wgt), &sol,

offsetof(v_data, set));

printf("ret = %d; sol = %g\n", ret, sol);

77

for (i = 1; i <= G->nv; i++)

{ v = G->v[i];

printf("vertex %d: weight = %g, flag = %d\n",

i, vertex(v)->wgt, vertex(v)->set);

}

glp_delete_graph(G);

return 0;

}

For the example shown on Fig. 5 the data file may look like follows:

c sample.clq

c

c This is an example of the maximum weight clique

c problem in DIMACS clique/coloring format.

c

p edge 8 16

n 1 3

n 2 4

n 3 8

n 5 5

n 6 2

n 8 3

e 1 4

e 1 5

e 1 6

e 1 8

e 2 3

e 2 6

e 2 7

e 2 8

e 3 4

e 3 6

e 3 7

e 4 5

e 4 8

e 5 7

e 5 8

e 6 7

c

c eof

The corresponding output from the example program is the following:

Reading graph from ‘sample.clq’...

Graph has 8 vertices and 16 edges

28 lines were read

ret = 0; sol = 15

78

vertex 1: weight = 3, flag = 0

vertex 2: weight = 4, flag = 1

vertex 3: weight = 8, flag = 1

vertex 4: weight = 1, flag = 0

vertex 5: weight = 5, flag = 0

vertex 6: weight = 2, flag = 1

vertex 7: weight = 1, flag = 1

vertex 8: weight = 3, flag = 0

79

	Basic Graph API Routines
	Graph program object
	Graph creating and modifying routines
	glp_create_graph---create graph
	glp_set_graph_name---assign (change) graph name
	glp_add_vertices---add new vertices to graph
	glp_set_vertex_name---assign (change) vertex name
	glp_add_arc---add new arc to graph
	glp_del_vertices---delete vertices from graph
	glp_del_arc---delete arc from graph
	glp_erase_graph---erase graph content
	glp_delete_graph---delete graph

	Graph searching routines
	glp_create_v_index---create vertex name index
	glp_find_vertex---find vertex by its name
	glp_delete_v_index---delete vertex name index

	Graph reading/writing routines
	glp_read_graph---read graph from plain text file
	glp_write_graph---write graph to plain text file
	glp_read_ccdata---read graph from text file in DIMACS clique/coloring format
	glp_write_ccdata---write graph to text file in DIMACS clique/coloring format

	Graph analysis routines
	glp_weak_comp---find all weakly connected components of graph
	glp_strong_comp---find all strongly connected components of graph
	glp_top_sort---topological sorting of acyclic digraph

	Network optimization API routines
	Minimum cost flow problem
	Background
	glp_read_mincost---read minimum cost flow problemdata in DIMACS format
	glp_write_mincost---write minimum cost flow problemdata in DIMACS format
	glp_mincost_lp---convert minimum cost flow problemto LP
	glp_mincost_okalg---solve minimum cost flow problem with out-of-kilter algorithm
	glp_netgen---Klingman's network problem generator
	glp_gridgen---grid-like network problem generator

	Maximum flow problem
	Background
	glp_read_maxflow---read maximum flow problem datain DIMACS format
	glp_write_maxflow---write maximum flow problem data in DIMACS format
	glp_maxflow_lp---convert maximum flow problem to LP
	glp_maxflow_ffalg---solve maximum flow problem with Ford-Fulkerson algorithm
	glp_rmfgen---Goldfarb's maximum flow problem generator

	Assignment problem
	Background
	glp_read_asnprob---read assignment problem data inDIMACS format
	glp_write_asnprob---write assignment problem data in DIMACS format
	glp_check_asnprob---check correctness of assignment problem data
	glp_asnprob_lp---convert assignment problem to LP
	glp_asnprob_okalg---solve assignment problem with out-of-kilter algorithm
	glp_asnprob_hall---find bipartite matching of maximum cardinality

	Critical path problem
	Background
	glp_cpp---solve critical path problem

	Graph Optimization API Routines
	Maximum clique problem
	Background
	glp_wclique_exact---find maximum weight clique with exact algorithm

