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for their support and encouragement during this project.



CONTENTS

Contents

1 Introduction 1

2 BLGF (Binary Lemon Graph Format) specification 2

2.1 File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Informal specification . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.2 BNF Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 BNF Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Nodes block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Informal specification . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.2 BNF Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Arcs block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4.1 Informal specification . . . . . . . . . . . . . . . . . . . . . . . 5

2.4.2 BNF Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5 Attributes block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5.1 Informal specification . . . . . . . . . . . . . . . . . . . . . . . 6

2.5.2 BNF Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.6 Summary of BNF grammar rules . . . . . . . . . . . . . . . . . . . . 6

2.7 Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7.1 List of types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 User documentation 9

3.1 Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 LEMON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Usage of BLGF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 User defined value converters: . . . . . . . . . . . . . . . . . . 15

3.2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Developer documentation 21

4.1 Common types, constants and functions . . . . . . . . . . . . . . . . 21

4.1.1 Types, enums and constants . . . . . . . . . . . . . . . . . . . 21

4.1.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



CONTENTS

4.2 Value converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Reader converters and related classes . . . . . . . . . . . . . . 23

4.2.2 Writer converters and related classes . . . . . . . . . . . . . . 26

4.3 Storage classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Storage classes used for reading . . . . . . . . . . . . . . . . . 29

4.3.2 Storage classes used for writing . . . . . . . . . . . . . . . . . 30

4.4 Reading and writing directed graphs . . . . . . . . . . . . . . . . . . 32

4.4.1 DigraphReader . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.2 DigraphWriter . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Reading and writing undirected graphs . . . . . . . . . . . . . . . . . 36

4.5.1 GraphReader and GraphWriter . . . . . . . . . . . . . . . . . 36

4.6 Further development . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.7 Result of the testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.7.1 Default value converters . . . . . . . . . . . . . . . . . . . . . 38

4.7.2 The proper functionality of the reader and writer classes . . . 39

4.7.3 Size and performance . . . . . . . . . . . . . . . . . . . . . . . 39

5 Summary 40

References 41



1 Introduction

Networks play an important role in wide range of informatics applications. In most

cases not only do we need a graph, but also various fields of data related to nodes,

arcs and the graph itself. Efficient and flexible storage and handling of these data

is an indispensable task. The most popular methods are based on text formats

(e.g. XML), which are easily editable without any special program. For example,

GraphML and GXL are two of those file formats for storing graphs[6, 7].

In practice, however, we often have to deal with really huge graphs, store them

or send them trough the network, so the size of the whole representation can be a

major issue. Another important requirement is to make it possible to store the data

related to arcs or nodes separated from the graph, which is useful, for example, to

minimize the data traffic of parallel algorithms.

Library for Efficient Modeling and Optimization in Networks (LEMON) is a C++

template library providing efficient implementations of common data structures and

algorithms (http://lemon.cs.elte.hu[5]). It supports a flexible text format for

storing graphs and related data.

This thesis proposes a new file format called Binary Lemon Graph Format (hence-

forth BLGF). BLGF is a file format that satisfies the conditions listed above. As its

name has already suggested, it stores the data in a binary way, thus it requires less

space as text formats, providing most of their functionality.

Keeping existing functionality of LEMON unchanged was one of the main crite-

ria, so the format in which the data will be stored can be chosen, and when reading

data, the reader automatically recognizes the format.

The fundamental types (e.g integers, string, reals) are converted automatically,

thus there is no need for implementation of value converters, however, we can also

define user-specific data types and implement converters for them.

The proposed file format was submitted to several tests. Results of these tests

are discussed in the final part of the thesis.

Assuming that the reader has a basic knowledge of graph theory, terms like

graph, node, arc, edge, etc. are not explained in this thesis.
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2 BLGF (Binary Lemon Graph Format) specifi-

cation

This section presents a short description of the BLGF with a Backus−Naur Form

(henceforth BNF) style grammar included. It is a binary file format for storing

graphs and associated data (e.g. edge maps, node maps, etc) supporting all the

fundamental types (Subsection 2.7.1), as well as user-defined custom types, but

compared to the existing Lemon Graph Format (henceforth LGF), there are also

some limitations (Subsection 3.2.2).

2.1 File Structure

2.1.1 Informal specification

BLGF< version >

< block1 type >< block1 > 0

...

< blockk type >< blockk > 0

EOF

2.1.2 BNF Grammar

< blgf file > ::= < signature >< blocks > EOF

< signature > ::= BLGF< version >

< version > ::= < digit >< digit >

< blocks > ::= ϵ| < block >< blocks >

< block > ::= < nodes block > | < arcs block > |

< attributes block >

< nodes block > ::= NODES < block header >< nodes data > NULL

< arcs block > ::= ARCS < block header >< arcs data > NULL

< attributes block > ::= ATTRIBUTES < attributes data > NULL

< block header > ::= < name >< size >

NULL ::= 0 stored as UINT8 (i.e. a zero value byte)

EOF ::= End Of File
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NODES ::= UINT16 value defined in source

ARCS ::= UINT16 value defined in source

ATTRIBUTES ::= UINT16 value defined in source

Each BLGF file starts with a signature, which are the ”BLGF” letters followed by

the two digit version number. After that, the file consists of several blocks. Each

block is preceded by its type, which is a 2 byte unsigned integer value (UINT16)

and it is closed with a zero byte. Currently, there are three types of blocks:

1. Nodes block

2. Arcs block

3. Attributes block

Note: There may be several Nodes and Arcs blocks but only one Attributes

block.

2.2 Maps

Maps are widely used data structures in LEMON. They allow assigning values of

any type to the nodes or arcs of a graph. In BLGF, the maps are represented as

sequences of items with a given size and type.

2.2.1 BNF Grammar

< maps > ::= ϵ| < map >< maps >

< map > ::= < map header >< map data >

< map header > ::= < name >< type >

< map data > ::= ϵ| < map item >< map data >

Each map starts with a header followed by items. The header contains the map

name and the type of a sequence of items in it. The type also defines the size of the

data, and it is again stored as a 2 byte unsigned integer (UINT16).
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2.3 Nodes block

2.3.1 Informal specification

< block name >< block size >

0 < type >< label1 >< label2 >< label3 > ... < labelsize >

< map1 name >< type1 >< item1,1 >< item1,2 >< item1,3 > ... < item1,size >

...

< mapj name >< typej >< itemj,1 >< itemj,2 >< itemj,3 > ... < itemj,size >

0

2.3.2 BNF Grammar

< nodes block > ::= NODES < block header >< nodes data > NULL

< block header > ::= < name >< size >

< nodes data > ::= < labels >< maps >

< labels > ::= < map >

This type of block describes a set of nodes and associated maps. It consists of

two parts, the header and the data terminated by a null byte. The header contains

the name of the block and the number of nodes described (i.e. the item count in

each map) stored as a 4 byte unsigned integer (UINT32). The data part contains

the maps (Subsection 2.2) stored one after the other. The first map in the Nodes

block is a special one, called Label, which contains unique id (label) for each node.

When describing end points of an arc, these ids are used to refer to the target and

the source node. Label map has an empty name (i.e. only NULL byte) and it must

not be absent! The order of nodes in each map must be the same (e.g. the ith item

in each map describes the node labeled by the ith item in the Label map)!
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2.4 Arcs block

2.4.1 Informal specification

< block name >< block size >

0 < type >< from1 >< to1 > ... < fromsize >< tosize >

< map1 name >< type1 >< item1,1 >< item1,2 >< item1,3 > ... < item1,size >

...

< mapi name >< typei >< itemi,1 >< itemi,2 >< itemi,3 > ... < itemi,size >

0

2.4.2 BNF Grammar

< arcs block > ::= ARCS < block header >< arcs data > NULL

< block header > ::= < name >< size >

< arcs data > ::= < from to >< maps > | < from to > < labels >

< maps >

< labels > ::= < map >

< from to > ::= < map >

This type of block is very similar to the Nodes block. It again starts with a

header containing the name of the block and the number of items described (i.e. the

number of arcs or edges). The maps have the same structure as it was described in

subsection 2.2. The difference between these two types of blocks is the following: the

Label map is optional here and the first map in this block must be the From-To map,

which contains node pairs describing the source and the destination for each arc.

The From-To map has also an empty name. If there is a Label map in Arcs block,

it must be on the second place right after the From-To map (for more information

see subsection 4).

As in the Nodes block, the order of the arcs in the maps must be the same!
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2.5 Attributes block

2.5.1 Informal specification

< key1 >< value1 >

< key2 >< value2 >

< key3 >< value3 >

...

< keyl >< valuel >

0

2.5.2 BNF Grammar

< attributes block > ::= ATTRIBUTES < attributes data > NULL

< attributes data > ::= ϵ| < attr key > < attr value > < attributes data >

< attr value > ::= < string >

< attr key > ::= < string >

As it was mentioned before, only one Attributes block can take place in the

BLGF file. This block contains a null-terminated sequence of key-value pairs. The

Attributes block contains no header, since the name is not necessary, and the type

of the values is fixed (STRING).

2.6 Summary of BNF grammar rules

This subsection contains listing of all the grammar rules used for description of

BLGF. These rules does not describe all the requirements for the format. For exam-

ple, the length limitations of maps could not be described by BNF. Other additional

conditions, such as the type consistency of the map items could be expressed using

BNF, but it will be too long and complicated.

< blgf file > ::= < signature >< blocks > EOF

< signature > ::= BLGF< version >

< version > ::= < digit >< digit >

< blocks > ::= ϵ| < block >< blocks >
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< block > ::= < nodes block > | < arcs block > |

< attributes block >

< nodes block > ::= NODES < block header >< nodes data > NULL

< arcs block > ::= ARCS < block header >< arcs data > NULL

< attributes block > ::= ATTRIBUTES < attributes data > NULL

< block header > ::= < name >< size >

< nodes data > ::= < labels >< maps >

< labels > ::= < map >

< arcs data > ::= < from to >< maps > | < from to >< labels ><

maps >

< from to > ::= < map >

< attributes data > ::= ϵ| < attr key > NULL < attr value > NULL

< attributes data >

< name > ::= < string >

< maps > ::= ϵ| < map >< maps >

< map > ::= < map header >< map data >

< map header > ::= < name >< type >

< map data > ::= ϵ| < map item >< map data >

< map item > ::= Sequence of bytes. Length depends on type.

< string > ::= < chars >< NULL >

< chars > ::= ϵ| < char >< chars >

< char > ::= [A − Za − z0 − 9 ]

< digit > ::= [0 − 9]

< type > ::= INT8 | INT16 | INT32 | INT64 | UINT8 | UINT16 |

UINT32 | UINT64 | FLOAT | DOUBLE | STRING |

DATA

NULL ::= 0 stored as UINT8 (i.e. a zero value byte)

EOF ::= End Of File

NODES ::= UINT16 value defined in source

ARCS ::= UINT16 value defined in source

ATTRIBUTES ::= UINT16 value defined in source
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2.7 Data types

BLGF supports all the common primitive types, the null–terminated STRING and

a special DATA type which allows the definition of custom data types.

2.7.1 List of types

Type Size (bytes) Short description Range

INT8 1 signed char −27 to 27 − 1

UINT8 1 unsigned char 0 to 28 − 1

INT16 2 signed short integer −215 to 215 − 1

UINT16 2 unsigned short integer 0 to 216 − 1

INT32 4 signed integer −231 to 231 − 1

UINT32 4 unsigned integer 0 to 232 − 1

INT64 8 signed 64bit integer −263 to 263 − 1

UINT64 8 unsigned 64bit integer 0 to 264 − 1

FLOAT 4 floating point data type

DOUBLE 8 double-precision float

STRING Variable Null terminated string

DATA Variable Any kind of data with a

size given in first the 4

bytes
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3 User documentation

This section contains all the information about reading and writing data using

BLGF. It discusses the most common case, when default value converters are used,

as well as the specialized user defined value converters. For better comprehension,

this section also contains sample codes. As the LGF (Lemon Graph Format) and

the other parts of LEMON are not a part of the present thesis, mostly the BLGF

related functionalities of the classes listed below are discussed.

3.1 Arrangements

3.1.1 LEMON

LEMON stands for the Library for Efficient Modeling and Optimization in Networks.

It is a C++ template library providing efficient implementations of common data

structures and algorithms with focus on combinatorial optimization tasks connected

mainly with graphs and networks. For more information about LEMON and system

requirement and installation, see

http://lemon.cs.elte.hu/trac/lemon/wiki/Documentation[5].

3.2 Usage of BLGF

LEMON provides several implementations of graphs. There are two kinds of graphs

in LEMON, directed and undirected graphs. All of them can be easily handled

through Graph and Digraph interfaces, where Graph is used for undirected graphs

and Digraph for the directed ones.

Both interfaces contain useful methods for treating nodes, directed arcs and

undirected edges. Since every edge can be regarded as two oppositely directed arcs,

Graph also fulfills the concept of Digraph. Using maps (key-value pairs), different

kinds of data can be assigned to nodes or arcs/edges. All these data can be written

to an output stream and also read from input stream in LGF or BLGF, using the

following classes:

• DigraphWriter: Writes a directed graph to an output stream.

• DigraphReader: Reads a directed graph from an input stream.
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• GraphWriter: Writes an undirected graph to an output stream.

• GrapReader: Reads an undirected graph from an input stream.

Instances of these classes can be created by specifying the graph, and the input

or output stream. If the data is written to a file or read from it, then instead of the

stream, the name of the file can also be given.

To provide easier creation, there are factory functions implemented. They take

the same parameters as the constructors, but thanks to the argument deduction,

template parameters can be omitted.

Listing 1: Declaration of the factory functions

template<typename TDGR>

DigraphWriter<TDGR> digraphWriter ( const TDGR &digraph , std : : ostream &

os )

template<typename TDGR>

DigraphWriter<TDGR> digraphWriter ( const TDGR &digraph , const std : :

s t r i n g &fn )

template<typename TDGR>

DigraphWriter<TDGR> digraphWriter ( const TDGR &digraph , const char ∗ fn )

template<typename TDGR>

DigraphReader<TDGR> digraphReader (TDGR &digraph , std : : i s t ream &i s )

template<typename TDGR>

DigraphReader<TDGR> digraphReader (TDGR &digraph , const std : : s t r i n g &fn

)

template<typename TDGR>

DigraphReader<TDGR> digraphReader (TDGR &digraph , const char ∗ fn )

template<typename TGR>

GraphWriter<TGR> graphWriter ( const TGR &graph , std : : ostream &os )

template<typename TGR>

GraphWriter<TGR> graphWriter ( const TGR &graph , const std : : s t r i n g &fn )

template<typename TGR>

GraphWriter<TGR> graphWriter ( const TGR &graph , const char ∗ fn )

template<typename TGR>

GraphReader<TGR> graphReader (TGR &graph , std : : i s t ream &i s )

template<typename TGR>

GraphReader<TGR> graphReader (TGR &graph , const std : : s t r i n g &fn )

template<typename TGR>
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GraphReader<TGR> graphReader (TGR &graph , const char ∗ fn )

Reading and writing rules: Various reading rules can be added to readers,

and analogously, writing rules can be added to writers. These classes do a batch

processing. The instance is created, then several reading rules can be added, and

eventually the reading or writing process is executed with the run() method. Rules

can be divided to three categories:

• Rules for reading or writing node maps or arc/edge maps

• Rules for reading or writing certain nodes or arcs/edges

• Rules for reading or writing attributes

Rules for maps: The rule for reading or writing a node, arc or edge map, can

be added using the nodeMap(), arcMap() or edgeMap() methods. The caption (the

name) of the map in the file must be specified as well as the map itself. If there is a

need for specialized value converters, they can also be passed by as parameters. If

no converters are defined, the default ones are used.

Listing 2: Declaration of the nodeMap(), arcMap() and the edgeMap() methods

template<typename Map, typename Converter , typename BinaryConverter >

DigraphWriter& nodeMap ( const std : : s t r i n g &caption , const Map &map,

const Converter &conver t e r=Converter ( ) , const BinaryConverter &

binaryConverter=BinaryConverter ( ) )

template<typename Map, typename Converter , typename BinaryConverter >

DigraphWriter& arcMap ( const std : : s t r i n g &caption , const Map &map,

const Converter &conver t e r=Converter ( ) , const BinaryConverter &

binaryConverter=BinaryConverter ( ) )

template<typename Map, typename Converter , typename BinaryConverter >

DigraphReader& nodeMap ( const std : : s t r i n g &caption , const Map &map,

const Converter &conver t e r=Converter ( ) , const BinaryConverter &

binaryConverter=BinaryConverter ( ) )

template<typename Map, typename Converter , typename BinaryConverter >

DigraphReader& arcMap ( const std : : s t r i n g &caption , const Map &map,

const Converter &conver t e r=Converter ( ) , const BinaryConverter &

binaryConverter=BinaryConverter ( ) )
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template<typename Map, typename Converter , typename BinaryConverter >

GraphWriter& nodeMap ( const std : : s t r i n g &caption , const Map &map, const

Converter &conver t e r=Converter ( ) , const BinaryConverter &

binaryConverter=BinaryConverter ( ) )

template<typename Map, typename Converter , typename BinaryConverter >

GraphWriter& edgeMap ( const std : : s t r i n g &caption , const Map &map, const

Converter &conver t e r=Converter ( ) , const BinaryConverter &

binaryConverter=BinaryConverter ( ) )

template<typename Map, typename Converter , typename BinaryConverter >

GraphWriter& arcMap ( const std : : s t r i n g &caption , const Map &map, const

Converter &conver t e r=Converter ( ) , const BinaryConverter &

binaryConverter=BinaryConverter ( ) )

template<typename Map, typename Converter , typename BinaryConverter >

GraphReader& nodeMap ( const std : : s t r i n g &caption , const Map &map, const

Converter &conver t e r=Converter ( ) , const BinaryConverter &

binaryConverter=BinaryConverter ( ) )

template<typename Map, typename Converter , typename BinaryConverter >

GraphReader& edgeMap ( const std : : s t r i n g &caption , const Map &map, const

Converter &conver t e r=Converter ( ) , const BinaryConverter &

binaryConverter=BinaryConverter ( ) )

template<typename Map, typename Converter , typename BinaryConverter >

GraphReader& arcMap ( const std : : s t r i n g &caption , const Map &map, const

Converter &conver t e r=Converter ( ) , const BinaryConverter &

binaryConverter=BinaryConverter ( ) )

Rules for nodes and arcs/edges: Sometimes we have to store a special node

or arc/edge (e.g. destination node of a shortest path problem). The node(), arc()

and edge() methods should be used for adding rules for these data.

Listing 3: Declaration of the node(), arc() and the edge() methods

DigraphWriter& node ( const std : : s t r i n g &caption , Node &node )

DigraphWriter& arc ( const std : : s t r i n g &caption , Arc &arc )

DigraphReader& node ( const std : : s t r i n g &caption , Node &node )

DigraphReader& arc ( const std : : s t r i n g &caption , Arc &arc )

GraphWriter& node ( const std : : s t r i n g &caption , Node &node )

GraphWriter& arc ( const std : : s t r i n g &caption , Arc &arc )

GraphWriter& edge ( const std : : s t r i n g &caption , Edge &edge )
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GraphReader& node ( const std : : s t r i n g &caption , Node &node )

GraphReader& arc ( const std : : s t r i n g &caption , Arc &arc )

GraphReader& edge ( const std : : s t r i n g &caption , Edge &edge )

Rules for reading attributes: Extra data can be read or written too. For

example the name of graph, notes on it, other values associated with the algorithm

or solution, etc. These rules are added by the following methods:

Listing 4: Declaration of attribute() methods

template<typename Value , typename Converter >

GraphWriter& a t t r i b u t e ( const std : : s t r i n g &caption , Value &value , const

Converter &conver t e r=Converter ( ) )

template<typename Value , typename Converter >

GraphReader& a t t r i b u t e ( const std : : s t r i n g &caption , Value &value , const

Converter &conver t e r=Converter ( ) )

template<typename Value , typename Converter >

DigraphWriter& a t t r i b u t e ( const std : : s t r i n g &caption , Value &value ,

const Converter &conver t e r=Converter ( ) )

template<typename Value , typename Converter >

DigraphReader& a t t r i b u t e ( const std : : s t r i n g &caption , Value &value ,

const Converter &conver t e r=Converter ( ) )

Captions: By default the sections/blocks does not have captions, but they can be

given by nodes(), arcs()/edges() and attributes() methods.

Listing 5: Declaration of the nodes(), arcs() and the edges() methods

DigraphWriter& nodes ( const std : : s t r i n g &capt ion )

DigraphWriter& arc s ( const std : : s t r i n g &capt ion )

DigraphWriter& a t t r i b u t e s ( const std : : s t r i n g &capt ion )

GraphWriter& nodes ( const std : : s t r i n g &capt ion )

GraphWriter& edges ( const std : : s t r i n g &capt ion )

GraphWriter& a t t r i b u t e s ( const std : : s t r i n g &capt ion )

Skipping sections/block: Reading or writing sections/block can be omitted by

calling skipNodes(), skipArcs() or skipEdges().
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Listing 6: Declaration of the skipNodes(), skipArcs() and the skipEdges() methods

DigraphWriter& skipNodes ( )

DigraphWriter& sk ipArcs ( )

DigraphReader& skipNodes ( )

DigraphReader& skipArcs ( )

GraphWriter& skipNodes ( )

GraphWriter& skipEdges ( )

GraphReader& skipNodes ( )

GraphReader& skipEdges ( )

Using previously constructed Node or Arc Set: Since a block can be skipped,

there is an option to use previously constructed Node or Arc sets. Sometimes it is

unavoidably, for example, when node block is skipped, and arcs are read. In this

case, a previously constructed label node map should be passed to useNodes method.

Listing 7: Declaration of the useNodes(), useArcs() and the useEdges() methods

template<typename Map, typename Converter >

DigraphReader& useNodes ( const Map &map, const Converter &conve r t e r=

Converter ( ) )

template<typename Map, typename Converter >

DigraphReader& useArcs ( const Map &map, const Converter &conver t e r=

Converter ( ) )

template<typename Map, typename Converter >

GraphReader& useNodes ( const Map &map, const Converter &conver t e r=

Converter ( ) )

template<typename Map, typename Converter >

GraphReader& useEdges ( const Map &map, const Converter &conver t e r=

Converter ( ) )

The execution of the process: After all the rules and other necessary parame-

ters have been added, the process can be executed with the run() method.

The reading: Since the reader automatically detects the format, no additional

parameters are required by this method.
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void run ( )

The writing: When executing a writing process, two parameters can be passed

to the run() method. The first determines the format whether it will be written

in LGF or BLGF, and the second tells the writer to append a file or not. The last

parameter is used only if the BLGF was chosen, and its value has to be set to true

when more then one arc/edge block should be written to file. By default, the process

writes the stream in LGF to keep backward compatibility of LEMON..

Listing 8: Declaration of the run() method

void run (bool binary = false , bool append = fa l se )

Example: The following code writes several maps and attributes to the “test.blgf“

file in BLGF.

Listing 9: Sample code: adding rules to the writer

digraphWriter ( digraph , ” t e s t . b l g f ” ) .

nodeMap( ” coo rd ina t e s ” , coord map ) .

nodeMap( ” s i z e ” , s i z e ) .

nodeMap( ” t i t l e ” , t i t l e ) .

arcMap ( ” capac i ty ” , cap map ) .

node ( ” source ” , s r c ) .

node ( ” t a r g e t ” , t rg ) .

a t t r i b u t e ( ” capt ion ” , capt ion ) .

run ( true , fa l se ) ;

3.2.1 User defined value converters:

Default value converters may not work for user defined types. To solve this problem,

specialized value converters can be defined and passed to the writer or the reader.

Text converters: Basically, they are standard functors used for converting values

to std::string or for converting in the opposite way. Implementation of a custom value

converter is quite easy. The class used as a converter for reading must have an

Value operator ( ) ( const std : : s t r i n g& s t r )
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operator defined, where Value is a type of the read data. In case of writing,

std : : s t r i n g operator ( ) ( const Value& value )

has to be defined. Of course, these operators can be put into a single class.

Binary converters: They are used for converting values to or from their binary

representations.

Converters used for converting the data from binary are functors that must have

an

Value operator ( ) ( const b l g f b i t s : : BlgfType blgfType , const char∗ data )

operator defined, where the Value is a C++ type to which the data will be converted.

The operator takes two parameters, the type of the binary data, and the data itself.

For conversion to binary, the converters has to be derived from

template <typename Value>

class DefaultBinaryConverterBase : public BinaryTokenBase

template class, because it provides an interface for easy manipulation with the bi-

nary data. As the new class will inherit from DefaultBinaryConverterBase and

BinaryTokenBase, the following methods should to be defined:

• b l g f b i t s : : BlgfType getType ( ) const

By default, this function returns blgf bits::DATA value indicating that this

type is user defined. It can be overridden, but in most cases it is not recom-

mended!

• int g e tS i z e ( ) const

This method should return the size (in bytes) of value converted to binary.

• int wr i t e (char∗ bu f f e r , int b u f f e r s i z e ) const

It has to write the binary data to a specified buffer. The second parameter

only defines the size of the buffer, guaranteeing the proper memory handling.

• void setValue ( const Value& value )

This method sets a new value for the converter.
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• void setValue ( const Value& value , const b l g f b i t s : : BlgfType type )

= 0 ;

It sets a new value for the converter and specifies the BLGF type in which the

data will be written. By default, this function calls setValue(const Value&

value) and throws exception if the type differs from blgf bits::DATA. It is

not recommended to override this function!

Advice: The best way to implement custom a converter is to write a single class

that satisfies the requirements for the text as well as for the binary converters.

Example: The following code demonstrates how to use specialized value convert-

ers.

Listing 10: Sample code: Using specialized value converters

//User−de f ined type

class TestClass {

private :

int a ;

double d ;

public :

TestClass ( ) {

a = 0 ;

d = 0 ;

}

void s e t I n t ( int value ) {

a = value ;

}

void setDouble (double value ) {

d = value ;

}

int ge t In t ( ) const{

return a ;

}

double getDouble ( ) const {

return d ;

}
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} ;

class BiConverter : public w r i t e r b i t s : : DefaultBinaryConverterBase<

TestClass >{

private :

char∗ data ;

int s i z e ;

public :

BiConverter ( ) : data (0 ) , s i z e (0 ) {}

˜BiConverter ( ) {

delete data ;

}

void setValue ( const TestClass& value ) {

delete data ;

o s t r ing s t r eam os ;

os << ”b( ” << value . g e t In t ( ) << ” , ”<< value . getDouble ( ) <<” ) ” ;

s i z e = os . s t r ( ) . l ength ( ) +1;

data = new char [ g e tS i z e ( ) ] ;

data [ g e tS i z e ( ) ] = 0 ;

memcpy( data , os . s t r ( ) . c s t r ( ) , g e tS i z e ( ) ) ;

}

int g e tS i z e ( ) const{

return s i z e ;

}

int wr i t e (char ∗ bu f f e r , int s i z e ) const{

memcpy( bu f f e r , data , g e tS i z e ( ) ) ;

}

//Operator f o r t e x t convers ion ( wr i t e )
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std : : s t r i n g operator ( ) ( const TestClass& value ) {

std : : o s t r ing s t r eam os ;

os << ” ( ” << value . g e t In t ( ) << ” , ”<< value . getDouble ( ) <<” ) ” ;

return os . s t r ( ) ;

}

//Operator f o r b inary convers ion ( read )

TestClass operator ( ) ( const b l g f b i t s : : BlgfType blgfType , const char∗

data ) {

// s k i p s the ’ b ’ l e t t e r

s t r i n g s ( data+1) ;

TestClass tmp ;

char c ;

s t r i ng s t r eam i s ;

double d ;

int a ;

i s <<s ;

i s >>c ;

i s >>a ;

i s >>c ;

i s >>d ;

tmp . s e t I n t ( a ) ;

tmp . setDouble (d) ;

return tmp ;

}

//Operator f o r t e x t convers ion ( read )

TestClass operator ( ) ( s t r i n g s ) {

TestClass tmp ;

char c ;

s t r i ng s t r eam i s ;

double d ;

int a ;

i s <<s ;

i s >>c ;

i s >>a ;
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i s >>c ;

i s >>d ;

tmp . s e t I n t ( a ) ;

tmp . setDouble (d) ;

return tmp ;

}

} ;

3.2.2 Limitations

Compared to LGF, the implementation of BLGF has some limitations:

• Using real types with their default value converters, the BLGF becomes portable

only on machines with the same memory endianness (i.e. big-endian or little-

endian).

• Long double type is not supported yet.

• The values of the label maps must be fundamental types (integer, real or

string).

See also Future development (Subsection 4.6).
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4 Developer documentation

The developer documentation contains all the details about the implementation of

BLGF. There were several design problems and theoretical problems during the im-

plementation. All these problems and their solutions and compromises are included,

too. To keep all the functionalities of the existing applications using LGF, the main

interface of the classes has not been changed. These classes and their methods have

been extended and overloaded, so their default behavior remained the same.

4.1 Common types, constants and functions

4.1.1 Types, enums and constants

• const unsigned char BLGF VERSION [ ]

C style string containing the signature of the BLGF file followed by its version.

• const unsigned int TYPE GROUP MASK

Binary mask for getting the group in which the type belong using the & bitwise

operator. For example:

return ( ( ( type ) & TYPE GROUP MASK) == TYPE SIGNED BASE) ;

returns true if the type is signed integer.

• const unsigned int TYPE UNSIGNED BASE

Base number for enumerating unsigned integer types.

• const unsigned int TYPE SIGNED BASE

Base number for enumerating signed integer types.

• const unsigned int TYPE REAL BASE

Base number for enumerating real types.

• const unsigned int TYPE OTHER BASE

Base number for enumerating the rest of the types.

• enum BlgfType
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Enumeration of BLGF data types. It is divided to 4 groups (unsigned, signed,

real and other). Each group’s first item gets a value defined by one of the base

integer constants described above, increased by one.

• enum BlgfBlockType

Enumeration of BLGF block types.

• const unsigned int UINT8 SIZE , INT8 SIZE , UINT16 SIZE , INT16 SIZE ,

UINT32 SIZE , INT32 SIZE , UINT64 SIZE , INT64 SIZE , FLOAT SIZE ,

DOUBLE SIZE

Integer constants defining the size (in bytes) of the data types.

4.1.2 Functions

All the functions listed below are used for getting properties of BLGF types.

• inl ine bool i s s i g n e d ( BlgfType type )

Returns true if the type is signed integer.

• inl ine bool i s un s i gn ed ( BlgfType type )

Returns true if the type is unsigned integer.

• inl ine bool i s i n t e g e r ( BlgfType type )

Returns true if the type is integer.

• inl ine bool i s r e a l ( BlgfType type )

Returns true if the type is real.

• inl ine int g e t t y p e s i z e ( BlgfType type )

Returns the size (in bytes) of the type.
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4.2 Value converters

Basically, the value converters are used for converting C++ types to their binary or

string representation, or backwards. The BLGF has an implementation of default

converters, which can handle all the fundamental C++ data types. The exist-

ing implementation of LGF uses operators << and >> and std::stringstream for

conversions between std::strings and C++ types. In the case of the BLGF, the

conversion is not so trivial.

Converting integers: Integer types are written out in Little-endian (i.e. the

least significant byte (LSB) is written out first).

Listing 11: Pseudo code of integer conversion

for ( int i = s izeof (BLGF INTEGER TYPE) ; i >= 0 ; i−−){

bytes [ i ] = value & 0 x f f ;

va lue = value >> 8 ;

}

This type of conversion is independent from the memory’s endianness, thus it is

a portable solution.

Converting reals: Because there is no standard for transferring floating point

values, reals are written out exactly as they are in the memory. This solution is not

portable, so when using real types, the BLGF becomes portable only on machines

with the same architecture.

For more information see subsections 3.2.2 and 4.6

Converting string: As the BLGF STRING is a null-terminated sequence of

characters, they can be handled as C-style strings. The std::string has a constructor

that takes a null-terminated string and it also has a method c str() for getting the

value in C-style, so the conversion is already implemented in the Standard Template

Library.

4.2.1 Reader converters and related classes

SuperType: This class provides converting binary data to C++ types. Since

there is not an exact correspondence between BLGF types and C++ types, the
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SuperType provides operators for converting binary representation of the data to

several types (e.g. INT16 can be converted to int, float, double, string, etc.). It also

throws appropriate exceptions when trying to convert to incompatible type.

Public methods

• read ( const b l g f b i t s : : BlgfType type , const char∗ bu f f e r )

Reads a given BLGF type from a buffer.

• template<typename T> operator T()

This template operator is used for converting integer types. It converts a

BLGF type to an integer C++ type given in the template parameter.

• operator f loat ( )

Specialized operator for converting to float.

• operator double ( )

Specialized operator for converting to double.

• operator std : : s t r i n g ( )

Specialized operator for converting to std::string.

Private methods

• template <typename CppType>

void fromBinary ( const char∗ array , int n , bool i s s i g n ed , CppType

& value )

It converts a binary representation of an integer value to a C++ type given in

the template parameter.

BinaryToken: As we don’t know the size of the data before we read it (e.g.

STRING, DATA have a variable size) and using dynamically allocated character

arrays (char *) is not a best solution, the BinaryToken class has been implemented

for encapsulating binary data. It contains useful methods for an easy manipulation

as well as a copy constructor, destructor and assignment operator to guarantee the

proper allocation and deallocation of dynamic variables.
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Major methods

• char const∗ getData ( ) const

Returns the pointer to the binary data.

• int g e tS i z e ( ) const

Return the size of the data (in bytes).

• char∗ read ( std : : i s t ream& i s , const b l g f b i t s : : BlgfType type )

Private method that reads specified type of data from an input stream.

Default converters: Default converters are used to convert fundamental data

types from their binary representation. Conversion is made by SuperType (Subsec-

tion 4.2.1) These converters can be divided into 4 groups:

• Default integer converters

• Default double converter

• Default float converter

• Default string converter

Default integer converters: Integer values can be converted using

template <typename Value> struct DefaultBinaryConverter

template and its operator

Value operator ( ) ( const b l g f b i t s : : BlgfType blgfType , const char∗ data )

where the template parameter Value defines the C++ type in which the data will

be converted and the blgfType specifies the BLGF type of the data stored in data

parameter.

Default double, float and string converters: For converting data to dou-

ble, float or string, there are specializations of the DefaultBinaryConverter. The

conversion are made again by the operators:
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• double operator ( ) ( const b l g f b i t s : : BlgfType blgfType , const char∗

data )

• f loat operator ( ) ( const b l g f b i t s : : BlgfType blgfType , const char∗

data )

• s t r i n g operator ( ) ( const b l g f b i t s : : BlgfType blgfType , const char∗

data )

readTokenBinary: This function reads data from input stream to BinaryToken

type.

in l ine std : : i s t ream& readTokenBinary ( std : : i s t ream& is , BinaryToken&

token , const b l g f b i t s : : BlgfType type )

Parameters:

• std : : i s t ream& i s

Reference to the input stream.

• BinaryToken& token

Reference to a BinaryToken variable into which the data will be read.

• b l g f b i t s : : BlgfType type

Type of the data to read.

4.2.2 Writer converters and related classes

BinaryTokenBase: This class is an abstract one, defining the interface of all

derived classes for easy manipulation with the binary data.

Public methods:

• virtual b l g f b i t s : : BlgfType getType ( ) const

Method for getting the BLGF type of the binary data encapsulated by this

class.
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• virtual int g e tS i z e ( ) const = 0

Overridden versions of this method have to return the size (in bytes) of the

binary data.

• virtual int wr i t e (char∗ bu f f e r , int b u f f e r s i z e ) const = 0

This method should write the data to a specified buffer. It takes 2 parameters,

a pointer to the buffer and its size, to avoid segmentation error. The return

value is a number of bytes written in the buffer. It should be the same value

as the one returned by getSize().

DefaultBinaryConverterBase: To define any type of converter for converting

to binary, it has to be derived from this class. DefaultBinaryConverterBase de-

fines an interface for value conversions and the class itself is derived from the

BinaryTokenBase expanded with 2 virtual methods:

• virtual void setValue ( const Value& value , const b l g f b i t s : :

BlgfType type ) = 0

Pure virtual method for setting the value of the converter with the given BLGF

type. It allows storing the data as a different type (e.g. store int as DOUBLE

or short as INT64, etc.).

• virtual void setValue ( const Value& value ) = 0

Also a pure virtual method for setting the value, but in this case the BLGF

type is not given, it is determined automatically. In most cases the type is

obvious, but if there are more options, the smallest compatible type is chosen

(e.g. Assuming that short is 3 bytes long, INT32 is chosen for a BLGF type,

because it is signed and stored in 4 bytes so there will be no numeric overflow).

Default converters As in the case of reading data, implementation of BLGF

provides default converters for converting fundamental types to their binary repre-

sentation. They can be divided to four groups again:

• Default integer converters

• Default double converter
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• Default float converter

• Default string converter

Default integer converters: Integer values are converted to binary using

template <typename Value> class DefaultBinaryConverter : public

DefaultBinaryConverterBase<Value>

template class. As it is derived from DefaultBinaryConverterBase, it has imple-

mented all the functions required by BinaryTokenBase and DefaultBinaryConverterBase.

Function

virtual int wr i t e (char∗ bu f f e r , const int b u f f e r s i z e ) const

writes the binary data to a buffer. For integer values it uses

template <typename CppType>

void toBinary (CppType value , char∗ array , int n) {

template function, which by default throws an error because it can be used only for

integer types. Using the following macro it is specialized for all the integer types.

Example:

#define MK INTEGER TO BINARY(CppType) \

template <> void toBinary<CppType>(CppType value , char∗ array , int n)

{\

for ( int i = n − 1 ; i >= 0 ; i−−) {\

array [ i ] = static cast<char> ( va lue & static cast<CppType> (0 x f f ) )

;\

value = value >> static cast<CppType>(8) ;\

}\

} ;

MK INTEGER TO BINARY(char )

MK INTEGER TO BINARY( signed char )

MK INTEGER TO BINARY(unsigned char )

. . .

Default double, float and string converters: The non-integer fundamental

types have their specialized DefaultBinaryConverter template classes. Since they
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have the same base classes, the public interface remains the same. The main differ-

ence is that for serializing the data they do not use toBinary() function because

there is no & operator defined for real types nor for the string. Strings are written

sequentially character by character and terminated by a zero byte. Real types are

written in the same order and size as they are in memory (Subsections 3.2.2 and

4.2).

4.3 Storage classes

The classes described below are already widely used in the implementation of the

LGF, so this section provides only a short description of their functionality and

changes that have been made during the implementation of the BLGF.

4.3.1 Storage classes used for reading

reader bits::MapStorageBase: Base class defining the common interface for

map storage classes. This class and all the classes derived from it has been expanded

with a setBinary() method in order to handle binary conversions as well as the

text conversions.

Major methods:

• virtual void s e t ( const Item& item , const std : : s t r i n g& value )

• virtual void setBinary ( const Item& item , const char∗ data , const

b l g f b i t s : : BlgfType blgfType )

reader bits::MapStorage: Stores a map, and allows an easy setting of the val-

ues, including conversion from text or binary. If there is a need for specialized

converters, they can be passed by as template parameters.

Major methods:

• virtual void s e t ( const Item& item , const std : : s t r i n g& value )

This method converts a string value taken as a parameter using the text con-

verter, and sets the the new value for the item in the map.
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• virtual void setBinary ( const Item& item , const char∗ data , const

b l g f b i t s : : BlgfType blgfType )

setBinary() converts a binary data with a given type taken as a parameter

using the binary converter, and sets the the new value for the item in the map.

reader bits::GraphArcMapStorage: It is very similar to the MapStorage class

implemented for storing arc maps. The main benefit of this class is, that it can

handle storage of arc maps when reading undirected graph. Each edge added is

directed and stored as arc. The direction depends on template parameters of this

class.

reader bits::ValueStorageBase: This class is just a base class for all the value

storage classes. The implementation of BLGF uses classes derived from this one

during the reading of the attributes block, and as its items are stored as strings and

std::string and C-style string conversion is defined (Subsection 4.2), there is no need

for a setBinary() method or a binary converter template parameter.

Major methods:

• virtual void s e t ( const std : : s t r i n g &)

reader bits::ValueStorage: Stores an item and allows setting a new value for

it.

Major methods:

• virtual void s e t ( const std : : s t r i n g &)

Converts the string using a converter and stores the new value.

4.3.2 Storage classes used for writing

writer bits::MapStorageBase: Base class defining the common interface for

map storage classes. A new getBinary(...) method has been added to this class

for an easy get of the binary representations of the values in the map.
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Methods:

• virtual std : : s t r i n g get ( const Item& item )

• virtual BinaryTokenBase const∗ getBinary ( const Item& item ) = 0 ;

writer bits::MapStorage: Stores a map and has useful methods for getting

string or binary representations of the values in it. Specialized converters can be

passed by as template parameters.

Methods:

• virtual std : : s t r i n g get ( const Item& item )

This method gets the value associated with the item from the map, converted

to std::string.

• virtual BinaryTokenBase const∗ getBinary ( const Item& item ) = 0 ;

This method gets a binary representation of the value associated with the

item.

writer bits::GraphArcMapStorage: Similar to the MapStorage class. It is

used for writing out arc maps associated to an undirected graph. The class stores

an arc map and a direction (forward or backward) and allows getting a binary

representation of a value associated to one of the edge’s directions (i.e. arc).

writer bits::ValueStorageBase: Base class for all value storage classes.

Major methods:

• virtual std : : s t r i n g get ( const Item& item )

writer bits::ValueStorage: Stores an item and allows getting its value con-

verted to std::string.
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Major methods:

• virtual std : : s t r i n g get ( const Item& item )

This method gets the string representation of the item.

4.4 Reading and writing directed graphs

LEMON uses the DigraphReader and DigraphWriter classes for reading and writ-

ing directed graphs. Both classes can handle LGF as well as BLGF. Most function-

ality of them had already been implemented, but there has been several changes

made, in order to handle the BLGF.

4.4.1 DigraphReader

Class providing reading directed graphs from an input stream. For information

about using this class see section 3 or http://lemon.cs.elte.hu [5].

Changes made to DigraphReader

• Changed run() method

• New overloaded arcMap(...) method

• New overloaded nodeMap(...) method

• New private skipMap(...) method

• New private skipBlock(...) method

• New private readNodesBinary() method

• New private readArcsBinary() method

• New private readAttributesBinary() method

run(): This method starts the batch processing, but before the processing of the

data starts, the type of the format is detected. Since every BLGF file starts with

its signature, the type detection is unambiguous.

The original method has been divided to two methods according to format:
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• void runBinary ( )

This method reads binary data. Reads all the blocks from the stream. If there

is no rule to read the block, it skips to the next one.

• void runText ( )

A method that reads data in LGF. The implementation of reading remained

unchanged.

arcMap() and nodeMap(): New overloaded versions of arcMap and nodeMap

methods have been added to DigraphReader with a new optional template param-

eter, a specialized binary value converter.

template <typename Map, typename Converter , typename BinaryConverter>

DigraphReader& arcMap ( const std : : s t r i n g& caption , Map& map,

const Converter& conver t e r = Converter ( ) ,

const BinaryConverter& binaryConverter = BinaryConverter ( ) )

template <typename Map, typename Converter , typename BinaryConverter>

DigraphReader& nodeMap( const std : : s t r i n g& caption , Map& map,

const Converter& conver t e r = Converter ( ) ,

const BinaryConverter& binaryConverter = BinaryConverter ( ) )

skipMap(): Skips a whole map in the input stream and places the pointer right

after that. Because the count of the item in maps is specified in the header of the

block, it must be passed through as input parameter (itemCount). There is one

more optional parameter, readCaption telling to the method whether the caption

of the map has been already read or not.

void skipMap ( int itemCount , bool readCaption = true )

skipBlock(): Skips the current block and all the maps in it. As the structures of

blocks may differ(e.g. Attributes block dos not store maps), it takes the type of the

block as a parameter.

void sk ipBlock ( b l g f b i t s : : BlgfBlockType type )
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readNodesBinary(): Read maps from a nodes block. First of all, it reads the

size of the block(i.e. count of items in each map), then it reads the Label map and

stores the labels. The labels are stored as std::strings using the default converter to

guarantee LGF and BLGF compatibility. After that, the maps are read one after

the other, and their items are stored in one of the map storage classes which also

provides conversion of the values by calling the setBinary(...) method. If there

is no rule for reading a map, it is skipped.

void readNodesBinary ( )

readArcsBinary(): Its working is pretty similar to the readNodesBinary de-

scribed above. The difference is, that, after reading the size of the block it reads

the From-To map, that contains the source and the destination nodes for each arc.

If there is a Label map, it has to be placed right after the From-To map, and then

the rest of the maps are read.

void readArcsBinary ( )

readAttributesBinary(): The attributes block has no size specified and it stores

only value-key pairs, not maps, so the functioning of this method is quite different

from the previous two. It reads a key and if there is a rule for it, stores its converted

value in a ValueStorage.

void readAttr ibutesBinary ( )

4.4.2 DigraphWriter

The DigraphWriter class providing the writing of directed graphs to an input stream.

For information about using this class see section 3 or http://lemon.cs.elte.hu

[5].

Changes made to DigraphWriter

• Changed run() method

• New overloaded arcMap(...) method

• New overloaded nodeMap(...) method
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• New private writeNodesBinary() method

• New private writeArcsBinary() method

• New private writeAttributesBinary() method

run(): This method starts the batch processing. The signature of this method has

been changed.

void run (bool binary = false , bool append = fa l se ) )

New parameters have been added to determine the file format (binary), and to

tell the writer whether the binary file should be appended or not (append), i.e. no

signature is written in case of appending. These parameters are optional, and the

default value of both parameters is false, so all the existing functionality of the

method remains the same.

arcMap() and nodeMap(): Similarly to the DigraphReader, methods arcMap

and nodeMap for adding writing rules have been overloaded, with a new optional

template parameter added, a specialized binary value converter.

template <typename Map, typename Converter , typename BinaryConverter>

DigraphWriter& nodeMap( const std : : s t r i n g& caption , const Map& map,

const Converter& conver t e r = Converter ( ) ,

const BinaryConverter& binaryConverter = BinaryConverter ( ) )

template <typename Map, typename Converter , typename BinaryConverter>

DigraphWriter& arcMap ( const std : : s t r i n g& caption , const Map& map,

const Converter& conver t e r = Converter ( ) ,

const BinaryConverter& binaryConverter = BinaryConverter ( ) )

writeNodesBinary(): Writes a nodes block to the stream and guarantees that

the label map is written in the first place.

void writeNodesBinary ( )

Steps of the algorithm:

• writes out the header of the block
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• writes out the label map

• writes out the rest of the maps added by nodeMap(...) function

writeArcsBinary(): Writes an arcs block to the stream. Guarantees the right

order of maps, i.e. the From-To map is written out first and if there is a label map,

it is written out second.

void writeArcsBinary ( )

Steps of the algorithm:

• writes out the header of the block

• writes out the From-To map

• if there is a a label map added to the writer, writes it out

• writes out the rest of the maps added by nodeMap(...) function

writeAttributesBinary(): Writes an attributes block to the stream contain-

ing all the keys and values added by arc(...), attribute(...) and node(...)

methods.

void wr i t eAtt r ibute sB inary ( )

4.5 Reading and writing undirected graphs

The classes and algorithms in this section are similar to those described in the

previous subsection, so only the important things and the differences between them

are listed here.

4.5.1 GraphReader and GraphWriter

These classes have almost the same functionality as the DigraphReader and DigraphWriter.

The difference is that they work with undirected graphs and they can handle edges

and edge maps as well as arcs and arc maps. For more information see http://lemon.cs.elte.hu/trac/lemon/wiki/Documentation[5].
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Changes made to GraphReader

• Changed run() method

• New overloaded arcMap(...) method

• New overloaded edgeMap(...) method

• New overloaded nodeMap(...) method

• New private skipMap(...) method

• New private skipBlock(...) method

• New private readNodesBinary() method

• New private readEdgesBinary() method

• New private readAttributesBinary() method

Changes made to GraphWriter

• Changed run() method

• New overloaded arcMap(...) method

• New overloaded edgeMap(...) method

• New overloaded nodeMap(...) method

• New private writeNodesBinary() method

• New private writeArcsBinary() method

• New private writeAttributesBinary() method

All the changes are analogue to the changes that have been made to DigraphReader

and DigraphWriter (Subsection 4.4.1 ). The skipMap(...) and skipBlock(...)

methods are exactly the same as in the DigraphReader.
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4.6 Further development

During the implementation of the BLGF, a lot of emphasis was placed on possibility

of further development. The fact, that the most of the classes are templates, and

they are handled through common interfaces, makes the development quite simple.

New default value converters as well as new built in BLGF types can be easily added

to the implementation.

Some concrete ideas for further development

• The standardization of real types to increase the portability of BLGF. It was

not realized, because currently, there is no standard for transferring floating

point values.

• Implementation of long double data type. Since some compilers may use long

double type which does not conform to IEEE floating-point standard, this

feature has not been implemented yet.

• Implementation of a utility, that can automatically convert LGF to BLGF and

backwards.

• As the storage of different types of data coupled together is sometimes very

useful, the implementation of a pair type for BLGF, that will be able to store

std::pair type could be a good improvement.

4.7 Result of the testing

The correctness of the algorithms, and throwing of the appropriate exceptions was

one of the main criteria, therefore, several tests have been made. This section deals

with the description of all the tests and their results.

4.7.1 Default value converters

Source and test files: conv test.cpp

• Default integer converters: All integer values were converted correctly. Correct

exceptions were thrown when numeric overflow happened or when tried to

convert negative value to unsigned type.
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• Default real converters: Real types was converted correctly. The conversion

between float and double worked and appropriate exception was thrown when

there was a numeric overflow.

• Default string converter: Conversion between C-style strings and std::string

worked correctly as well as the conversion of fundamental types to std::string.

4.7.2 The proper functionality of the reader and writer classes

Source and test files: funct test.cpp, graph funct test.h, digraph funct test.h, cus-

toms.h, conv test.cpp, digraph.lgf, graph.lgf

• DigraphReader and DigraphWriter: Both classes made correct results when

used in binary way. The usage of previously constructed node and arc sets

was tested too, as well as skipping one of the node or arc blocks. Writing more

then one arcs block to one file worked correctly, too.

• GraphReader and GraphWriter: The testing was same as the previous one,

with the only difference that the correct handling of both arcs and edges was

tested, too. All the results were the expected ones.

• Custom converters: The custom value converters behaved correctly.

4.7.3 Size and performance

Source and test files: size performance.cpp

• Size: In some extraordinary cases, the BLGF may produce bigger files as the

LGF(e.g. storing only one digit numbers). In the worst scenario, when all

the values were big and the real values had a long fraction parts, the BLGF

produced a file whose size was about the half of the size of the file written in

LGF. As the LGF is a very compact file format, it requires much less space then

formats based on XML. The size of a file produced by BLGF is incomparably

smaller than a file produced by one of the XML based file formats.

• Performance: The BLGF files were written about 4 times faster than the LGF

files. The reading of BLGF file was not much faster than reading of LGF. It

took about 25% less time.
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5 Summary

The development of a new binary file format for LEMON was successful. All the

tests had proved that BLGF satisfies all the conditions for graph storing file formats

and it provides most of the functionality of the existing LGF (Lemon Graph Format)

file format. The implementation of BLGF was successfully integrated to LEMON,

keeping its former functionality unchanged.

Main benefits of BLGF:

• Requires much less space then other file formats, especially the XML based

ones.

• Compared to other formats, reading and writing operations take significantly

less time.

• Common primitive types are converted automatically.

• When using user defined types, there is an option for defining specialized value

converters.

• The interface of the reading and writing classes remained almost the same, so

there is no need for reimplementation of applications that use older versions

of LEMON.

Limitations of BLGF: As the BLGF stores data in binary way, it is less flexible

than LGF, so it has some limitations compared to LGF. Most of them are already

in development.

• There can be portability problems using real types with BLGF.

• Some widely used, but non-standardized types are not implemented yet (e.g.

long double).

• Using BLGF, nodes and arcs can be labeled only by primitive type values.
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