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Péter KOVÁCS
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Abstract. This paper presents efficient implementations of several algo-
rithms for solving the minimum-cost network flow problem. Various prac-
tical heuristics and other important implementation aspects are also dis-
cussed. A novel result of this work is the application of Goldberg’s recent
partial augment-relabel method in the cost-scaling algorithm. The pre-
sented implementations are available as part of the LEMON open source
C++ optimization library (http://lemon.cs.elte.hu/). The perfor-
mance of these codes is compared to well-known and efficient minimum-
cost flow solvers, namely CS2, RelaxIV, MCF, and the corresponding
method of the LEDA library. According to thorough experimental anal-
ysis, the presented cost-scaling and network simplex implementations
turned out to be more efficient than LEDA and MCF. Furthermore, the
cost-scaling implementation is competitive with CS2. The RelaxIV al-
gorithm is often much slower than the other codes, although it is quite
efficient on particular problem instances.

1 Introduction

Network flow theory comprises a wide range of optimization models, which
have countless applications in various fields. One of the most fundamental
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network flow problems is the minimum-cost flow (MCF) problem. It seeks
a minimum-cost transportation of a specified amount of a commodity from
a set of supply nodes to a set of demand nodes in a directed network with
capacity constraints and linear cost functions defined on the arcs. This problem
directly arises in various real-world applications in the fields of transportation,
logistics, telecommunication, network design, resource planning, scheduling,
and many other industries. Moreover, it also arises as a subproblem in more
complex optimization tasks, such as multicommodity flow problems. For a
comprehensive study of the theory, algorithms, and applications of network
flows, see the book of Ahuja, Magnanti, and Orlin [3].

The MCF problem and its solution methods have been the object of in-
tensive research for decades and they have enormous literature. Numerous
algorithms have been developed and studied both from theoretical and practi-
cal aspects (see the books [26, 13, 48, 3, 64, 52]). Efficient implementation and
profound experimental analysis of these algorithms are also of high interest to
the operations research community (for example, see [10, 41, 8, 57, 33, 11, 28]).
Nowadays, several commercial and non-commercial MCF solvers are available
under different license terms.

The primary goal of our research is to provide highly efficient and robust
open source implementations of different MCF algorithms and to compare
their performance in practice. Preliminary work was published in [49]. This
paper presents a more detailed discussion of our implementations along with
extensive benchmark testing on a wide range of problem instances.

In order to achieve a comprehensive study, the following algorithms were im-
plemented: SCC: a simple cycle-canceling algorithm; MMCC: minimum-mean
cycle-canceling algorithm; CAT: cancel-and-tighten algorithm; SSP: successive
shortest path algorithm; CAS: capacity-scaling algorithm; COS: cost-scaling al-
gorithm in three different variants; and NS: primal network simplex method
with five different pivot strategies. All of these methods are generally known
and well-studied algorithms, our contribution is their efficient implementation
with some new heuristics and practical considerations.

According to the authors knowledge, our implementation of the cost-scaling
algorithm is the first to apply Goldberg’s recent partial augment-relabel
method, which was originally developed to solve the maximum flow problem
efficiently [34]. Its utilization in MCF algorithms was also suggested, but was
not investigated by Goldberg. According to our tests, this new idea turned out
to be a considerable improvement in the cost-scaling MCF algorithm similarly
to Goldberg’s results on the maximum flow algorithm.

This paper also presents an empirical evaluation of our implementations and
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their variants. Numerous benchmark tests were performed on many kinds of
large-scale networks containing up to millions of nodes and arcs. These problem
instances were created either using well-known random generators, namely
NETGEN and GOTO, or based on networks arising in real-life problems. The
presented results demonstrate the relative performance of the solution methods
and give some guidelines for selecting an MCF algorithm that is suitable for
a desired application domain.

Our fastest implementations were also compared to four highly regarded
minimum-cost flow solvers: CS2 code of Goldberg and Cherkassky [33, 16],
an efficient authoritative implementation of the cost-scaling push-relabel algo-
rithm that has served as a benchmark for a long time; the LEDA library [54],
which also implements the cost-scaling algorithm; Löbel’s MCF code [57, 58],
which implements the network simplex algorithm; and RelaxIV [27], a C++
translation of the authoritative FORTRAN implementation of the relaxation
algorithm due to Bertsekas and Tseng [8, 7]. We henceforth refer to the MCF
code as MCFZIB in order to differentiate it from the problem itself. The ex-
periments we conducted show that our cost-scaling implementation is more
efficient than LEDA and performs similarly to or slightly slower than CS2.
Our network simplex code clearly outperforms MCFZIB and it is the fastest
implementation for solving relatively small problem instances (up to a few
thousands of nodes). For large networks, however, the cost-scaling codes are
usually more efficient than the network simplex algorithms. The performance
of RelaxIV turned out to be fluctuating: it is one of the fastest implemen-
tations for solving certain kinds of problem instances, but it is very slow for
other instances. The detailed experimental results can be found in Section 4.

The implementations presented in this paper are available with full source
codes as part of the LEMON optimization library [55]. LEMON is an ab-
breviation of Library for Efficient Modeling and Optimization in Networks.
It is an open source C++ template library with focus on combinatorial opti-
mization tasks related mainly to graphs and networks. It provides easy-to-use
and highly efficient implementations of graph algorithms and related data
structures, which help solving complex real-life optimization problems. The
LEMON project is maintained by the MTA-ELTE Egerváry Research Group
on Combinatorial Optimization (EGRES) [25] at the Department of Opera-
tions Research, Eötvös Loránd University, Budapest, Hungary. The library
is also a member of the COIN-OR initiative [14], a collection of open source
projects related to operations research. LEMON applies a very permissive li-
censing scheme that makes it favorable for commercial and non-commercial
software development as well as for research activities. For more information

http://lemon.cs.elte.hu
http://www.cs.elte.hu/egres
http://www.cs.elte.hu/egres
http://www.cs.elte.hu/index.html?lang=en
http://www.cs.elte.hu/index.html?lang=en
http://www.elte.hu/en
http://www.coin-or.org
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about LEMON, the readers are referred to the introductory paper [21] and to
the web site of the library: http://lemon.cs.elte.hu/.

The rest of this paper is organized as follows. Section 2 briefly introduces the
MCF problem along with the used notations and theorems. Section 3 describes
the implemented algorithms and their variants. Section 4 presents the main
experimental results. Finally, the conclusions are drawn in Section 5.

2 The minimum-cost flow problem

2.1 Definitions and notations

The minimum-cost flow (MCF) problem is defined as follows. Let G = (V,A)
be a weakly connected directed graph consisting of n = |V | nodes and m = |A|

arcs. We associate with each arc (i, j) ∈ A a capacity (upper bound) uij ≥ 0
and a cost cij, which denotes the cost per unit flow on the arc. Each node i ∈ V
has a signed supply value bi. If bi > 0, then node i is called a supply node with
a supply of bi; if bi < 0, then node i is called a demand node with a demand
of −bi; and if bi = 0, then node i is referred to as a transshipment node. We
assume that all data are integer and we wish to find an integer-valued flow of
minimum total cost satisfying the supply-demand constraints at all nodes and
the capacity constraints on all arcs. The solution of the problem is represented
by flow values xij assigned to the arcs. Therefore, the MCF problem can be
stated as

min
∑

(i,j)∈A

cijxij (1a)

subject to ∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi ∀i ∈ V, (1b)

0 ≤ xij ≤ uij ∀(i, j) ∈ A. (1c)

We refer to (1b) as flow conservation constraints and (1c) as capacity con-
straints. A solution vector x is called feasible if it satisfies all constraints defined
in (1b) and (1c), and it is called optimal if it also minimizes the total flow cost
(1a) over the feasible solutions.

The flow conservation constraints (1b) imply that the sum of the node supply
values is required to be zero, that is,

∑
i∈V bi = 0, in order to have a feasible

solution to the MCF problem:∑
i∈V

bi =
∑
i∈V

( ∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji

)
=

∑
i∈V

∑
j:(i,j)∈A

xij −
∑
i∈V

∑
j:(j,i)∈A

xji = 0.

http://lemon.cs.elte.hu/
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Without loss of generality, we may further assume that all arc capacities are
finite, all arc costs are nonnegative, and the problem has a feasible solution [3].

There are several other problem formulations that are equivalent to the
above definition, for instance, the minimum-cost circulation problem, the unca-
pacitated minimum-cost flow problem, and the transportation problem. How-
ever, this definition is quite common in the literature.

Flow algorithms and related theorems usually rely on the concept of residual
networks [26, 13, 3, 64, 52]. For a given feasible flow x, the corresponding
residual network Gx is defined as follows. Let Gx = (V,Ax) be a directed graph
that contains forward and backward arcs on the original node set V. A forward
arc (i, j) ∈ Ax corresponds to each original arc (i, j) ∈ A for which the residual
capacity rij = uij − xij is positive. A backward arc (j, i) ∈ Ax corresponds to
each original arc (i, j) ∈ A for which the residual capacity rji = xij is positive.
The cost of a forward arc (i, j) is defined as cij, while the cost of a backward
arc (j, i) is −cij.

The concept of pseudoflows is also important for several flow algorithms.
A pseudoflow is a function x defined on the arcs that satisfies only the nonneg-
ativity and capacity constraints (1c) but might violate the flow conservation
constraints (1b). A feasible flow is also a pseudoflow. In case of a pseudoflow x,
a node might have a certain amount of undelivered supply or unfulfilled de-
mand, which is called the excess or deficit of the node, respectively. Formally,
the signed excess value of a node i with respect to a pseudoflow x is defined
as

ei = bi +
∑

j:(j,i)∈A

xji −
∑

j:(i,j)∈A

xij. (2)

If ei > 0, node i is referred to as an excess node with an excess of ei; and
if ei < 0, node i is called a deficit node with a deficit of −ei. Note that∑
i∈V ei =

∑
i∈V bi = 0, that is, the total excess of the nodes equals to the

total deficit. The residual network corresponding to a pseudoflow is defined in
the same way as in case of a feasible flow.

The running time of an MCF algorithm is measured as a function of the
size of the network and the magnitudes of the input data. Let U henceforth
denote the largest node supply or arc capacity:

U = max{max{|bi| : i ∈ V},max{uij : (i, j) ∈ A}} (3)

and let C denote the largest arc cost:

C = max{cij : (i, j) ∈ A}. (4)
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An algorithm is referred to as pseudo-polynomial if its running time is bounded
by a polynomial function in the dimensions of the problem and the magnitudes
of the numerical data, namely, n, m, U, and C. These algorithms technically
run in exponential time with respect to the size of the input and they are
therefore not considered polynomial. A (weakly) polynomial algorithm is one
that runs in time polynomial in the input size, namely, n, m, logU, and logC.
Furthermore, an algorithm is called strongly polynomial if its running time
depends upon only on the inherent dimensions of the problem, that is, it runs
in time polynomial in n and m regardless of the numerical input data.

2.2 Optimality conditions

In the followings, we formulate optimality conditions for the MCF problem
in terms of the residual network as well as the original network. These fun-
damental theorems are useful in several aspects. Not only do they provide
simple methods for verifying the optimality of a certain solution, but they
also suggest algorithms for solving the problem. These results are discussed in
[26, 13, 3, 64, 52].

Theorem 1 (Negative cycle optimality conditions) A feasible solution
x of the MCF problem is optimal if and only if the residual network Gx contains
no directed cycle of negative total cost.

This theorem is a consequence of the observation that any feasible flow can
be decomposed into a finite set of augmenting paths and cycles.

We also introduce two equivalent formulations of optimality conditions that
rely on the notions of node potentials and reduced costs. We associate with
each node i ∈ V a signed value πi, which is referred to as the potential of
node i. Actually, πi can be viewed as the linear programming dual variable
corresponding to the flow conservation constraint of node i (see [3]). With
respect to a given potential function π, the reduced cost of an arc (i, j) is
defined as

cπij = cij + πi − πj. (5)

Note that cπij measures the relative cost of the arc (i, j) with respect to the
potentials of its end-nodes.

This concept allows us to formulate the following optimality conditions.

Theorem 2 (Reduced cost optimality conditions) A feasible solution x
of the MCF problem is optimal if and only if for some node potential func-
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tion π, the reduced cost of each arc in the residual network Gx is nonnegative:

cπij ≥ 0 ∀(i, j) ∈ Ax. (6)

Note that the total reduced cost of a directed cycle with respect to any
potential function equals to the original cost of the cycle. Therefore, the con-
ditions of Theorem 2 obviously imply the negative cycle optimality conditions
defined in Theorem 1. Furthermore, a constructive proof exists for the con-
verse result. For an optimal flow x, corresponding optimal node potentials π
can be obtained by solving a shortest path problem in the residual network.

Theorem 2 can be restated in terms of the original network as follows.

Theorem 3 (Complementary slackness optimality conditions) A fea-
sible solution x of the MCF problem is optimal if and only if for some node
potential function π, the following complementary slackness conditions hold
for each arc (i, j) ∈ A of the original network:

if cπij > 0, then xij = 0; (7a)

if 0 < xij < uij, then cπij = 0; (7b)

if cπij < 0, then xij = uij. (7c)

In addition to these exact optimality conditions, the characterization of
approximate optimality is also of particular importance. Several algorithms
rely on the concept of ε-optimality. For a given ε ≥ 0, a feasible flow or a
pseudoflow x is called ε-optimal if for some node potential function π, the
reduced cost of each arc in the residual network Gx is at least −ε, that is,

cπij ≥ −ε ∀(i, j) ∈ Ax. (8)

These conditions are the relaxations of the reduced cost optimality conditions
defined in Theorem 2 and are equivalent to them when ε = 0. The ε-optimality
conditions can also be restated in terms of the original network to obtain the
relaxations of the complementary slackness optimality conditions defined in
Theorem 3.

The following lemma formulates two simple observations that are related to
ε-optimality.

Lemma 4 Any feasible solution x of the MCF problem is ε-optimal if ε ≥ C.
Moreover, if the arc cost are integer and ε < 1/n, then an ε-optimal feasible
flow is an optimal solution.
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Note that an ε-optimal flow is also ε ′-optimal for all ε ′ > ε and hence the
approximate optimality of x is best indicated by the smallest value ε ≥ 0 for
which x is ε-optimal. This minimum value is referred to as ε(x). The following
theorem reveals an inherent connection between ε(x) and the minimum-mean
cycles of the residual network. The mean cost of a directed cycle is defined as
its total cost divided by the number of arcs in the cycle.

Theorem 5 For a non-optimal feasible solution x of the MCF problem, ε(x)
equals to the negative of the minimum-mean cost of a directed cycle in the
residual network Gx. For an optimal solution x, ε(x) = 0.

Therefore, ε(x) can be computed by finding a directed cycle of minimum-
mean cost, which can be carried out in O(nm) time [46]. Another related
problem is to find an appropriate potential function π for an ε-optimal flow or
pseudoflow x so that they satisfy the ε-optimality conditions. Similarly to the
problem of finding optimal node potentials, this problem can also be solved
by performing a shortest path computation in Gx but with a modified cost
function c ′ for which c ′ij = cij + ε for each arc (i, j) in Gx. See, for example,
[3, 29] for the proof of all these results related to ε-optimality.

2.3 Solution methods

The MCF problem and its solution methods have a rich history spanning
more than fifty years. Researchers first studied a classical special case of the
MCF problem, the so-called transportation problem, in which the network
consists only of supply and demand nodes. Dantzig was the first to solve
the transportation problem by specializing his famous linear programming
method, the simplex algorithm. Later, he also applied this approach to the
MCF problem and developed a solution method that is known as the network
simplex algorithm. These results are discussed in Dantzig’s book [18].

Ford and Fulkerson developed the first combinatorial algorithms for the un-
capacitated and capacitated transportation problems by generalizing Kuhn’s
remarkable Hungarian Method [53]. Ford and Fulkerson later proposed a sim-
ilar primal–dual algorithm for the MCF problem, as well. Their results are
presented in the book [26].

In the next few years, other algorithmic approaches were also suggested,
namely, the successive shortest path algorithm, the out-of-kilter algorithm,
and the cycle-canceling algorithm. These methods, however, do not run in
polynomial time. Therefore, both theoretical and practical expectations moti-
vated further research on developing more efficient algorithms. Edmonds and
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Karp [24] introduced the scaling technique and developed the first weakly
polynomial-time algorithm for solving the MCF problem. Later, other re-
searchers also recognized the significant value of this approach and proposed
various scaling algorithms. The problem of finding a strongly polynomial-time
MCF algorithm, however, remained a challenging open question for several
years. Tardos [67] developed the first such algorithm, which was followed by
many other methods providing improved running time bounds.

Besides theoretical aspects, efficient implementation and computational
evaluation of MCF algorithms have also been an object of intensive research.
The network simplex algorithm became quite popular in practice when efficient
spanning tree labeling techniques were developed to improve its performance.
Later, other algorithms also turned out to be quite efficient. Implementations
of relaxation and cost-scaling algorithms were reported to be competitive with
the fastest network simplex codes.

Detailed discussion and complexity survey of MCF algorithms can be found
in, for example, [3, 64, 52]. Table 1 provides a brief summary of the MCF
algorithms having best theoretical running time. Recall from Section 2.1 that
n and m denote the number of nodes and arcs in the network, respectively;
U denotes the maximum of supply values and arc capacities; and C denotes the
largest arc cost. Furthermore, let SP+(n,m) denote the running time of any
algorithm solving the single-source shortest path problem in a directed graph
with n nodes, m arcs, and a nonnegative length function. Dijkstra’s algorithm
with Fibonacci heaps provides an O(m + n logn) bound for SP+(n,m) [64,
15, 52].

O(nU · SP+(n,m))
Edmonds and Karp [24]; Tomizawa [70]
successive shortest path

O(m logU · SP+(n,m))
Edmonds and Karp [24]
capacity-scaling

O(m logn · SP+(n,m))
Orlin [60]
enhanced capacity-scaling

O(nm log(n2/m) log(nC))
Goldberg and Tarjan [38]
generalized cost-scaling

O(nm log logU log(nC))
Ahuja, Goldberg, Orlin, and Tarjan [1]
double scaling

O((m3/2U1/2 +mU log(mU)) log(nC)) Gabow and Tarjan [30]

O((nm +mU log(mU)) log(nC)) Gabow and Tarjan [30]

Table 1: Best theoretical running time bounds for the MCF problem
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3 Implemented algorithms

This section discusses the algorithms we implemented as well as the most
important heuristics and other practical improvements. All of these methods
are well-studied in the literature. Their profound theoretical analysis with
the proof of correctness and running time can be found in [3] and in other
papers and books cited later in this section. The contribution of this paper is
the efficient implementation and empirical analysis of several variants of these
algorithms. For further details of our implementations, the readers are referred
to the documentation and the source code of the LEMON library [55].

Table 2 provides an overview of the implemented algorithms and their worst-
case running time. The same notations are used as in the previous section.
Two of these algorithms perform shortest path computations with nonnegative
length functions. Our implementations use Dijkstra’s algorithm with binary
heaps by default, hence SP+(n,m) = O((n+m) logn). Note that some of these
algorithms have other variants with better theoretical running time, but our
research especially focused on the practical performance of them. The given
running time bounds correspond to the actual implementations.

Alg. Name Running time

SCC simple cycle-canceling O(nm2CU)

MMCC minimum-mean cycle-canceling O(n2m2min{log(nC),m logn})

CAT cancel-and-tighten O(n2mmin{log(nC),m logn})

SSP successive shortest path O(nU · SP+(n,m))

CAS capacity-scaling O(m logU · SP+(n,m))

COS cost-scaling O(n2m log(nC))

NS network simplex O(nm2CU)

Table 2: Implemented algorithms and their worst-case running time

3.1 Cycle-canceling algorithms

Cycle-canceling is one of the simplest methods for solving the MCF problem.
This algorithm applies a primal approach based on Theorem 1. A feasible
flow x is first established, which can be carried out by solving a maximum
flow problem. After that, the algorithm throughout maintains feasibility of the
solution x and gradually decreases its total cost. At each iteration, a directed
cycle of negative cost is identified in the residual network Gx and this cycle
is canceled by pushing the maximum possible amount of flow along it. When
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the residual network contains no negative-cost directed cycle, the algorithm
terminates and Theorem 1 implies that the solution is optimal.

The cycle-canceling algorithm was proposed by Klein [50]. Its generic version
does not specify the order of selecting negative cycles to be canceled, but it
runs in pseudo-polynomial time for the MCF problem with integer data. Since
the total flow cost is decreased at each iteration and mCU is clearly an upper
bound of the flow cost, the algorithm performs O(mCU) iterations if all data
are integer. Klein used a label-correcting shortest path algorithm that iden-
tifies a negative cycle in O(nm) time, thus his algorithm runs in O(nm2CU)
time. Later, numerous other variants of the cycle-canceling method were also
developed by applying different rules for cycle selection, for example [4, 37, 66].
These algorithms have quite different theoretical and practical behavior. Some
of them run in polynomial or even strongly polynomial time.

We implemented three cycle-canceling algorithms, which are discussed in
the followings.

Simple cycle-canceling algorithm. This is a simple version of the cycle-
canceling method using the Bellman–Ford algorithm for identifying negative
cycles. We henceforth denote this implementation as SCC.

It is well-known that the Bellman–Ford algorithm is capable of detecting
a negative-cost directed cycle after performing n iterations or detecting that
such a cycle does not exist [15]. However, it is not required to perform n

iterations in most cases. If negative cycles exist in the graph, one or more of
them typically appear in the subgraph identified by the predecessor pointers
of the nodes after much less iterations. Unfortunately, we do not know the
sufficient limit for the number of iterations in advance and searching for cycles
using the predecessor pointers at an intermediate step of the algorithm is a
relatively slow operation. Therefore, our SCC implementation performs such
checking after a successively increasing number of iterations of the Bellman–
Ford algorithm. According to our tests, it turned out to be practical to search
for negative cycles after executing b2 · 1.5kc iterations for each k ≥ 0 until
this limit reaches n. It is also beneficial to cancel all node-disjoint negative
cycles that can be found at once when Bellman–Ford algorithm is stopped.
The worst case time complexity of the SCC algorithm is O(nm2CU).

Minimum-mean cycle-canceling algorithm. This famous special case
of the cycle-canceling method was developed by Goldberg and Tarjan [37]. It
selects a negative cycle of minimum mean cost to be canceled at each iteration,
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which yields the simplest MCF algorithm running in strongly polynomial time.
We denote this method and our implementation as MMCC.

Recall from Section 2.2 that the mean cost of a directed cycle is defined
as its total cost divided by the number of arcs in the cycle. The MMCC
algorithm iteratively identifies a directed cycleW of minimum-mean cost in the
current residual network. If the cost ofW is negative, then the cycle is canceled
and another iteration is performed, otherwise the algorithm terminates with
an optimal solution found. It has been proved that this algorithm performs
O(nm2 logn) iterations for arbitrary real-valued arc costs and O(nm log(nC))
iterations for integer arc costs. The proof of these bounds relies on the concept
of ε-optimality and is rather involved, see [37, 3, 52], although the algorithm
is very simple to state.

The MMCC algorithm relies on finding minimum-mean directed cycles in
a graph. This optimization problem has also been studied for a long time
and several efficient algorithms have been developed for solving it [46, 42, 20,
19, 31]. The best strongly polynomial-time bound for a minimum-mean cycle
algorithm is O(nm) and thus the overall running time of the MMCC algorithm
is O(n2m2 min{log(nC),m logn}) for the MCF problem with integer data.

We implemented three known algorithms for finding minimum-mean cycles:
Karp’s original algorithm [46]; an improved version of this method that is due
to Hartmann and Orlin [42]; and Howard’s policy-iteration algorithm [43, 19].
The first two methods run in strongly polynomial time O(nm). In contrast,
Howard’s algorithm is not known to be polynomial, but it is one of the fastest
solution methods in practice [20, 19].

Our experiments also verified that Howard’s algorithm is orders of mag-
nitude faster than the other two methods we implemented. This algorithm
gradually approximates the optimal solution by performing linear-time itera-
tions. Relatively few iterations are typically sufficient to find a minimum-mean
cycle, but no polynomial upper bound is known. Therefore, we developed a
combined method in order to achieve the best performance in practice while
keeping the strongly polynomial upper bound on the running time. Howard’s
algorithm is run with an explicit limit on the number of iterations. If this limit
is reached without finding the optimal solution, we stop Howard’s algorithm
and execute the Hartmann–Orlin algorithm. We set this iteration limit to n,
and hence the overall running time of this combined method is O(nm), which
equals to the best strongly polynomial bound. In our experiments, the iteration
limit was indeed never reached. Thus, the combined method was practically
identical to Howard’s algorithm but with a guarantee of worst-case running
time O(nm).
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Cancel-and-tighten algorithm. This algorithm can be viewed as an im-
proved version of the MMCC algorithm, which is also due to Goldberg and
Tarjan [37]. It is faster than MMCC both in theory and practice. This algo-
rithm is henceforth denoted as CAT.

The improvement of the CAT algorithm is based on a more flexible selection
of cycles to be canceled. The previously studied cycle-canceling algorithms are
pure primal methods in a sense that they do not consider the dual solution
at all. In contrast, the CAT algorithm explicitly maintains node potentials,
which make the detection of negative residual cycles easier and faster. The
key idea of the algorithm is to cancel cycles that consist entirely of negative-
cost arcs. Note that the sum of the reduced arc costs along a cycle with respect
to any potential function is exactly the same as the original cost of the cycle.
Therefore, the algorithm can consider the reduced costs with respect to the
current node potentials instead of the original costs. A residual arc is called
admissible if its reduced cost is negative; the subgraph of the residual network
consisting only of the admissible arcs is called the admissible network ; and a
directed cycle in the admissible network is referred to as an admissible cycle.

The CAT algorithm performs two main steps at every iteration until the
current solution becomes optimal. In the cancel step, admissible cycles are
successively canceled until such a cycle does not exist. In the tighten step, the
node potentials are modified in order to make more arcs admissible. Despite the
MMCC algorithm, this method explicitly utilizes the concept of ε-optimality.
Recall the corresponding definitions and theorems from Section 2.2. The CAT
algorithm ensures ε-optimality of the solution for successively smaller values
of ε ≥ 0. In the tighten step, the potentials are modified so as to satisfy the
ε-optimality conditions for a smaller ε that is at most (1 − 1/n) times its
former value.

The cancel step is the dominant part of the computation. We implemented
a straightforward method for this step based on a depth-first traversal of the
admissible network. This implementation runs in O(nm) time as canceling a
cycle takes O(n) time and at most O(m) admissible cycles can be successively
canceled without modifying the potential function. Goldberg and Tarjan [37]
also showed that using dynamic tree data structures [65], the running time
of this step can be reduced to O(m logn) (amortized time O(logn) per cycle
cancellation). However, we did not invest effort in implementing this variant
because the cycle-canceling algorithms turned out to be relatively slow in our
experimental tests (see Section 4).

The tighten step can be performed in O(m) time based on a topological
ordering of the nodes with respect to the admissible network. This implemen-
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tation, however, does not ensure that the overall running time of the algorithm
is strongly polynomial. To overcome this drawback, Goldberg and Tarjan [37]
suggested to carry out the tighten step in a stricter way after every O(n) it-
erations of the algorithm. In these cases, a minimum-mean cycle computation
is performed to exactly determine the smallest ε value for which the current
flow is ε-optimal (see Theorem 5). Node potentials are also recomputed to
correspond to this ε value. Note that the amortized running time O(m) of the
tighten step is not affected by this modification. Our implementation, how-
ever, performs this stricter tighten step more often, namely after every b

√
nc

iterations, because it turned out to be more efficient in practice. This means
that the amortized running time of the tighten step becomes O(m

√
n), but it

is still less than the O(nm) time of our implementation of the cancel step. The
minimum-mean cycle computations are carried out using the same combined
algorithm that was applied in the MMCC algorithm.

This algorithm is strongly polynomial. It runs in O(n2m2 logn) time for
the MCF problem with arbitrary arc costs and in O(n2m log(nC)) time for
integer arc costs, see [37].

The experimental results for these algorithms are presented in Section 4.
It turned out that their relative performance depends upon the problem in-
stance, but the CAT algorithm is usually much more efficient than both SCC
and MMCC. However, all three of these cycle-canceling algorithms turned out
to be slower than the cost-scaling and network simplex methods.

3.2 Augmenting path algorithms

Another fundamental approach for solving the MCF problem is the so-called
successive shortest path method. It is a dual ascent algorithm that successively
augments flow along shortest paths of the residual network to send the required
amount of flow from the supply nodes to the demand nodes. In this sense, this
method can be viewed as a generalization of the well-known augmenting path
algorithms solving the maximum flow problem, namely the Ford–Fulkerson
and Edmonds–Karp algorithms [26, 24, 3, 15].

The successive shortest path algorithm in its inital form was developed inde-
pendently by Jewell [45], Iri [44], and Busacker and Gowen [12]. They showed
that the MCF problem can be solved by a sequence of shortest path compu-
tations. Later, Edmonds and Karp [24] and Tomizawa [70] independently sug-
gested the utilization of node potentials in the algorithm to maintain nonneg-
ative arc costs for the shortest path problems. This technique greatly improves
both the theoretical and the practical performance of the algorithm. Edmonds



Efficient implementations of minimum-cost flow algorithms 81

and Karp [24] also developed a capacity-scaling variant of this method that
runs in polynomial time.

We implemented the standard successive shortest path algorithm applying
node potentials as well as the capacity-scaling method. These algorithms and
the most important aspects of their implementations are discussed below.

Successive shortest path algorithm. This algorithm is henceforth de-
noted as SSP. In contrast to the cycle-canceling method, which maintains a
feasible flow and attempts to achieve optimality, the SSP algorithm maintains
an optimal pseudoflow and node potentials and attempts to achieve feasibility.
Recall from Section 2.1 that a pseudoflow satisfies the nonnegativity and ca-
pacity constraints but might violate the flow conservation constraints at some
nodes. Such a node has a certain amount of excess or deficit.

The SSP algorithm begins with constant zero pseudoflow x and a constant
potential function π and proceeds by gradually converting x into a feasible
solution while throughout maintaining the reduced cost optimality conditions
defined in Theorem 2. At every iteration, the algorithm selects a node with
positive excess and sends flow from this node to an arbitrary deficit node along
a shortest path of the residual network with respect to the reduced arc costs.
After that, the node potentials are modified using the computed shortest path
distances to preserve the reduced cost optimality conditions. These conditions
not only verify the optimality of both the primal and the dual solutions, but
they also ensure nonnegative arc costs for the consecutive shortest path com-
putations. By sending flow from excess nodes to deficit nodes, the algorithm
iteratively decreases the total excess of the nodes until the solution becomes
feasible. At the beginning of the algorithm, the total excess is at most nU/2
and each iteration decreases this value by at least one (in case of integer data),
thus the SSP algorithm terminates after O(nU) path augmentations. The flow
conservation constraints are then satisfied at all nodes and hence the solution
is both feasible and optimal.

We implemented the SSP algorithm as follows. At each iteration, flow is
augmented from the current excess node v to a deficit node w whose shortest
path distance from v is minimal. The shortest path searches are carried out
using Dijkstra’s algorithm with a heap data structure. We experimented with
several heap variants provided by the LEMON library [56] and the standard
binary heap structure turned out to be one of the fastest and most robust
implementations. Therefore, our SSP implementation uses this data structure
by default. This means that a single iteration is performed in O((n+m) logn)
time and the overall complexity of the algorithm is O(nU(n+m) logn). How-
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ever, one can easily switch to other data structures (for instance, Fibonacci
heaps).

The practical performance of the SSP algorithm mainly depends on the
shortest path computations. We applied a significant improvement related to
these searches, which is discussed, for example, in [3]. At each iteration, it is
not necessary to compute the shortest paths to all nodes from the current ex-
cess node v, but the Dijkstra algorithm can be terminated once it permanently
labels a deficit node w. The node potentials can also be updated in an alterna-
tive way that does not require any modification for those nodes that were not
permanently labeled during the shortest path computation. This improvement
can be implemented quite easily, but it greatly improves the efficiency of the
SSP algorithm in practice.

The representation of the residual network is another important aspect of
the implementation. It is possible to implement the SSP algorithm using the
original representation of the input network, but in this case, all outgoing
and incoming arcs of the current node have to be checked at each step of
the shortest path computations. Another possibility is to explicitly maintain
the residual network containing only those arcs that have positive residual
capacity. However, this implementation would require the updating of the
graph structure after each path augmentations, which is time-consuming.

We applied an intermediate solution that turned out to be the most efficient.
We store an auxiliary graph G ′ that contains all possible forward and back-
ward arcs and also maintain their residual capacities explicitly. All shortest
path computations run on G ′ by skipping those arcs whose current residual
capacity is zero. The flow augmentations are carried out by decreasing the
residual capacities of the arcs on the path and increasing the residual capac-
ities of the corresponding reverse arcs. Therefore, we also store for each arc
an index to its reverse arc (often referred to as sister arc). The major benefit
of this implementation is that this auxiliary graph G ′ allows a quite efficient
representation. Note that using G ′, only the outgoing arcs of a node have to be
traversed during the shortest path searches and G ′ is not modified throughout
the algorithm. We can, therefore, represent the outgoing arcs of a node in G ′

by consecutive integers, which makes it possible to traverse these arcs quite
efficiently without iterating over the elements of an array or a linked list.

The reduced arc costs are also required in the shortest path computations.
Since these values are frequently modified by adjusting node potentials, it is
better to store only the potentials and recompute reduced costs whenever they
are needed. Furthermore, we also maintain a signed excess value for each node.
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Capacity-scaling algorithm. This algorithm, which we denote as CAS, is
an improved version of the SSP method. It uses a capacity-scaling scheme that
reduces the number of iterations from O(nU) to O(m logU). This algorithm
was devised by Edmonds and Karp [24] as the first weakly polynomial-time
solution method for the MCF problem. Our implementation is based on a
slightly modified variant that is due to Orlin [60] and also discussed in [3].

The SSP algorithm has a substantial drawback that the shortest path aug-
mentations might deliver relatively small amounts of flow, which results in a
large number of iterations. This is overcome in the CAS algorithm by ensur-
ing that each path augmentation carries a sufficiently large amount of flow
and hence the number of augmentations is often reduced. The CAS algorithm
performs scaling phases for successively smaller values of a parameter ∆. In a
∆-scaling phase, each path augmentation delivers exactly ∆ units of flow from
a node v with at least ∆ units of excess to a node w with at least ∆ units
of deficit. The shortest path searches are carried out in the so-called ∆-resid-
ual network, which contains only those arcs whose residual capacities are at
least ∆. When no such augmenting path is found, the value of ∆ is halved and
the algorithm proceeds with the next phase. Initially, ∆ is set to 2blog2 Uc and
the algorithm terminates at the end of the phase in which ∆ = 1.

The CAS algorithm maintains the reduced cost optimality conditions only
in the ∆-residual network. Each ∆-scaling phase begins with saturating those
newly introduced arcs of the current ∆-residual network that do not satisfy
the optimality conditions with respect to the current node potentials. The
saturations might increase the excess or deficit of some nodes, but these re-
quirements are satisfied in the subsequent phases. At the end of the last phase,
which corresponds to ∆ = 1, the solution becomes both feasible and optimal
since the ∆-residual network then coincides with the residual network.

In order to ensure the weakly polynomial running time of the CAS algo-
rithm, we need an additional assumption that a directed path of sufficiently
large capacity exists between each pair of nodes. This condition, however,
can easily be achieved by a simple extension of the underlying network as
follows. Let s denote a designated node of the network (or a newly intro-
duced artificial node). For each other node i, we can add new arcs (i, s) and
(s, i) to the graph with sufficiently large capacities and costs. Under this ad-
ditional assumption, the CAS algorithm is proved to solve the MCF problem
in O(m logU · SP+(n,m)) time [3].

We made some modifications to this version of the CAS algorithm in our
implementation. First, it is possible to avoid the above extension of the in-
put graph by allowing that more units of excess or deficit remain at the end
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of a ∆-scaling phase. In this case, the polynomial running time bound is not
proved, but our experiments show that this version does not perform more
path augmentations and runs significantly faster in practice. Therefore, our
implementation does not extend the input graph by default. Another modi-
fication utilizes that the path augmentations of each ∆-scaling phase might
be capable of delivering more than ∆ units of flow. We send the maximum
possible amount of flow along each path similarly to the SSP algorithm. Fur-
thermore, the scaling of the parameter ∆ can be carried out using a factor
other than two. Let α ≥ 2 denote an integer scaling factor. ∆ is initially set
to αblogα Uc and divided by α at the end of each phase. This means that more
path augmentations might be required for the same excess or deficit node in
a ∆-scaling phase, but the number of phases is reduced. In our experiments, a
factor of α = 4 turned out to provide the best overall performance, thus this
option is used by default.

The CAS algorithm has much in common with the SSP method, thus the
practical improvements of the SSP implementation also applies to this algo-
rithm. Our CAS code uses the same representations for the residual network
and the associated data. In a ∆-scaling phase, the ∆-residual network is not
constructed explicitly, but the arcs with residual capacity less than ∆ are
skipped during the path searches. Moreover, our CAS implementation also
terminates the shortest path computations once an appropriate deficit node is
permanently labeled and updates the node potentials accordingly. This idea
and the practical data representations substantially improve the performance
of the CAS algorithm similarly to the SSP method.

The computational results presented in Section 4 show that the augmenting
path algorithms, SSP and CAS, are not robust as their performance greatly
depends upon the characteristics of the input. On general problem instances,
these algorithms are typically slower than the cost-scaling and network sim-
plex methods, but in certain cases, they turned out to be quite efficient. For
example, if the total excess is relatively small and hence a few path augmen-
tations are sufficient to solve the problem, the SSP algorithm is usually the
fastest method.

3.3 Cost-scaling algorithm

The cost-scaling technique for the MCF problem was proposed independently
by Röck [63] and Bland and Jensen [9]. Goldberg and Tarjan [38] developed
an improved method based on these algorithms by also utilizing the concept
of ε-optimality, which is due to Bertsekas [6] and, independently, Tardos [67].
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The cost-scaling algorithm of Goldberg and Tarjan, which we henceforth refer
to as COS, can be viewed as a generalization of their well-known push-relabel
algorithm for the maximum flow problem [36]. The COS algorithm is one of
the most efficient solution methods for the MCF problem, both in theory and
practice.

The COS algorithm is a primal–dual method that applies a successive ap-
proximation scheme by scaling upon the costs. It iteratively produces ε-opti-
mal primal–dual solution pairs for successively smaller values of ε ≥ 0. (Recall
the definitions and results related to ε-optimality from Section 2.2.) Initially,
ε = C and each phase preforms a refine procedure to transform an ε-opti-
mal solution into an (ε/2)-optimal solution until ε < 1/n. At this stage, the
algorithm terminates and Lemma 4 implies that an optimal flow is found.

The refine procedure takes an ε-optimal primal–dual solution pair (x, π)
as input and improves the approximation as follows. First, it saturates each
residual arc whose current reduced cost is negative and thereby produces a
pseudoflow x that is 0-optimal. This means that x is also ε-optimal for any
choice of ε, but it is not necessarily feasible. After this step, the current approx-
imation parameter ε is halved and the pseudoflow x is gradually transformed
into a feasible solution again, but in a way that preserves ε-optimality for the
new value of ε. This is achieved by performing a sequence of push and rela-
bel operations similarly to the push-relabel algorithm for the maximum flow
problem.

Let rij denote the residual capacity of an arc (i, j) in the residual network Gx
corresponding to the current pseudoflow x and let ei denote the signed excess
value of node i. We call a node active if its current excess is positive. Fur-
thermore, a residual arc (i, j) is called admissible if its current reduced cost is
negative and the subgraph of the residual network consisting only of the ad-
missible arcs is called the admissible network. The refine procedure throughout
maintains ε-optimality and hence −ε ≤ cπij < 0 holds for each admissible arc
(i, j). A basic operation selects an active node i (i.e., ei > 0) and either pushes
flow on an admissible residual arc (i, j) or if no such arc exists, updates the
potential of node i, which is called relabeling.

A push operation on an admissible residual arc (i, j) is carried out by sending
δ = min{ei, rij} units of flow from node i to node j and thereby decreasing ei
and increasing ej by δ. This operation introduces the reverse arc (j, i) into the
residual network unless it already had positive residual capacity, but this arc
is not admissible since cπji = −cπij > 0. If an active node i has no admissible
outgoing arc, a relabel operation decreases its potential by ε. This means
that the reduced cost of each outgoing residual arc of node i is also decreased
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and the reduced cost of each incoming residual arc is increased by ε. Note
that this modification preserves the ε-optimality conditions while creating
new admissible outgoing arcs at node i and thus allowing subsequent push
operations to carry the excess of node i. Consequently, the only operation
that can introduce a new admissible arc (i, j) is the relabeling of node i. The
refine procedure terminates when no active node remains in the network and
hence an ε-optimal feasible solution is obtained.

It is proved that this generic version of the refine procedure performs O(n2)
relabel operations and O(n2m) push operations and hence runs in O(n2m)
time [38, 3]. Furthermore, the number of ε-scaling phases is O(log(nC)),
as ε is initially set to C and it is halved at each phase until it decreases
below 1/n. Consequently, the generic COS algorithm runs in weakly poly-
nomial time O(n2m log(nC)). Note, however, that the order in which the
basic operations are performed is not specified. Goldberg and Tarjan [38]
showed that applying particular selection rules and using complex data struc-
tures yield better theoretical running time. They also developed a general-
ized framework to obtain a strongly polynomial bound on the number of
ε-scaling phases by utilizing the same idea that is exploited in the MMCC
and CAT algorithms (see Section 3.1). The best variant they devised runs
in O(nm log(n2/m)min{log(nC),m logn}) time using dynamic trees [38, 65].
Moreover, the COS algorithm turned out to be quite efficient in practice
and several complicated heuristics were also developed to improve its per-
formance [33].

We implemented three variants of the COS method that perform the refine
procedure rather differently.

Push-relabel variant. This variant of the COS algorithm is based on the
generic version discussed above and hence performs local push and relabel
operations in the ε-scaling phases. We also applied several improvements and
efficient heuristics in this implementation according to the ideas found in [38,
3, 35, 33, 11]. In fact, most of these improvements and heuristics are analogous
to similar techniques devised for the push-relabel maximum flow algorithm.

The bottleneck of the COS algorithm corresponds to the searching of ad-
missible arcs for the basic operations. Therefore, we applied the same graph
representation that is used in the augmenting path algorithms (see Section 3.2)
as it is intended to minimize the time required for iterating over the outgoing
residual arcs of a node.

Similarly to the capacity-scaling algorithm, the COS method also allows us
to use an arbitrary scaling factor α > 1. We found that the optimal value de-
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pends on the problem, but it was usually between 8 and 24 and the differences
were moderate. The default scaling factor is α = 16 in our implementation,
which typically performed very well. Another practical modification targets
the issue that the generic COS algorithm performs internal computations with
non-integer values of ε and non-integer node potentials. This drawback can be
overcome by multiplying all arc costs by αn for a given integer scaling factor
α ≥ 2 and by scaling ε accordingly. Initially, ε is set to αdlogα(αnC)e and is
divided by α in each phase until ε = 1.

We applied some improvements in the implementation of the refine pro-
cedure, as well. For performing the basic operations, we need to check the
outgoing residual arcs of each active node for admissibility. These examina-
tions can be made more efficiently if we record a current arc for each active
node and continue the search for an admissible outgoing arc from this current
arc every time. If an admissible arc is found, we perform a push operation
and when we reach the last outgoing arc of an active node without finding
an admissible arc, the node is relabeled and its current arc is set to the first
outgoing residual arc again. (Recall that the definition of the basic operations
imply that only the relabeling of node i can introduce a new admissible arc
outgoing from node i.) Furthermore, the relabel operations are performed in
a stricter way. Instead of simply decreasing the potential of a relabeled node
by ε, we decrease the potential by the largest possible amount that does not
violate the ε-optimality conditions. A single relabel operation thereby usually
introduce more admissible arcs. This modification significantly improves the
overall performance of the algorithm (up to a factor of two).

The strategy for selecting an active node for the next basic operation is also
important. The number of active nodes is typically small, thus it is beneficial
to keep track of them explicitly. A particular variant of the COS algorithm,
known as the wave implementation, selects the active nodes according to a
topological ordering with respect to the admissible network. This choice is
proved to yield an O(n3)-time implementation of the refine procedure (instead
of O(n2m)). However, our experiments showed that a simple FIFO selection
rule using a queue data structure usually results in less basic operations and
better performance in practice, which is in accordance with [11] and [33].

In addition to the implementation aspects discussed so far, some effective
heuristics can improve the practical performance of the COS algorithm to
a higher extent. We implemented three such improvements out of the four
proposed by Goldberg [33]. These heuristics are also discussed in [35] along
with detailed experimental evaluation. Their practical effect depends on the
problem instances as well as the actual implementation and the parameter
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settings (for example, the scaling factor α).
The potential refinement (or price refinement) heuristic is based on the ob-

servation that an ε-scaling phase may produce a solution that is not only ε-op-
timal, but also (ε/α)-optimal or even optimal. Therefore, an additional step
is introduced at the beginning of each phase to check if the current solution is
already ε-optimal. This heuristic attempts to adjust the potentials to satisfy
the ε-optimality conditions, but without modifying the flow. If ε-optimality is
verified, the refine procedure is skipped and another phase is performed. We
implemented this potential refinement heuristic using an O(nm)-time scaling
shortest path algorithm [32] as suggested in [33]. Our experiments also verified
that this improvement usually eliminates the need for the refine procedure in
a few phases, especially the last ones. Furthermore, the potential updates per-
formed in this heuristic step typically reduce the number of basic operations
even in case the refine procedure can not be skipped. Consequently, this addi-
tional step significantly improves the overall performance of the algorithm in
most cases.

Another possible implementation of this heuristic performs a minimum-
mean cycle computation in each phase to determine the smallest ε for which
the current flow is ε-optimal and computes corresponding node potentials.
This computation may allow us to skip more than one phase at once, but it
is usually slower, even using Howard’s efficient algorithm. Furthermore, this
variant can be used to ensure a strongly polynomial bound on the number of
phases and thus on the overall running time, as well. However, our experiments
showed that the former variant of the potential refinement heuristic, which we
use in our final implementation, is clearly superior to this one. This result
contradicts the conclusions of [11].

The global update heuristic performs relabel operations on several nodes in
one step. It iteratively applies the following set-relabel operation. Let S ⊂ V
denote a set of nodes such that it contains all deficit nodes, but at least one
active node is in V \S. If no admissible arc enters S, then the potential of every
node in S can be increased by ε without violating the ε-optimality conditions.
Furthermore, it is also shown in [33] that the theoretical running time of the
COS algorithm remains unchanged if the global update heuristic is applied
only after every Ω(n) relabel operations. In practice, this modification turned
out to impose a huge improvement in the efficiency of the algorithm on some
problem classes, although it does not help to much or even slightly worsens the
performance on other instances. Our implementation of this heuristic follows
the instructions presented in [11].

The push-look-ahead heuristic is another practical improvement for the COS
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algorithm. Its goal is to avoid pushing flow from node i to node j when a sub-
sequent push operation is likely to send this amount of flow back to node i.
To achieve this, the maximum allowed amount of flow to be pushed into a
node i is limited by the sum of its deficit and the residual capacities of its ad-
missible outgoing arcs. However, this idea requires the extension of the relabel
operation to those nodes at which this limitation is applied regardless of their
current excess values. This heuristic is rather effective in practice, it usually
decreases the number of push operations significantly and hence the relabel
operations dominate the running time of the COS algorithm. For more details
about this heuristic, see [35, 33, 11].

Goldberg [33] also suggests an additional improvement, the arc fixing heuris-
tic. The best version of this method speculatively fixes the flow values for the
arcs on which it is not likely to be changed later in the algorithm. These arcs
are excluded from the subsequent arc examinations, but in certain cases, they
have to be unfixed again. We did not implement this heuristic yet, because it
seems to be rather involved and sensitive to parameter settings. However, it
would most likely improve the performance of our implementation.

We also remark that dynamic trees [65] can be used in the COS algorithm to
perform a number of push operations at once, which improves the theoretical
running time [38]. However, they are not likely to be practical due to the
computational overhead that these data structures usually impose and because
applying the above heuristics, the relabel operations become the bottleneck of
the algorithm instead of pushes (see [35, 33]). Therefore, we did not implement
this variant.

Augment-relabel variant. This variant of the COS algorithm performs
path augmentations instead of local push operations, but relabeling is heav-
ily used to find augmenting paths. At each step of the refine procedure, this
method selects an active node v and performs a depth-first search in the admis-
sible network to find an augmenting path to a deficit node. At an intermediate
stage, the algorithm maintains an admissible path from an active node v to the
current node i and attempts to extend this path. If node i has an admissible
outgoing arc (i, j), then the path is extended with this arc and node j becomes
the current node. Otherwise, node i is relabeled and if i 6= v, we step back
to the previous node by removing the last arc of the current path. When this
search process reaches a deficit node, an augmenting path is found.

The flow augmentation on these admissible paths can be performed in two
different ways. The first way is to push the same amount of flow on each arc
of an augmenting path, which is bounded by the smallest residual capacity
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on the path as well as the excess of the starting node v. The other apparent
implementation pushes the maximum possible amount of flow on every arc
of the path. That is, for each arc (i, j) of the path, δij = min{ei, rij} units of
flow is pushed on the arc, ei is decreased by δij, and ej is increased by δij.
According to our experiments, this variant is slightly superior to the former
one, thus it is applied in our implementation.

Note that these path search and flow augmentation methods correspond to
a particular sequence of local push and relabel operations. However, the actual
push operations are carried out in a delayed and more guided manner, in aware
of an admissible path to a deficit node. This helps to avoid such problems for
which the push-look-ahead heuristic is devised (see above), but a lot of work
may be required to find augmenting paths, especially if they are long.

Since this algorithm can be viewed as a special version of the generic COS
method, the same theoretical running time bound applies to it as well as
most of the practical improvements. We used the same data representation,
improvements and heuristics as for the push-relabel algorithm except for the
push-look-ahead heuristic, which is obviously incompatible with this variant.
These modifications provided similar performance gains to those measured for
the push-relabel variant.

Partial augment-relabel variant. The third variant of the COS algorithm
can be viewed as an intermediate approach between the other two variants.
It is based on the partial augment-relabel technique recently proposed by
Goldberg [34] as an improvement for the push-relabel maximum flow algo-
rithm. This method turned out to be more efficient and more robust than the
classical push-relabel algorithm and Goldberg also suggested the utilization of
the same idea in the MCF context. According to the authors knowledge, our
implementation of the COS algorithm is the first to incorporate this technique.

The partial augment-relabel algorithm is quite similar to the augment-
relabel variant, but it limits the length of the augmenting paths. The path
search process is stopped either if a deficit node is reached or if the length
of the path reaches a given parameter k ≥ 1. In fact, the push-relabel and
augment-relabel variants are special cases of this approach for k = 1 and
k = n, respectively. Goldberg [34] suggests small values for the parameter k in
the maximum flow context, which turned out to apply to the COS algorithm,
as well. In our experiments, the optimal value of this parameter was typically
between 3 and 8 and the differences were not substantial for such small values
of k. Our default implementation uses k = 4, just like Goldberg’s maximum
flow implementation, as it turned out to be quite robust.
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Apart from the length limitation for the augmenting paths, this variant is
exactly the same as the augment-relabel method. (Actually, they have a com-
mon implementation but with different values of the parameter k.) However,
the partial augment-relabel technique attains a good compromise between the
former two approaches and turned out to be clearly superior to them, thus it
is our default implementation of the COS algorithm. Unless stated otherwise,
we refer to this implementation as COS in the followings.

Section 4 provides experimental results for the COS algorithm and its vari-
ants compared to other methods. The classical push-relabel algorithm and es-
pecially the partial augment-relabel variant using such heuristics and improve-
ments are highly efficient and robust in practice. In contrast, the augment-
relabel variant is often significantly slower.

3.4 Network simplex algorithm

The primal network simplex algorithm, which we henceforth refer to as NS, is
one of the most popular solution methods for the MCF problem in practice.
It is a specialized version of the well-known linear programming (LP) simplex
method that exploits the network structure of the MCF problem and performs
the basic operations directly on the graph representation. The LP variables
correspond to the arcs of the graph and the LP bases are represented by
spanning trees.

The NS algorithm is devised by Dantzig, the inventor of the LP simplex
method. He first solved the uncapacitated transportation problem using this
approach and later generalized the bounded variable simplex method to di-
rectly solve the MCF problem [18]. Although the generic version of the NS
algorithm does not run in polynomial time, it turned out to be rather efficient
in practice. Therefore, subsequent research focused on efficient implementa-
tion of the NS algorithm [10, 5, 48, 41, 57] as well as on developing special
variants of both the primal and the dual network simplex methods that run
in polynomial time [68, 39, 62, 61, 69]. Detailed discussion of the NS method
considering both theoretical and practical aspects can be found in [3] and [47].

The fundamental concept on which the NS algorithm is based is the notion
of spanning tree solutions. Such a solution is represented by a partitioning of
the node set V into three subsets (T, L,U) such that each arc in L has flow
fixed at zero (lower bound), each arc in U has flow fixed at the capacity of
the arc (upper bound), and the arcs in T form an (undirected) spanning tree
of the network. The flow on these tree arcs also satisfy the nonnegativity and
capacity constraints, but they are not restricted to any of the bounds. It can
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easily be seen that the flow values on the tree arcs are uniquely determined by
the partitioning (T, L,U) since there is no cycle in T . Furthermore, it is proved
that if an instance of the MCF problem has an optimal solution, then it also
has an optimal spanning tree solution, which can be found by successively
transforming a spanning tree solution to another (see [3]). Actually, these
spanning tree solutions correspond to the LP basic feasible solutions of the
problem. This observation allows us to implement the simplex method by
performing all operations directly on the network, without maintaining the
simplex tableau, which makes this approach very efficient.

The standard simplex method maintains a basic feasible solution and grad-
ually improves its objective function value by small transformations, known
as pivots. Accordingly, the NS algorithm throughout maintains a spanning
tree solution of the MCF problem and successively decreases the total cost
of the flow until it becomes optimal. Furthermore, node potentials are also
maintained such that the reduced cost of each arc in the spanning tree equals
to zero. At each step, a non-tree arc violating its complementary slackness
optimality condition (see Theorem 3) is added to the current spanning tree,
which uniquely determines a negative cost residual cycle. This cycle is then
canceled by augmenting the maximum possible amount of flow on it and a
tree arc corresponding to a saturated residual arc is selected to be removed
from the tree. The node potentials are also adjusted to preserve the property
that the reduced costs of each tree arc is zero and finally, the tree structure
is updated. This whole operation transforming a spanning tree solution to an-
other is called pivot. If no suitable entering arc can be found, the current flow
is optimal and the algorithm terminates.

In fact, the NS algorithm can also be viewed as a particular variant of the
cycle-canceling method (see Section 3.1). Due to the sophisticated method of
maintaining spanning tree solutions, however, a negative cycle can be found
and canceled much faster (in linear time). On the other hand, an additional
technical issue, known as degeneracy, may arise in the NS algorithm. If the
spanning tree contains an arc whose flow value equals to zero or the capacity
of the arc, then a pivot step may detect a cycle of zero residual capacity. Such
degenerate pivots only modify the spanning tree, but the flow itself remains
unchanged. Consequently, it is possible that several consecutive pivots do not
actually decrease the flow cost (known as stalling) or, which is even worse, the
same spanning tree solution occurs multiple times and hence the algorithm
does not necessarily terminate in a finite number of iterations (known as cy-
cling). Experiments with certain classes of large-scale MCF problems showed
that more than 90% of the pivots may be degenerate.



Efficient implementations of minimum-cost flow algorithms 93

A simple and popular technique to overcome such difficulties is based on the
concept of strongly feasible spanning tree solutions. A spanning tree solution is
called strongly feasible if a positive amount of flow can be sent from each node
to a designated root node of the spanning tree along the tree path without
violating the nonnegativity and capacity constraints. Using an appropriate
rule for selecting the leaving arcs, the NS algorithm can throughout maintain
a strongly feasible spanning tree. This technique is proved to ensure that
the algorithm terminates in a finite number of iterations [3]. Furthermore, it
substantially decreases the number of degenerate pivots in practice and hence
makes the algorithm faster.

It can be shown, using a perturbation technique, that the NS algorithm
maintaining a strongly feasible spanning tree solution performs O(nmCU)
pivots for the MCF problem with integer data regardless of the selection rule
of entering arcs [2]. An entering arc can be found in O(m) time and using an
appropriate labeling technique, the spanning tree structure can be updated in
O(n) time. Therefore, a single pivot takes O(m) time and the total running
time of the NS algorithm is O(nm2CU). However, this bound does not reflect
to the typical performance of the algorithm in practice.

The implementation of the primal NS algorithm is based on a practical
storage scheme of the spanning tree solutions that makes it possible to perform
the basic operations of the algorithm efficiently. The book of Kennington and
Helgason [48] discusses several such spanning tree data structures along with
methods for updating them during the iterations of the algorithm. A quite
popular approach, sometimes referred to as the ATI (Augmented Threaded
Index ) method, represents a spanning tree as follows. The tree has a designated
root node and three indices is stored for each node in the tree: the depth of
the node (i.e., the distance from the root node in the tree), the parent of
the node in the tree, and a thread index which is used to define a depth-first
traversal of the spanning tree. This storage scheme and its update mechanism
are discussed in detail in [47] and [3]. The ATI technique has an improved
version, which is due to Barr, Glover, and Klingman [5] and is usually referred
to as the XTI (eXtended Threaded Index ) method. The XTI scheme replaces
the depth index by two indices for each node: the number of successors of the
node in the tree and the last successor of the node according to the traversal
defined by the thread index. Other approaches, for example the so-called API
and XPI methods, are also often applied.

We implemented the primal NS algorithm using both ATI and XTI tech-
niques. The latter one has two advantages over the ATI method. First, the
XTI indices can be updated more efficiently since a tree alteration of a single
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pivot usually modifies the depth of several nodes in subtrees that are moved
from a position to another, while the set of successors is typically modified
only for a much smaller number of nodes. In addition, the XTI method also
allow an improved updating process for the node potentials. Note that by re-
moving the leaving arc, the current spanning tree is divided into two subtrees,
which are then connected again by the entering arc. In order to preserve zero
reduced costs for the tree arcs, we have to increase the potential of each node
in one of the subtrees by a certain constant value λ or decrease the potential
of each node in the other subtree by λ. The XTI scheme makes it possible to
immediately determine which subtree is smaller and to perform the update
process on the smaller subtree.

Although the XTI labeling method is not as widely known and popular as
the simpler ATI method, our experiments showed that it is much more effi-
cient than ATI on all problem instances. Therefore, the final version of our
code only implements the XTI technique. The substantial performance gain of
this approach is due to the first advantage mentioned above. In contrast, we
found that the alternative potential update is not so important, because the
subtree containing the root node turned out to be the bigger one in virtually
all pivots. Moreover, we can easily avoid overflow problems related to node
potentials and reduced costs if the potential of the root node is not modified
throughout the algorithm. Therefore, we decided to update potentials in the
subtree not containing the root node in every step. We also applied an impor-
tant improvement in the implementation of the XTI method. An additional
reverse thread index is also stored for each node and hence the depth-first
traversal is represented by a doubly-linked list. This modification turned out
to substantially improve the performance of the update process. In fact, the
inventors of the XTI technique also discussed this improvement [5], but they
did not applied it to reduce the memory requirements of the representation.
(However, note that enormous progress has been made on the computers since
the time when that paper was written.)

Another interesting aspect of the data representation for the NS algorithm is
that we need not traverse the incident arcs of nodes throughout the algorithm,
although such examinations are crucial in other algorithms. Therefore, we
applied a quite simple and unusual graph representation to implement the NS
algorithm. The nodes and arcs are represented by consecutive integers and we
store the source and target nodes for each arc (in arrays), but we do not keep
track of the incident arcs of a node at all.

The NS algorithm also requires an initial spanning tree solution to start
with. It is possible to transform any feasible solution x to a spanning tree
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solution x ′ such that the total cost of x ′ is less than or equal to the total cost
of x. Furthermore, the required spanning tree indices can also be computed
by a depth-first traversal of the tree arcs. However, artificial initialization
techniques are much more common in practice. An artificial root node s with
zero supply is typically added to the network as well as artificial arcs with
sufficiently large capacities and costs. Recall that the signed supply value of
node i is denoted as bi. For each original node i, we add a new arc (i, s) to the
network if bi ≥ 0 and add a new arc (s, i) otherwise. We can set the capacity
of each new arc to nU and its cost to nC. In this extended network, we can
easily construct a strongly feasible spanning tree solution x as follows. For
each original arc (i, j), let xij = 0 and for each original node i, let xis = bi if
bi ≥ 0 and let xsi = −bi otherwise. The initialization of the tree indices and
the node potentials is straightforward in this case. Furthermore, note that an
optimal solution in the extended network does not send flow on artificial arcs
due to their large costs unless the original problem is infeasible.

We experimented with both ways of initialization and it turned out that the
artificial method usually provides better overall performance mainly because
of two reasons. First, the artificial spanning tree solution can be constructed
easily and quickly. Second, it allows efficient tree update for the first few piv-
ots as the depth of the tree is rather small. Therefore, we decided to use only
this variant in our final implementation. The strongly feasibility is preserved
throughout the algorithm by carefully selecting the leaving arc whenever mul-
tiple residual arcs are saturated by a pivot step (see [47, 3] for details).

One of the most crucial aspects of the NS algorithm, which is not considered
so far, is the selection the entering arcs. Recall that the reduced cost of each
tree arc is zero and each non-tree arc has a flow value fixed either at zero or the
capacity of the arc. Therefore, a non-tree arc (i, j) allows flow augmentation
only in one direction. If the reduced cost of the residual arc associated with
this direction is negative, the arc (i, j) can be selected to enter the tree. In
this case, a negative-cost residual cycle is formed by this arc and the unique
tree path connecting nodes i and j (these tree arcs have zero reduced costs).
To implement the NS algorithm, we require a method for selecting such an
entering arc at each iteration, which is usually referred to as pivot rule or
pricing strategy. The applied method affects the “goodness” of the entering
arcs and thereby the number of iterations as well as the average time required
for selecting an entering arc, which is a dominant part of each iteration. Con-
sequently, applying different strategies, we can obtain several variants of the
NS algorithm with quite different theoretical and empirical behavior.

We implemented five pivot rules, which are discussed in the followings. Four
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of them are widely known and well-studied rules [47, 3], while the fifth one is
an improved version of the candidate list rule. In the discussion of these meth-
ods, a non-tree arc is called eligible if it does not satisfy the complementary
slackness optimality condition and hence can be selected as an entering arc.
Let π denote the current set of node potentials and let cπij denote the reduced
cost of an arc (i, j). An eligible arc (i, j) either has zero flow and cπij < 0 or has
a flow equal to its capacity and cπij > 0. We refer to | cπij | as the violation of an
eligible arc (i, j).

Best eligible arc pivot rule. This is one of the simplest and earliest pivot
strategies, which was proposed by Dantzig and is also known as Dantzig’s pivot
rule. At each iteration, this method selects an eligible arc with the maximum
violation to enter the tree. This means that a residual cycle having the most
negative total cost is selected to be canceled, which causes the maximum de-
crease of the objective function per unit flow augmentation. Computational
studies showed that this selection rule usually results in fewer iterations than
other strategies. However, it has to consider all non-tree arcs and recompute
their reduced costs to select the best eligible arc at each iteration. Conse-
quently, the overall performance of the NS algorithm with this pivot rule is
rather poor despite the small number of iterations.

First eligible arc pivot rule. Another straightforward idea is to select the
first eligible arc at each iteration. The practical implementation of this rule
examines the arcs cyclically by starting each search process at the position
where the previous eligible arc is found. If we reach the end of the arc list, the
examination is continued from the beginning of the list again. If a pivot op-
eration examines all non-tree arcs without finding an eligible arc, the solution
is optimal and the algorithm terminates. This strategy represents the other
extreme way of selecting the entering arcs compared to the previous rule. It
rapidly finds an entering arc at each iteration, but these arcs typically have
relatively small violation and hence a lot of iterations are usually required.

Block search pivot rule. Since the previous two rules do not perform well
in practice, several other strategies have been devised to implement effective
compromise between them. A simple block search approach is proposed by
Grigoriadis [41]. This method cyclically examines blocks of arcs and selects
the best eligible candidate among these arcs at each iteration. The search
process starts from the position of the previous entering arc and checks a
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specified number of arcs by recomputing their reduced costs. If this block
contains eligible arcs, then the one with the maximum violation is selected to
enter the basis. Otherwise, we examine one or more subsequent blocks of arcs
until an eligible arc is found.

The block size B is an important parameter of this method. In fact, the
previous two rules are special cases of this one with B = m and B = 1. Several
sources suggest to set B proportionally to the number of arcs, for example,
between 1% and 10% [41, 47]. However, our experiments clearly showed that
much better overall performance can be achieved on virtually all problem
classes if we set B = α

√
m for small values of α (for example, between 0.5

and 2). In our implementation, B =
√
m is used, which results in a highly

efficient and robust pivot rule.
Similarly to the first eligible rule, this strategy also has the inherent advan-

tage that an arc is allowed to enter the basis only periodically, which usually
decreases the number of degenerate pivots in practice [17, 40].

Candidate list pivot rule. This is another classical pivot rule, which was
proposed by Mulvey [59]. It occasionally builds a list of eligible arcs and selects
the best arcs among these candidates at subsequent iterations. A so-called
major iteration examines the arcs in a wraparound fashion similarly to the
previous rules and builds a list containing at most L eligible arcs. After a
major iteration, we perform at most K minor iterations, each of which scans
this list and selects an eligible arc with maximum violation to enter the basis.
If an arc is not eligible any more, it is removed from the list. When K minor
iterations are performed or the list becomes empty, another major iteration
takes place.

This method is similar to the block search rule, but it considers the same
subset of the arcs in several consecutive pivots, while the previous rule con-
siders only the best arc of a block and then advances to the next block. We
obtained the best average running time for this rule using L =

√
m/4 and

K = L/10. However, this method usually performed worse than the simpler
block search strategy.

Altering candidate list pivot rule. This strategy was developed by us
as an improved version of the candidate list rule. There are various other
rules that exploit similar ideas, but the authors are not aware of another
implementation of this method. It maintains a candidate list similarly to the
previous rule, but it attempts to extend this list at each iteration and keeps
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only the several best candidates of the previous iterations. The candidate arcs
are collected with the search process used in the block search rule.

This method has two parameters: a block size B and the maximum length
of the altering candidate list, which is denoted by H. At the beginning of each
iteration, we check the current candidate list and remove all arcs that are not
eligible any more. After that, at least one arc block of size B is examined to
extend the candidate list with new eligible arcs. If a nonempty list is obtained,
then an arc of maximum violation is selected from the list to enter that basis.
The other arcs are then partially sorted and the list is truncated to contain at
most H of the best candidates in terms of their current violation. According to
our experiments, this method is very efficient using B =

√
m and H = B/100.

Numerous other rules have also been developed applying similar or more
complicated partial pricing techniques. We also implemented several variants,
but the block search pivot rule and the altering candidate list pivot rule turned
out to provide the best overall performance. Since the block search rule is sim-
pler and turned out to be slightly more robust, it is our default pivot strategy.
Unless stated otherwise, we refer to this variant as NS in the followings.

We also developed an additional heuristic based on the artificial initialization
procedure of the algorithm to make the first few pivots faster. The initialization
of node potentials implies that an arc (i, j) is eligible for the first pivot if and
only if bi ≥ 0 and bj < 0. After such an arc enters the basis, new arcs incident
to its source node may also become eligible. Therefore, we collect several arcs
using a partial traversal of the graph starting from the demand nodes and
using the reverse orientation of each arc. This arc list is then used by the
first few pivots to select entering arcs from. Our computational results showed
that this idea slightly improves the overall performance of the NS algorithm
by making these pivots substantially faster.

Section 4 provides experimental results comparing the different pivot rules as
well as comparing the NS algorithm to other solution methods. Our NS imple-
mentation turned out to be highly efficient, especially on relatively small and
medium-sized networks, but it is typically outperformed by the cost-scaling
codes on the largest problem instances.

4 Experimental study

This section presents an empirical study of the implemented algorithms and
also compares them to other efficient MCF solvers. The contribution of these
results is twofold. First, a great number of MCF algorithms are compared
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using the same benchmark suite, which provides insight into their relative
performance on different classes of networks. Second, larger problem instances
are also considered than that in previous experimental studies of MCF algo-
rithms, which turned out to be important to draw reliable conclusions related
to the asymptotic behavior of these algorithms.

The experiments were conducted on a machine with AMD Opteron Dual
Core 2.2 GHz CPU and 16 GB RAM (1 MB cache), running openSUSE 11.4
operating system. All codes were compiled with GCC 4.5.3 using -O3 opti-
mization flag.

4.1 Test instances

Our test suite contains numerous problem instances of variable size and char-
acteristics. Most of these instances were generated with standard random gen-
erators, NETGEN and GOTO, while the others are based on either real-life
road networks or maximum flow problems arising in computer vision applica-
tions. The largest networks contain millions of nodes and arcs.

NETGEN instances. NETGEN [51] is a classical generator that produces
random instances of the MCF problem and other network optimization prob-
lems. It is generally known to produce relatively easy MCF instances. The
source code of NETGEN is available at the FTP site of the First DIMACS
Implementation Challenge [22].

Our benchmark suite contains four problem families created with NETGEN.

• NETGEN-8. This family contains sparse networks, for which the av-
erage outdegree of the nodes is 8 (i.e., m = 8n). The arc capacities and
costs are selected uniformly at random from the ranges [1..1000] and
[1..10000], respectively. The number of supply and demand nodes are
both set to about

√
n and the average supply per supply node is 1000.

• NETGEN-SR. This family contains relatively dense networks, for
which the average outdegree is about

√
n (i.e., m ≈ n

√
n). The other

parameters are set the same way as for the NETGEN-8 family.

• NETGEN-LO-8. This family is similar to NETGEN-8 with the only
difference that the average supply per supply node is much lower, namely
10 instead of 1000. Therefore, the arc capacities incorporate only “loose”
bounds for the feasible solutions.
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• NETGEN-DEG. In these instances, the number of nodes is fixed to
n = 4096 and the average outdegree ranges from 2 to n/2. Other pa-
rameters are the same as of NETGEN-8 and NETGEN-SR instances.

GOTO instances. GOTO is another well-known random generator for the
MCF problem, which is intended to produce hard instances. It is developed
by Goldberg and is described in [35]. The name of the generator stands for
Grid On Torus, which reflects to the basic structure of the generated networks.
Each GOTO problem instance has one supply node and one demand node and
the supply value is adjusted according to the arc capacities. This generator is
also available at [22].

We used two GOTO families in our experiments, which differ only in the
density of the networks.

• GOTO-8. This family consists of sparse networks with an average out-
degree of 8. Similarly to the NETGEN families, the maximum arc ca-
pacity is set to 1000, while the maximum arc cost is set to 10000.

• GOTO-SR. This family consists of relatively dense networks with an
average outdegree of about

√
n. Other parameters are the same as of the

GOTO-8 family.

ROAD instances. We also experimented with MCF problems that are
based on real-world road networks. To generate such instances, we used the
TIGER/Line road network files of several states of the USA. These data files
are available at the web site of the Ninth DIMACS Implementation Chal-
lenge [23].

In our experiments, we selected seven states with road networks of increasing
size, namely DC, DE, NH, NV, WI, FL, and TX, and generated MCF problem
instances as follows. The original undirected graphs are converted to directed
graphs by replacing each edge with two oppositely directed arcs. The cost of
an arc is set to the travel time on the corresponding road section and the arc
capacities are uniformly set to one. This means that we are actually looking for
a specified number of arc-disjoint directed paths from supply nodes to demand
nodes having minimum total cost. The number of supply and demand nodes
are both b

√
n/10c. These nodes are selected randomly and the supply-demand

values are determined by a maximum flow computation that maximizes the
total supply with respect to the fixed set of supply and demand nodes.
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VISION instances. This family consists of MCF instances based on large-
scale maximum flow problems arising in computer vision applications. These
maximum flow data files were made available at http://vision.csd.uwo.ca/
data/maxflow/ by the Computer Vision Research Group at the University of
Western Ontario. They are intended to be used for benchmarking maximum
flow algorithms (for example, see [34]).

We used some of the segmentation instances related to medical image anal-
ysis. These instances are defined on three-dimensional grid networks. We se-
lected those variants in which the underlying networks are 6-connected and
the maximum arc capacity is 100 (namely, the bone sub* n6c100 files). These
maximum flow instances were converted to minimum-cost maximum flow prob-
lems using random arc costs selected uniformly from the range [1..100]. The
original networks also contain arcs of zero capacity, but we skipped these arcs
during the transformation and hence did not preserve the 6-connectivity.

We also experimented with several other problem instances and generator
parameters, but this collection turned out to be a representative benchmark
suite of reasonable size. For all problem families, we generated three instances
of each problem size with different random seeds. In all cases, we report the
average running time over such three instances to provide more relevant re-
sults.

4.2 Comparison of the implemented algorithms

This subsection presents benchmark results for the implemented algorithms
and their variants. Each table reports running time results in seconds. The size
of a problem instance is indicated by the number of nodes n and the average
outdegree deg (i.e., m = deg · n). The best running time is highlighted for
each problem size. The codes were executed with an explicit timeout limit
of one hour and a “−” sign denotes the cases when this timeout limit was
reached. Some charts are also presented showing running time as a function of
the number of nodes in the network (logarithmic scale is used for both axes).

Figure 1 and Tables 3 and 4 present the running time results in seconds
for NETGEN-8 and NETGEN-SR families. On these instances, the SCC al-
gorithm was about 3 times faster than MMCC, while the CAT algorithm
greatly outperformed both of them. It is quite interesting that the simple
SSP algorithm was an order of magnitude faster than its capacity-scaling vari-
ant, CAS. The CAT algorithm performed similarly to SSP on NETGEN-8
instances, but was significantly slower on NETGEN-SR networks. The COS
and NS algorithms were the most efficient on these instances. They turned out

http://vision.csd.uwo.ca/data/maxflow/
http://vision.csd.uwo.ca/data/maxflow/
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to be orders of magnitude faster than the other algorithms. COS showed bet-
ter asymptotic behavior than NS (see Figure 1) and was significantly faster on
the largest NETGEN-8 instances. On the other hand, NS was more efficient on
the relatively small sparse networks and on all NETGEN-SR instances despite
its worse asymptotic trends.
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Figure 1: Comparison of our implementations on NETGEN instances

n deg SCC MMCC CAT SSP CAS COS NS

210 8 4.81 11.85 0.19 0.12 0.19 0.02 0.01
212 8 112.40 347.47 2.14 1.50 3.15 0.13 0.05
214 8 1587.01 − 26.36 18.66 93.14 0.78 0.54
216 8 − − 295.05 298.95 2360.21 4.24 6.88
218 8 − − − 3514.72 − 22.40 104.69
220 8 − − − − − 103.83 799.26
222 8 − − − − − 615.42 −

Table 3: Comparison of our implementations on NETGEN-8 instances

n deg SCC MMCC CAT SSP CAS COS NS

210 32 34.03 90.82 0.74 0.33 1.79 0.06 0.01
211 45 224.79 1158.92 3.54 1.49 5.27 0.26 0.05
212 64 1592.62 − 16.36 6.77 70.35 0.83 0.21
213 91 − − 88.13 29.16 697.47 2.68 0.73
214 128 − − 353.23 136.17 − 8.28 3.55
215 181 − − 1419.60 535.57 − 25.74 14.90
216 256 − − − 2799.34 − 111.55 67.29

Table 4: Comparison of our implementations on NETGEN-SR instances
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Table 5 contains performance results for the NETGEN-LO-8 family. As one
would expect, these instances turned out to be easier to solve than NETGEN-8
instances of the same size. For this family, SSP was an order of magnitude
faster than CAT, while CAS was even more efficient than the SSP algorithm
by a factor between 2 and 3. Note that the relative performance of SSP and
CAS is entirely different compared to the NETGEN-8 results. Nevertheless,
the fastest methods were COS and NS just like for the NETGEN-8 family and
their relationship was similar.

n deg SCC MMCC CAT SSP CAS COS NS

210 8 0.82 2.52 0.14 0.02 0.01 0.01 0.00
212 8 8.49 79.93 1.88 0.13 0.06 0.07 0.02
214 8 73.83 1801.08 22.10 1.29 0.67 0.43 0.19
216 8 668.00 − 183.06 17.79 6.67 2.65 2.11
218 8 − − 2062.12 172.63 60.16 13.79 29.00
220 8 − − − 1342.73 519.06 68.41 293.49
222 8 − − − − − 457.02 2482.50

Table 5: Comparison of our implementations on NETGEN-LO-8 instances

Table 6 shows how the running time of the algorithms depends on the den-
sity of the network. NS was clearly the most efficient algorithm in these tests.
COS and SSP were also relatively fast, while CAT turned out to be signifi-
cantly slower and the other methods were not competitive. The CAS algorithm
performed much worse than SSP on the dense instances.

n deg SCC MMCC CAT SSP CAS COS NS

212 2 18.43 60.71 1.03 0.33 0.27 0.08 0.02
212 8 112.40 347.47 2.14 1.50 3.15 0.13 0.05
212 32 657.29 2655.80 7.41 4.40 35.54 0.43 0.13
212 128 3523.55 − 32.03 12.73 273.76 1.98 0.39
212 512 − − 147.58 35.58 2473.16 7.72 1.31
212 2048 − − 624.44 99.49 − 47.08 6.68

Table 6: Comparison of our implementations on NETGEN-DEG instances

Figure 2 and Tables 7 and 8 present the benchmark results for the GOTO
families. These problems indeed turned out to be much harder than the
NETGEN instances and the relative performance of the algorithms was also
rather different than in case of the NETGEN families. Generally, COS and NS
were the most efficient to solve these GOTO problems. COS was clearly the
best method for the largest instances, even for the relatively dense GOTO-SR
networks, which did not hold for the NETGEN-SR instances. Another notable
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difference compared to the NETGEN families is that CAS was orders of mag-
nitude faster than SSP. It was quite efficient on GOTO-8 instances, although
its performance was not stable. Among the cycle-canceling algorithms, CAT
was clearly the most efficient similarly to the NETGEN problems. However,
MMCC was 3-4 times faster than SCC, which is in contrast to the previous
results.
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Figure 2: Comparison of our implementations on GOTO instances

n deg SCC MMCC CAT SSP CAS COS NS

210 8 88.85 30.39 0.63 2.27 0.13 0.05 0.01
212 8 − 931.54 12.62 72.93 5.34 0.60 0.25
214 8 − − 253.54 971.03 14.87 4.43 6.11
216 8 − − − − 143.92 41.27 202.47
218 8 − − − − − 195.36 −
220 8 − − − − − − −

Table 7: Comparison of our implementations on GOTO-8 instances

n deg SCC MMCC CAT SSP CAS COS NS

210 32 2474.46 584.35 2.30 35.66 2.81 0.30 0.08
211 45 − − 13.08 393.00 22.20 1.36 0.41
212 64 − − 89.15 − 143.35 5.27 3.16
213 91 − − 415.69 − 1101.38 18.23 13.87
214 128 − − 2650.95 − − 69.37 163.37
215 181 − − − − − 358.44 1180.26
216 256 − − − − − 1279.72 −

Table 8: Comparison of our implementations on GOTO-SR instances
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Table 9 presents the results obtained for the ROAD family. As one would
expect, the SSP algorithm was by far the fastest on these special instances. Our
implementation of the CAS algorithm implies that it works exactly the same as
SSP on this family since all capacities are set to one. Therefore, CAS is skipped
in Table 9. The COS and NS algorithms performed an order of magnitude
worse than SSP, while the cycle-canceling algorithms were drastically slower.

n deg SCC MMCC CAT SSP COS NS

9 559 3.11 2.29 372.91 2.17 0.01 0.14 0.04
49 109 2.46 37.25 − 47.65 0.10 1.47 0.69

116 920 2.27 150.84 − 264.52 0.26 4.61 2.97
261 155 2.38 1984.30 − 1373.49 0.96 15.23 14.14
519 157 2.44 − − − 3.29 35.87 41.38

1 048 506 2.53 − − − 5.32 94.32 129.04
2 073 870 2.49 − − − 21.99 238.57 744.36

Table 9: Comparison of our implementations on ROAD instances

Finally, the performance results for the VISION family are presented in
Table 10. We do not report running time for SCC and MMCC as they could
not solve these problems within the timeout limit of one hour. COS performed
clearly the best in these tests with the only exception of the first instance.
Similarly to other families, the asymptotic behavior of NS was clearly worse
than that of COS. CAS was superior to SSP, while CAT was even slower than
SSP.

n deg CAT SSP CAS COS NS

245 762 5.82 630.25 265.25 124.89 23.96 21.06
491 522 5.85 2304.01 970.49 622.22 61.25 108.64
983 042 5.88 − − 1998.27 186.42 531.59

1 949 698 5.91 − − − 535.36 3420.76
3 899 394 5.92 − − − 1475.95 −

Table 10: Comparison of our implementations on VISION instances

Recall from Sections 3.3 and 3.4 that the COS and NS algorithms have sev-
eral variants. These variants were also compared systematically to determine
the default options. Here we only present a representative selection of these
results.

Tables 11 and 12 compare the variants of the COS algorithm on the
NETGEN-8 and GOTO-8 families, respectively. COS-PR denotes the push-
relabel variant, COS-AR denotes the augment-relabel variant, while COS de-
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notes the partial augment-relabel variant, which is the default implementa-
tion. This latter technique was clearly faster than the other two approaches
on all kinds of problem instances. The COS-AR variant performed similarly
to COS-PR on some easy instances, such as the NETGEN-8 family, but was
an order of magnitude slower on some other instances, such as the GOTO net-
works. These results show that COS-AR is not so robust than the other two
methods, which is in accordance with Goldberg’s experiments in the maximum
flow context [34].

n deg COS-PR COS-AR COS

210 8 0.03 0.02 0.02
212 8 0.17 0.14 0.13
214 8 0.94 1.11 0.78
216 8 6.37 5.72 4.24
218 8 35.17 28.00 22.40
220 8 176.87 179.13 103.83
222 8 1064.62 901.07 615.42

Table 11: Comparison of COS variants on NETGEN-8 instances

n deg COS-PR COS-AR COS

210 8 0.10 0.16 0.05
212 8 0.89 2.48 0.60
214 8 7.60 33.34 4.43
216 8 78.55 911.05 41.27
218 8 342.75 − 195.36

Table 12: Comparison of COS variants on GOTO-8 instances

We implemented five pivot rules for the NS method, which significantly
affect the efficiency of the algorithm. Tables 13 and 14 compare the overall
performance of these strategies on the NETGEN-8 and GOTO-8 families,
respectively. BE, FE, BS, CL, and AL denote the best eligible, first eligible,
block search, candidate list, and altering candidate list pivot rules, respectively.
These results and many other experiments show that the BS and AL rules are
generally the most efficient. On GOTO instances, the FE and CL rules also
performed similarly to these methods, but they were much slower in other
cases, for example, on NETGEN instances. Since the BS rule turned out to be
slightly more robust than AL, it was selected to be the default pivot strategy in
our implementation. The BE rule resulted in the worst performance although
it yielded less iterations than the other rules.
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n deg NS-BE NS-FE NS-BS NS-CL NS-AL

210 8 0.20 0.01 0.01 0.01 0.01
212 8 3.40 0.14 0.05 0.06 0.04
214 8 60.47 3.64 0.54 1.02 0.47
216 8 1285.91 117.99 6.88 27.68 6.41
218 8 − − 104.69 808.10 98.97
220 8 − − 799.26 − 800.36

Table 13: Comparison of NS pivot rules on NETGEN-8 instances

n deg NS-BE NS-FE NS-BS NS-CL NS-AL

210 8 0.50 0.01 0.01 0.01 0.02
212 8 9.59 0.43 0.25 0.25 0.28
214 8 151.92 6.84 6.11 5.90 6.16
216 8 3024.80 251.48 202.47 216.21 220.16

Table 14: Comparison of NS pivot rules on GOTO-8 instances

4.3 Comparison to other solvers

The implementations presented in this paper were also compared to the fol-
lowing widely known MCF solvers. These codes were compiled using the same
compiler and optimization level as we used for our implementations. The ex-
periments were conducted using the default options of these solvers.

• CS2. This is an authoritative implementation of the cost-scaling push-
relabel algorithm. It was written by A.V. Goldberg and B. Cherkassky
applying all improvements and heuristics described in [33]. CS2 has been
widely used as a benchmark for solving the MCF problem for a long
time. We used the latest version, CS2 4.6, which is available from the
IG Systems, Inc. [16].

• LEDA. This is a comprehensive C++ library [54], which also pro-
vides an MCF solver in its MIN COST FLOW() procedure. This method
implements the cost-scaling push-relabel algorithm, as well. We used
version 5.0 of the LEDA library in our experiments. In fact, LEDA 5.1.1
was also tested, but it turned out to be slower than version 5.0.

• MCFZIB. This is the MCF code written by A. Löbel [57] at the Zuse In-
stitute Berlin (ZIB). We denote this code as MCFZIB in order to differen-
tiate it from the problem itself (similarly to the MCFClass project [27]).
This solver features both a primal and a dual network simplex imple-
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mentation, from which the former one is used by default as it is usually
more efficient. We used the latest version 1.3, which is available at [58].

• RelaxIV. This is a C++ translation of an authoritative implementation
of the relaxation algorithm. The original FORTRAN code was written
by D.P. Bertsekas and P. Tseng [8] and is available at [7]. The C++
translation was made by A. Frangioni and C. Gentile at the University
of Pisa and is available as part of the MCFClass project [27]. This project
provides a common C++ interface for several MCF solvers. Apart from
RelaxIV, it also features CS2 and MCFZIB, but not their latest versions,
thus we used these two solvers directly.

Our codes are part of an open source C++ optimization library, LEMON,
which is available at http://lemon.cs.elte.hu/.

Tables 15, 16, 17, and 18 compare our implementations to the other four
solvers on the NETGEN instances. As before, all codes were executed with a
timeout limit of one hour and the average running time over three different
random instances is reported for each problem size (in seconds). Our COS
code performed similarly to CS2 on NETGEN-8 and NETGEN-SR families,
while it was slightly slower on the other two NETGEN families. The solver of
the LEDA library was about two times slower than these cost-scaling codes.
Furthermore, it failed to solve the largest instances due to a number overflow
error, which is denoted as “error” in the tables. Since LEDA has closed source,
we could not eliminate this problem by replacing the number types used by the
algorithm with larger ones. MCFZIB was typically slower than our NS code by
a factor between 2 and 10, but they performed similarly on the NETGEN-LO-8
instances. RelaxIV was very efficient on these families. It was typically faster
than all other codes for the largest instances, while NS was the most efficient
on the smaller networks and on the NETGEN-DEG family.

LEMON Other implementations

n deg COS NS CS2 LEDA MCFZIB RelaxIV

210 8 0.02 0.01 0.02 0.03 0.02 0.01
212 8 0.13 0.05 0.11 0.17 0.14 0.06
214 8 0.78 0.54 0.78 1.45 1.75 0.54
216 8 4.24 6.88 4.22 8.34 18.78 3.58
218 8 22.40 104.69 20.81 error 207.29 13.19
220 8 103.83 799.26 103.25 error 2985.08 89.90
222 8 615.42 − 566.32 error − 419.38

Table 15: Comparison to other solvers on NETGEN-8 instances

http://lemon.cs.elte.hu
http://lemon.cs.elte.hu/
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LEMON Other implementations

n deg COS NS CS2 LEDA MCFZIB RelaxIV

210 32 0.06 0.01 0.05 0.08 0.05 0.03
211 45 0.26 0.05 0.18 0.38 0.20 0.26
212 64 0.83 0.21 0.59 1.41 0.68 1.30
213 91 2.68 0.73 2.04 5.07 3.28 1.94
214 128 8.28 3.55 7.86 19.61 21.68 4.53
215 181 25.74 14.90 29.00 72.48 111.74 13.98
216 256 111.55 67.29 104.25 274.06 634.38 44.37

Table 16: Comparison to other solvers on NETGEN-SR instances

LEMON Other implementations

n deg COS NS CS2 LEDA MCFZIB RelaxIV

210 8 0.01 0.00 0.01 0.02 0.01 0.01
212 8 0.07 0.02 0.07 0.11 0.06 0.04
214 8 0.43 0.19 0.42 0.93 0.62 0.57
216 8 2.65 2.11 2.26 6.48 4.09 2.67
218 8 13.79 29.00 10.56 error 28.31 18.73
220 8 68.41 293.49 54.48 error 258.99 62.23
222 8 457.02 2482.50 299.15 error 2309.26 229.67

Table 17: Comparison to other solvers on NETGEN-LO-8 instances

LEMON Other implementations

n deg COS NS CS2 LEDA MCFZIB RelaxIV

212 2 0.08 0.02 0.04 0.08 0.05 0.04
212 8 0.13 0.05 0.11 0.17 0.14 0.06
212 32 0.43 0.13 0.31 0.70 0.42 0.37
212 128 1.98 0.39 1.12 2.91 1.32 1.40
212 512 7.72 1.31 5.15 12.56 4.74 3.20
212 2048 47.08 6.68 32.72 69.55 18.52 12.81

Table 18: Comparison to other solvers on NETGEN-DEG instances

The performance results for the GOTO families are presented in Figure 3
and Tables 19 and 20. In these tests, COS and CS2 also performed similarly
and they were the most efficient on the largest instances of both families. LEDA
was also similarly efficient on GOTO-8 networks, but it was 2-3 times slower
than CS2 and COS on the GOTO-SR family. NS turned out to be orders of
magnitude faster than the other network simplex implementation, MCFZIB.
Similarly to the NETGEN families, NS was the most efficient algorithm on
the relatively small GOTO instances, but was substantially slower than the
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cost-scaling codes on the large networks. RelaxIV turned out to be very slow
on these hard instances, which is in sharp contrast to its efficiency on the
NETGEN instances.
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Figure 3: Comparison to other solvers on GOTO instances

LEMON Other implementations

n deg COS NS CS2 LEDA MCFZIB RelaxIV

210 8 0.05 0.01 0.06 0.08 0.21 0.81
212 8 0.60 0.25 0.69 0.62 4.94 21.29
214 8 4.43 6.11 5.23 5.24 239.67 487.23
216 8 41.27 202.47 54.05 58.50 − −
218 8 195.36 − 206.48 221.14 − −
220 8 − − − − − −

Table 19: Comparison to other solvers on GOTO-8 instances

LEMON Other implementations

n deg COS NS CS2 LEDA MCFZIB RelaxIV

210 32 0.30 0.08 0.28 0.38 0.70 8.81
211 45 1.36 0.41 1.23 1.83 4.70 60.89
212 64 5.27 3.16 4.78 9.57 50.65 492.38
213 91 18.23 13.87 19.16 44.24 246.38 −
214 128 69.37 163.37 89.32 184.97 2339.57 −
215 181 358.44 1180.26 385.14 973.49 − −
216 256 1279.72 − 1259.63 − − −

Table 20: Comparison to other solvers on GOTO-SR instances
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Table 21 presents the results for the ROAD family. In this case, we also
report the running time of our SSP implementation since it was by far the most
efficient method for this special family. Apart from SSP, CS2 was typically the
fastest to solve these instances. COS was slower than CS2 by a factor of at
most two, while LEDA failed to solve the large instances due to overflow
errors. NS and MCFZIB were significantly slower than CS2 and COS on the
large networks. RelaxIV performed much worse than the other algorithms.

LEMON Other implementations

n deg SSP COS NS CS2 LEDA MCFZIB RelaxIV

9 559 3.11 0.01 0.14 0.04 0.12 0.14 0.14 0.58
49 109 2.46 0.10 1.47 0.69 0.84 1.07 1.62 22.41

116 920 2.27 0.26 4.61 2.97 2.67 3.19 6.09 168.03
261 155 2.38 0.96 15.23 14.14 7.53 error 27.25 2051.20
519 157 2.44 3.29 35.87 41.38 19.26 error 81.07 −

1 048 506 2.53 5.32 94.32 129.04 49.73 error 197.54 −
2 073 870 2.49 21.99 238.57 744.36 131.90 error 992.32 −

Table 21: Comparison to other solvers on ROAD instances

The benchmark results for the VISION family are presented in Table 22.
In these tests, CS2 was clearly the most efficient and COS was about 1.5 times
slower than it. All other algorithms performed significantly worse, including
the third cost-scaling code, LEDA. NS was superior to MCFZIB and LEDA,
but was less efficient than CS2 and COS for the large networks. Similarly to
the GOTO and ROAD instances, RelaxIV was much slower than the other
solvers.

LEMON Other implementations

n deg COS NS CS2 LEDA MCFZIB RelaxIV

245 762 5.82 23.96 21.06 19.78 54.62 131.66 904.74
491 522 5.85 61.25 108.64 44.18 207.51 333.20 3518.20
983 042 5.88 186.42 531.59 139.05 1250.56 − −

1 949 698 5.91 535.36 3420.76 348.28 − − −
3 899 394 5.92 1475.95 − 916.47 − − −

Table 22: Comparison to other solvers on VISION instances

Finally, on behalf of a brief overview of our experiments, Table 23 presents
running time results for one representation of each problem family. Those in-
stances were selected that have about two million arcs. The first part of the
table contains running time in seconds, while the second part reports normal-
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ized time results. In the cases when the execution of an algorithm reached the
timeout limit of one hour, we report a lower bound on the ratio by which it
would have been slower than the fastest implementation.

Running time

LEMON Other implementations

Family m COS NS CS2 LEDA MCFZIB RelaxIV

NETGEN-8 2 097 152 22.40 104.69 20.81 error 207.29 13.19
NETGEN-SR 2 097 152 8.28 3.55 7.86 19.61 21.68 4.53
NETGEN-LO-8 2 097 152 13.79 29.00 10.56 error 28.31 18.73
NETGEN-DEG 2 097 152 7.72 1.31 5.15 12.56 4.74 3.20
GOTO-8 2 097 152 195.36 − 206.48 221.14 − −
GOTO-SR 2 097 152 69.37 163.37 89.32 184.97 2339.57 −
ROAD 2 653 624 94.32 129.04 49.73 error 197.54 −
VISION 2 877 382 61.25 108.64 44.18 207.51 333.20 3518.20

Normalized time

LEMON Other implementations

Family m COS NS CS2 LEDA MCFZIB RelaxIV

NETGEN-8 2 097 152 1.70 7.94 1.58 error 15.72 1.00
NETGEN-SR 2 097 152 2.33 1.00 2.21 5.52 6.11 1.28
NETGEN-LO-8 2 097 152 1.31 2.75 1.00 error 2.68 1.77
NETGEN-DEG 2 097 152 5.89 1.00 3.93 9.59 3.62 2.44
GOTO-8 2 097 152 1.00 > 18 1.06 1.13 > 18 > 18
GOTO-SR 2 097 152 1.00 2.36 1.29 2.67 33.73 > 52
ROAD 2 653 624 1.90 2.59 1.00 error 3.97 > 38
VISION 2 877 382 1.39 2.46 1.00 4.70 7.54 79.63

Table 23: Comparison of our implementations to other solvers on various prob-
lem instances with roughly the same number of arcs

Table 23 as well as the previous results clearly demonstrate that CS2 and
COS are the most robust implementations and NS is the third one in terms
of the overall performance. MCFZIB is considerably slower than NS, but it
is still robust. LEDA performed well in several cases, but it often failed to
solve the large instances due to numerical problems. RelaxIV is not robust at
all as it turned out to be much slower than the other implementations on all
problem families except for the NETGEN networks.

5 Conclusions

In this paper, we have considered the minimum-cost flow (MCF) problem and
various solution methods along with experiments with their efficient implemen-
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tations. The MCF problem plays a fundamental role in network flow theory
and has a wide range of applications. Therefore, efficient implementations of
MCF algorithms are essential in practice.

We implemented several algorithms for solving the MCF problem and thor-
oughly experimented with many variants of them as well as with various prac-
tical improvements and heuristics. This work provides insight into these de-
tails and gives some guidelines for implementing the considered algorithms
efficiently. An interesting novel result is the application of Goldberg’s recent
partial augment-relabel idea [34] in the cost-scaling algorithm, which turned
out to be a significant improvement. Another widely used efficient algorithm
is the network simplex method, which was implemented using a quite efficient
data structure and various pivot strategies. Moreover, three cycle-canceling
algorithms and two augmenting path algorithms were also implemented.

An extensive experimental evaluation was carried out to compare these al-
gorithms. In general, the cost-scaling (COS) and the network simplex (NS)
methods turned out to be the most efficient and the most robust. On relatively
small instances (up to a few thousands of nodes), NS was clearly the fastest
algorithm. However, COS significantly outperformed it on the largest networks
due to its better asymptotic behavior in terms of the number of nodes. We
also remark that NS usually performed better than other methods on rather
dense networks, most likely because it is based on maintaining a spanning tree
data structure and the tree update process depends only on the number of
the nodes. Apart from COS and NS, the other algorithms usually performed
worse and it turned out that their relative performance greatly depends on
the characteristics of the problem instance. In certain cases, if the flow need
not be split into many paths, however, the augmenting path algorithms are
superior to other methods.

The presented implementations were systematically compared to publicly
available efficient MCF solvers, as well. It turned out that our cost-scaling
code is substantially more efficient and more robust than that of the LEDA
library [54] and it performs similarly to or slightly slower than CS2 [33, 16],
which is an authoritative implementation of this algorithm. Our implemen-
tation of the network simplex method turned out to be significantly faster
than the other considered implementation of this algorithm, the MCF solver
[57, 58]. Furthermore, another well-known MCF solver, RelaxIV [8, 7, 27] was
also tested, but it did not turn out to be robust at all. It was orders of magni-
tude slower than the other codes on various problem families, although it was
rather efficient on particular instances (namely, the NETGEN problems).

Our implementations are not standalone solvers, but they are part of a ver-
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satile C++ network optimization library, LEMON [55, 21] (http://lemon.
cs.elte.hu/). Therefore, these codes have the additional advantage that they
can easily be combined with various practical data structures and powerful al-
gorithms related to network optimization. Furthermore, LEMON is an open
source library that can be used in both commercial and non-commercial soft-
ware development under a permissive license. The authors believe that this
library with its great variety of efficient algorithms is a viable alternative
to the MCFClass project [27], which features several publicly available MCF
solvers under a common C++ interface.

Finally, we remark some ideas for future work. First, our implementation of
the cost-scaling algorithm currently does not incorporate the speculative arc
fixing heuristic, which was suggested by Goldberg [33]. We believe that the
efficiency of this implementation could be further improved by also applying
this complicated technique. Furthermore, a more comprehensive experimen-
tal study could be carried out considering more problem families and more
publicly available implementations of MCF algorithms.
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[58] A. Löbel, MCF Version 1.3 – A network simplex implementation. www.zib.de,
2004. ⇒69, 108, 113

[59] J.M. Mulvey. Pivot strategies for primal-simplex network codes. J. ACM 25
(1978) 266–270. ⇒97

[60] J.B. Orlin, A faster strongly polynomial minimum cost flow algorithm, Oper.
Res. 41 (1993) 338–350. ⇒75, 83

[61] J.B. Orlin, A polynomial time primal network simplex algorithm for minimum
cost flows, Math. Program. 78 (1997) 109–129. ⇒91
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