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The Minimum Cost Flow Problem

The minimum cost flow problem is the following:

Deliver specified amount of flow from a set of supply nodes to a
set of demand nodes in a network.
There are capacity constraints and costs on the arcs.
The total cost of the transportation has to be minimized.
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The Minimum Cost Flow Problem

Formal definition:

Let G = (V, E) be a directed graph.
We assign for each arc (i, j) ∈ E

a lower bound lij ≥ 0,
an upper bound uij ≥ lij and
a cost cij (per unit flow).

For each node i ∈ V, we assign a signed supply/demand value bi.
The goal is to find a feasible flow of minimum total cost.
The objective function is linear.
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The goal is to find a feasible flow of minimum total cost.
The objective function is linear.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and

Applications. Prentice-Hall, Inc., 1993.
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The Minimum Cost Flow Problem

This model can be formulated as an LP problem.

The Minimum Cost Flow Problem

min
∑

(i,j)∈E

cijxij (1)

∑
j : (i,j)∈E

xij −
∑

j : (j,i)∈E

xji = bi ∀i ∈ V (2)

lij ≤ xij ≤ uij ∀(i, j) ∈ E (3)

Note.
∑

i∈V bi = 0 is necessary to have a feasible solution.

We usually assume that all input data are integer and we are looking
for an integer-valued flow (ILP problem).
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The Minimum Cost Flow Problem

Applications:

This model can be directly applied in various areas:
transportation,
logistics,
telecommunication,
network design,
resource planning,
scheduling
etc.

It also arises as subproblems of more complex optimization
models, such as multicommodity flows.

Z. Király, P. Kovács (ELTE) Minimum Cost Flow Algorithms 2010-01-30 7 / 45



The Minimum Cost Flow Problem

The main goals of our research:

Implement several known algorithms as efficiently as possible.
Study heuristics and implementation details.

Compare different implementations using the same benchmark
framework on large problem instances.
Compare our codes to widely known and used efficient solvers.
Provide open source implementations as part of the LEMON
library.
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Z. Király, P. Kovács (ELTE) Minimum Cost Flow Algorithms 2010-01-30 8 / 45



The Minimum Cost Flow Problem

The main goals of our research:

Implement several known algorithms as efficiently as possible.
Study heuristics and implementation details.
Compare different implementations using the same benchmark
framework on large problem instances.
Compare our codes to widely known and used efficient solvers.
Provide open source implementations as part of the LEMON
library.
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Implementation and Testing

2. Implementation and Testing

Z. Király, P. Kovács (ELTE) Minimum Cost Flow Algorithms 2010-01-30 9 / 45



LEMON

Our implementations are part of the LEMON
combinatorial optimization library.

LEMON library:

Library for Efficient Modeling and Optimization in Networks
It is an open source C++ graph library developed at Eötvös
Loránd University, Budapest, Hungary.

It contains highly efficient and well cooperating data structures
and algorithms that help solving various optimization tasks related
to graphs and networks.
It is similar to BGL (Boost Graph Library) and LEDA.

http://lemon.cs.elte.hu
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Test Instances

Generated test instances:

Several benchmark sets of random networks were generated
using NETGEN, GRIDGEN and GOTO.
The largest instances contain millions of nodes and arcs.

Costs and capacities are in the range [1..10000] and [1..1000],
respectively.
In NETGEN and GRIDGEN instances, there are

√
n supply and√

n demand nodes with total supply 1000
√

n.
The GOTO problems contain single source and single target
nodes.
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Test Instances

Generated test instances:

We usually obtained similar results for the NETGEN and
GRIDGEN networks, thus GRIDGEN tests are omitted here.
GOTO typically generates much harder problems than the other
two generators.

The most important parameter is the density of the graph.
The algorithms perform diversely on sparse and dense networks.
For the sparse graphs, m ≈ 8n and for the dense networks,
m ≈

√
n n.
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Test Instances

Real-world test instances:

Some real-world problems were also tested.
They are based on maximum flow instances that arose in medical
image processing (http://vision.csd.uwo.ca/).
Random costs are assigned to the arcs and we are looking for a
maximum flow of minimum total cost.
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Benchmark System

Benchmark system:

AMD Opteron Dual Core 2.2 GHz CPU (1 MB cache),
16 GB memory,
openSUSE 10.1, GCC 4.1.0 compiler, –O3 option.
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Solution Methods

3. Solution Methods
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Algorithms

9 algorithms were implemented applying 4 different approaches.

1 Cycle Canceling – primal methods
SCC: Simple Cycle Canceling
MMCC: Minimum Mean Cycle Canceling
CAT: Cancel and Tighten

2 Augmenting Path – dual methods
SSP: Successive Shortest Path
CAS: Capacity Scaling

3 Cost Scaling – primal–dual methods
COS-PR: Cost Scaling – Push-Relabel
COS-AR: Cost Scaling – Augment-Relabel
COS-PAR: Cost Scaling – Partial Augment-Relabel

4 Network Simplex method
NS: Primal Network Simplex
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Cycle Canceling Method

3. Solution Methods

I. Cycle Canceling Algorithms
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Cycle Canceling Method

Theorem 1. Negative cycle optimality condition
A feasible solution x of the minimum cost flow problem is optimal if and
only if the residual network Gx contains no directed cycle of negative
total cost.

Note. The cost of a reversed arc is the opposite of the cost of the
original arc: cji = −cij.
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Cycle Canceling Method

Theorem 1. Negative cycle optimality condition
A feasible solution x of the minimum cost flow problem is optimal if and
only if the residual network Gx contains no directed cycle of negative
total cost.

This theorem suggests a simple approach for solving the problem:

1 Find a feasible solution (by solving a maximum flow problem).

2 Iteratively find negative cycles in the residual network and cancel
these cycles by augmenting flow along them. (An arc of each
cycle is saturated.)

3 The algorithm terminates when there are no negative cost cycles.

Primal method: it maintains a feasible solution and attempts to reduce
the objective function value (the total cost of the flow) at every iteration.
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Cycle Canceling Algorithms

Implemented algorithms:

SCC: Simple Cycle Canceling

MMCC: Minimum Mean Cycle Canceling

CAT: Cancel and Tighten
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Cycle Canceling Algorithms

Implemented algorithms:

SCC: Simple Cycle Canceling

The Bellman–Ford algorithm is used for finding negative cycles.
Some practical heuristics were applied to reduce running time.

MMCC: Minimum Mean Cycle Canceling

CAT: Cancel and Tighten

Z. Király, P. Kovács (ELTE) Minimum Cost Flow Algorithms 2010-01-30 19 / 45



Cycle Canceling Algorithms

Implemented algorithms:

SCC: Simple Cycle Canceling

MMCC: Minimum Mean Cycle Canceling
It cancels a minimum mean cycle at each iteration.
A simple, well-known strongly polynomial algorithm.
However, it is extremely slow in practice.

CAT: Cancel and Tighten
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Cycle Canceling Algorithms

Implemented algorithms:

SCC: Simple Cycle Canceling

MMCC: Minimum Mean Cycle Canceling

CAT: Cancel and Tighten

It is an improved version of MMCC.
Actually, it applies a primal–dual approach: storing node potentials
(the dual solution), it finds negative cycles much faster on average.

It is also strongly polynomial, but it is much more efficient than the
previous two algorithms (both in theory and in practice).
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Cycle Canceling Algorihms

In these charts, the cycle canceling algorithms are compared.
Running times are shown in seconds as a function of the number of nodes
(logarithmic scale is used).
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SCC is 6-8 times faster than MMCC.
CAT is an order of magnitude faster than the others.
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Augmenting Path Method

3. Solution Methods

II. Augmenting Path Algorithms
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Augmenting Path Method

Dual solution method:

It maintains a dual feasible solution and attempts to reach primal
feasibility.

At each iteration, a flow and node potentials are stored.
The flow is not necessarily feasible. The capacity constraints are
preserved, but the supply/demand constraints are not.
At each step, a certain amount of flow is sent from a node with
excess to a node with deficit along a shortest path (with respect to
the reduced costs).
If there are no nodes with excess, a primal feasible solution is
reached.
It is also optimal, since the dual feasibility is throughout preserved.
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Augmenting Path Method

The dual solution of the minimum cost flow problem is represented by
node potentials.
Another optimality condition (equivalent to Theorem 1).

Theorem 2. Reduced cost optimality condition
A feasible solution x of the minimum cost flow problem is optimal if and
only if for some node potential function π, the reduced cost of each arc
in the residual network Gx is non-negative.

Definition. Reduced cost
For a given set of node potentials π, the reduced cost of an arc (i, j) is
defined as

cπ
ij = cij + π(i)− π(j).
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Z. Király, P. Kovács (ELTE) Minimum Cost Flow Algorithms 2010-01-30 23 / 45



Augmenting Path Algorithms

Implemented algorithms:

SSP: Successive Shortest Path

CAS: Capacity Scaling
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Augmenting Path Algorithms

Implemented algorithms:

SSP: Successive Shortest Path
Simple variant using Dijkstra’s algorithm.

CAS: Capacity Scaling
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Augmenting Path Algorithms

Implemented algorithms:

SSP: Successive Shortest Path

CAS: Capacity Scaling

A faster (polynomial) version of SSP algorithm.
At each step, we are looking for a shortest path on which at least
∆ amount of flow can be sent.

If such a path is not found, the value of ∆ is halved and another
phase is performed.
The last phase (∆ = 1) results in a feasible and optimal flow.
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Augmenting Path Algorithms

The augmenting path algorithms are compared in these charts.
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CAS usually performs better than SSP.
However, if the capacities or the supply/demand values are rather
small, then SSP is clearly the fastest solution method. (Only a few
calls of Dijkstra’s algorithm are required.)
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Cost Scaling Method

3. Solution Methods

III. Cost Scaling Algorithms
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Cost Scaling Method

Cost scaling method:

It applies a primal–dual approach.
It can be viewed as a generalization of the preflow push-relabel
algorithm for the maximum flow problem.

At each phase, an ε-optimal primal-dual solution pair is computed.
It means that for each arc (i, j) in the residual network, cπ

ij ≥ −ε
holds.
After that, ε is halved and another phase is performed.
If ε < 1/n, then optimal primal–dual solutions are found.
In the scaling phases, push and relabel operations are used.
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Cost Scaling Method

Implemented algorithms:

COS-PR: Push-Relabel

COS-AR: Augment-Relabel

COS-PAR: Partial Augment-Relabel
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Cost Scaling Method

Implemented algorithms:

COS-PR: Push-Relabel

COS-AR: Augment-Relabel

Instead of the push operations, augmenting paths are found from
excess nodes to deficit nodes.
A path augmentation is equal to several consecutive push
operations.

COS-PAR: Partial Augment-Relabel
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Cost Scaling Method

Implemented algorithms:

COS-PR: Push-Relabel

COS-AR: Augment-Relabel

COS-PAR: Partial Augment-Relabel

Goldberg’s new idea is applied to this problem: the length of an
augmenting path is limited.

At once, flow is sent on a path consisting of at most k = 4 arcs.
It proved to be a good compromise between the above two
methods. It is significantly faster in practice.

Andrew V. Goldberg. The partial augment-relabel algorithm for the maximum flow problem.

ESA 2008, 466–477, 2008.
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Cost Scaling Heuristics

The performance of the Cost Scaling algorithm highly depends on the
applied heuristics.

In our implementations, the following heuristics are used:

price refinement,
early termination,
global update,
push-look-ahead (only in the push-relabel version).
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COS with all heuristics was faster than COS without heuristics by a
factor between 6 and 30 on these problem instances.
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Network Simplex Method

3. Solution Methods

IV. Network Simplex Algorithm
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Network Simplex Method

Primal network simplex algorithm:

It is the specialized version of the LP simplex method directly for
the minimum cost flow problem.

The LP variables correspond to the arcs of the graph.
The LP bases are represented by spanning tree solutions.
Such a solution is given by a spanning tree of the network for
which the flow values are fixed on all arcs outside the tree (i.e.
they have a flow value either at the lower bound or at the upper
bound).
The algorithm maintains a spanning tree with flow values (primal
solution) and node potentials (dual solutions).
At each iteration, we attempt to reduce the objective function
value (the total cost of the flow) by moving from one spanning tree
solution to another.
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Network Simplex Method

Primal network simplex algorithm:

At each step, a non-tree arc violating the
optimality condition is selected.

This arc is added to the spanning tree (a variable
is added to the base). By this operation, a cycle
of negative total cost is determined.

This cycle is canceled by augmenting flow along
it and one of the saturated (fixed) arcs is removed
from the tree. This operation is called pivot.

If no suitable incomming arc can be selected,
then the flow is optimal.
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Primal network simplex algorithm:

At each step, a non-tree arc violating the
optimality condition is selected.

This arc is added to the spanning tree (a variable
is added to the base). By this operation, a cycle
of negative total cost is determined.

This cycle is canceled by augmenting flow along
it and one of the saturated (fixed) arcs is removed
from the tree. This operation is called pivot.

If no suitable incomming arc can be selected,
then the flow is optimal.

Actually, this algorithm is a particular variant of the basic primal approach
(cycle canceling). Due to the sophisticated method of maintaining spanning
tree solutions, a negative cycle can be found much faster (in O(m) time).
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Network Simplex Method

Implementation:

A complex data structure is required to store and update spanning
trees efficiently.
Several different methods are known for this, e. g. ATI, API, XTI,
XPI. One of the most efficient schemes, the XTI method was
implemented.

Apart from maintaining the spanning tree solutions, the most
critical operation is the selection of the entering arc (the pivot rule).
It should be fast, but it should find an arc having reduced cost as
small as possible. These requirements are clearly contrary.
Various pivot rules were implemented applying different
approaches. They highly affect the overall running time of the
algorithm.
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Z. Király, P. Kovács (ELTE) Minimum Cost Flow Algorithms 2010-01-30 33 / 45



Network Simplex Pivot Rules
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First Eligible is relatively efficient although it is very simple.
Best Eligible method is by far the slowest one.
Block Search proved to be the most efficient and most robust.
Candidate List is also very efficient.
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Experimental Results

4. Experimental Results
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Comparison

These charts compare our fastest implementations of the four approaches.
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Cancel and Tighten (CAT) is the slowest among these four
implentations.

Capacity Scaling (CAS) is significantly faster.

The most efficient methods are clearly the Cost Scaling (COS) and
Network Simplex (NS) algorithms.
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COS proved to be asymptotically faster than all other methods both on
sparse and dense networks.

Therefore, COS is the absolute winner on huge networks, especially
when they are relatively sparse.

However, on small and medium sized graphs, NS is typically much faster.
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Comparison

In this chart, the number of nodes is fixed (to 4096) and the running
times are shown as a function of the number of arcs.

The largest instance is the full graph containing 16 million arcs.
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Network Simplex (NS) is by far the most efficient in such tests.
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Comparison with Other Solvers

On the following slides, our two fastest implementations, the cost
scaling (COS) and the network simplex (NS) algorithms are compared
to widely known efficient solvers.
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Comparison with Other Solvers
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CS2: CS2 4.6 (latest version) by A. V. Goldberg (IG Systems).
It is an efficient implementation of the cost scaling method.
It proved to be slightly faster than our cost scaling implementation
(COS).
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Comparison with Other Solvers
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ZIB MCF: MCF 1.3 (latest version) by A. Lbel (Zuse Institute
Berlin).
It is a network simplex implementation.
Our NS code was much faster on all problem sets.
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Comparison with Other Solvers
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RelaxIV: an efficient implementation of the relaxation algorithm by
D. P. Bertsekas and P. Tseng.
It proved to be remarkably efficient on NETGEN problems, but it
performed extremely poorly on GOTO instances.
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Comparison with Other Solvers
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LEDA: The minimum cost flow method of the LEDA 5.0 C++ optimization
library (which is a commercial software).

LEDA provides an efficient cost scaling implementation.

Our COS code often outperformed it, especially on NETGEN networks.

Moreover, LEDA failed on the largest instances with cost overflow error.
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Comparison on Real-World Networks

This chart show the running times on the real-world networks that arose in
segmentation problems in medical image processing.
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Our implementations (NS and COS) solved these problems efficiently.

CS2 was even slightly faster than our COS algorithm.

ZIB MCF and RelaxIV were not competitive in these tests.

Z. Király, P. Kovács (ELTE) Minimum Cost Flow Algorithms 2010-01-30 43 / 45



Summary

5. Summary
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Summary

9 algorithms were implemented with various heuristics.

They were compared systematically on large scale generated and
real-world problem instances.

Our implementations proved to be rather efficient and competitive or
superior to highly regarded public solvers.

This is a remarkable achievement considering that this problem has
been a subject of high theoretical and practical interest for decades.

Cost scaling algorithms proved to be more efficient than network simplex
and relaxation methods on large and relatively sparse networks.

On small and medium sized graphs and on rather dense graphs,
network simplex methods are typically faster.

Our implementations are available as part of the LEMON open source
C++ optimization library.

http://lemon.cs.elte.hu
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Z. Király, P. Kovács (ELTE) Minimum Cost Flow Algorithms 2010-01-30 45 / 45

http://lemon.cs.elte.hu


Summary

9 algorithms were implemented with various heuristics.

They were compared systematically on large scale generated and
real-world problem instances.

Our implementations proved to be rather efficient and competitive or
superior to highly regarded public solvers.

This is a remarkable achievement considering that this problem has
been a subject of high theoretical and practical interest for decades.

Cost scaling algorithms proved to be more efficient than network simplex
and relaxation methods on large and relatively sparse networks.

On small and medium sized graphs and on rather dense graphs,
network simplex methods are typically faster.

Our implementations are available as part of the LEMON open source
C++ optimization library.

http://lemon.cs.elte.hu
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