deba@2440
|
1 |
/* -*- C++ -*-
|
deba@2440
|
2 |
*
|
deba@2440
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
deba@2440
|
4 |
*
|
alpar@2553
|
5 |
* Copyright (C) 2003-2008
|
deba@2440
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@2440
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@2440
|
8 |
*
|
deba@2440
|
9 |
* Permission to use, modify and distribute this software is granted
|
deba@2440
|
10 |
* provided that this copyright notice appears in all copies. For
|
deba@2440
|
11 |
* precise terms see the accompanying LICENSE file.
|
deba@2440
|
12 |
*
|
deba@2440
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@2440
|
14 |
* express or implied, and with no claim as to its suitability for any
|
deba@2440
|
15 |
* purpose.
|
deba@2440
|
16 |
*
|
deba@2440
|
17 |
*/
|
deba@2440
|
18 |
|
deba@2440
|
19 |
#ifndef LEMON_CAPACITY_SCALING_H
|
deba@2440
|
20 |
#define LEMON_CAPACITY_SCALING_H
|
deba@2440
|
21 |
|
deba@2440
|
22 |
/// \ingroup min_cost_flow
|
deba@2440
|
23 |
///
|
deba@2440
|
24 |
/// \file
|
kpeter@2574
|
25 |
/// \brief Capacity scaling algorithm for finding a minimum cost flow.
|
kpeter@2574
|
26 |
|
kpeter@2574
|
27 |
#include <vector>
|
deba@2440
|
28 |
|
kpeter@2535
|
29 |
#include <lemon/graph_adaptor.h>
|
kpeter@2535
|
30 |
#include <lemon/bin_heap.h>
|
deba@2457
|
31 |
|
deba@2440
|
32 |
namespace lemon {
|
deba@2440
|
33 |
|
deba@2440
|
34 |
/// \addtogroup min_cost_flow
|
deba@2440
|
35 |
/// @{
|
deba@2440
|
36 |
|
kpeter@2574
|
37 |
/// \brief Implementation of the capacity scaling algorithm for
|
kpeter@2574
|
38 |
/// finding a minimum cost flow.
|
deba@2440
|
39 |
///
|
kpeter@2535
|
40 |
/// \ref CapacityScaling implements the capacity scaling version
|
kpeter@2535
|
41 |
/// of the successive shortest path algorithm for finding a minimum
|
kpeter@2535
|
42 |
/// cost flow.
|
deba@2440
|
43 |
///
|
kpeter@2574
|
44 |
/// \tparam Graph The directed graph type the algorithm runs on.
|
kpeter@2574
|
45 |
/// \tparam LowerMap The type of the lower bound map.
|
kpeter@2574
|
46 |
/// \tparam CapacityMap The type of the capacity (upper bound) map.
|
kpeter@2574
|
47 |
/// \tparam CostMap The type of the cost (length) map.
|
kpeter@2574
|
48 |
/// \tparam SupplyMap The type of the supply map.
|
deba@2440
|
49 |
///
|
deba@2440
|
50 |
/// \warning
|
kpeter@2574
|
51 |
/// - Edge capacities and costs should be \e non-negative \e integers.
|
kpeter@2574
|
52 |
/// - Supply values should be \e signed \e integers.
|
kpeter@2581
|
53 |
/// - The value types of the maps should be convertible to each other.
|
kpeter@2581
|
54 |
/// - \c CostMap::Value must be signed type.
|
deba@2440
|
55 |
///
|
deba@2440
|
56 |
/// \author Peter Kovacs
|
deba@2440
|
57 |
|
kpeter@2533
|
58 |
template < typename Graph,
|
kpeter@2535
|
59 |
typename LowerMap = typename Graph::template EdgeMap<int>,
|
kpeter@2574
|
60 |
typename CapacityMap = typename Graph::template EdgeMap<int>,
|
kpeter@2535
|
61 |
typename CostMap = typename Graph::template EdgeMap<int>,
|
kpeter@2574
|
62 |
typename SupplyMap = typename Graph::template NodeMap<int> >
|
deba@2440
|
63 |
class CapacityScaling
|
deba@2440
|
64 |
{
|
kpeter@2556
|
65 |
GRAPH_TYPEDEFS(typename Graph);
|
deba@2440
|
66 |
|
deba@2440
|
67 |
typedef typename CapacityMap::Value Capacity;
|
deba@2440
|
68 |
typedef typename CostMap::Value Cost;
|
deba@2440
|
69 |
typedef typename SupplyMap::Value Supply;
|
kpeter@2556
|
70 |
typedef typename Graph::template EdgeMap<Capacity> CapacityEdgeMap;
|
kpeter@2556
|
71 |
typedef typename Graph::template NodeMap<Supply> SupplyNodeMap;
|
kpeter@2535
|
72 |
typedef typename Graph::template NodeMap<Edge> PredMap;
|
deba@2440
|
73 |
|
deba@2440
|
74 |
public:
|
deba@2440
|
75 |
|
kpeter@2556
|
76 |
/// The type of the flow map.
|
kpeter@2556
|
77 |
typedef typename Graph::template EdgeMap<Capacity> FlowMap;
|
kpeter@2556
|
78 |
/// The type of the potential map.
|
deba@2440
|
79 |
typedef typename Graph::template NodeMap<Cost> PotentialMap;
|
deba@2440
|
80 |
|
kpeter@2574
|
81 |
private:
|
deba@2440
|
82 |
|
kpeter@2535
|
83 |
/// \brief Special implementation of the \ref Dijkstra algorithm
|
kpeter@2574
|
84 |
/// for finding shortest paths in the residual network.
|
kpeter@2574
|
85 |
///
|
kpeter@2574
|
86 |
/// \ref ResidualDijkstra is a special implementation of the
|
kpeter@2574
|
87 |
/// \ref Dijkstra algorithm for finding shortest paths in the
|
kpeter@2574
|
88 |
/// residual network of the graph with respect to the reduced edge
|
kpeter@2574
|
89 |
/// costs and modifying the node potentials according to the
|
kpeter@2574
|
90 |
/// distance of the nodes.
|
kpeter@2535
|
91 |
class ResidualDijkstra
|
deba@2440
|
92 |
{
|
kpeter@2535
|
93 |
typedef typename Graph::template NodeMap<Cost> CostNodeMap;
|
kpeter@2535
|
94 |
typedef typename Graph::template NodeMap<Edge> PredMap;
|
deba@2440
|
95 |
|
kpeter@2535
|
96 |
typedef typename Graph::template NodeMap<int> HeapCrossRef;
|
kpeter@2535
|
97 |
typedef BinHeap<Cost, HeapCrossRef> Heap;
|
kpeter@2535
|
98 |
|
kpeter@2574
|
99 |
private:
|
kpeter@2535
|
100 |
|
kpeter@2574
|
101 |
// The directed graph the algorithm runs on
|
kpeter@2574
|
102 |
const Graph &_graph;
|
kpeter@2535
|
103 |
|
kpeter@2574
|
104 |
// The main maps
|
kpeter@2574
|
105 |
const FlowMap &_flow;
|
kpeter@2574
|
106 |
const CapacityEdgeMap &_res_cap;
|
kpeter@2574
|
107 |
const CostMap &_cost;
|
kpeter@2574
|
108 |
const SupplyNodeMap &_excess;
|
kpeter@2574
|
109 |
PotentialMap &_potential;
|
kpeter@2535
|
110 |
|
kpeter@2574
|
111 |
// The distance map
|
kpeter@2574
|
112 |
CostNodeMap _dist;
|
kpeter@2574
|
113 |
// The pred edge map
|
kpeter@2574
|
114 |
PredMap &_pred;
|
kpeter@2574
|
115 |
// The processed (i.e. permanently labeled) nodes
|
kpeter@2574
|
116 |
std::vector<Node> _proc_nodes;
|
deba@2440
|
117 |
|
deba@2440
|
118 |
public:
|
deba@2440
|
119 |
|
kpeter@2581
|
120 |
/// Constructor.
|
kpeter@2574
|
121 |
ResidualDijkstra( const Graph &graph,
|
kpeter@2574
|
122 |
const FlowMap &flow,
|
kpeter@2574
|
123 |
const CapacityEdgeMap &res_cap,
|
kpeter@2574
|
124 |
const CostMap &cost,
|
kpeter@2574
|
125 |
const SupplyMap &excess,
|
kpeter@2574
|
126 |
PotentialMap &potential,
|
kpeter@2574
|
127 |
PredMap &pred ) :
|
kpeter@2574
|
128 |
_graph(graph), _flow(flow), _res_cap(res_cap), _cost(cost),
|
kpeter@2574
|
129 |
_excess(excess), _potential(potential), _dist(graph),
|
kpeter@2574
|
130 |
_pred(pred)
|
kpeter@2535
|
131 |
{}
|
deba@2440
|
132 |
|
kpeter@2556
|
133 |
/// Runs the algorithm from the given source node.
|
kpeter@2535
|
134 |
Node run(Node s, Capacity delta) {
|
kpeter@2574
|
135 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
|
kpeter@2535
|
136 |
Heap heap(heap_cross_ref);
|
kpeter@2535
|
137 |
heap.push(s, 0);
|
kpeter@2574
|
138 |
_pred[s] = INVALID;
|
kpeter@2574
|
139 |
_proc_nodes.clear();
|
kpeter@2535
|
140 |
|
kpeter@2535
|
141 |
// Processing nodes
|
kpeter@2574
|
142 |
while (!heap.empty() && _excess[heap.top()] > -delta) {
|
kpeter@2535
|
143 |
Node u = heap.top(), v;
|
kpeter@2574
|
144 |
Cost d = heap.prio() + _potential[u], nd;
|
kpeter@2574
|
145 |
_dist[u] = heap.prio();
|
kpeter@2535
|
146 |
heap.pop();
|
kpeter@2574
|
147 |
_proc_nodes.push_back(u);
|
kpeter@2535
|
148 |
|
kpeter@2535
|
149 |
// Traversing outgoing edges
|
kpeter@2574
|
150 |
for (OutEdgeIt e(_graph, u); e != INVALID; ++e) {
|
kpeter@2574
|
151 |
if (_res_cap[e] >= delta) {
|
kpeter@2574
|
152 |
v = _graph.target(e);
|
kpeter@2535
|
153 |
switch(heap.state(v)) {
|
kpeter@2535
|
154 |
case Heap::PRE_HEAP:
|
kpeter@2574
|
155 |
heap.push(v, d + _cost[e] - _potential[v]);
|
kpeter@2574
|
156 |
_pred[v] = e;
|
kpeter@2535
|
157 |
break;
|
kpeter@2535
|
158 |
case Heap::IN_HEAP:
|
kpeter@2574
|
159 |
nd = d + _cost[e] - _potential[v];
|
kpeter@2535
|
160 |
if (nd < heap[v]) {
|
kpeter@2535
|
161 |
heap.decrease(v, nd);
|
kpeter@2574
|
162 |
_pred[v] = e;
|
kpeter@2535
|
163 |
}
|
kpeter@2535
|
164 |
break;
|
kpeter@2535
|
165 |
case Heap::POST_HEAP:
|
kpeter@2535
|
166 |
break;
|
kpeter@2535
|
167 |
}
|
kpeter@2535
|
168 |
}
|
kpeter@2535
|
169 |
}
|
kpeter@2535
|
170 |
|
kpeter@2535
|
171 |
// Traversing incoming edges
|
kpeter@2574
|
172 |
for (InEdgeIt e(_graph, u); e != INVALID; ++e) {
|
kpeter@2574
|
173 |
if (_flow[e] >= delta) {
|
kpeter@2574
|
174 |
v = _graph.source(e);
|
kpeter@2535
|
175 |
switch(heap.state(v)) {
|
kpeter@2535
|
176 |
case Heap::PRE_HEAP:
|
kpeter@2574
|
177 |
heap.push(v, d - _cost[e] - _potential[v]);
|
kpeter@2574
|
178 |
_pred[v] = e;
|
kpeter@2535
|
179 |
break;
|
kpeter@2535
|
180 |
case Heap::IN_HEAP:
|
kpeter@2574
|
181 |
nd = d - _cost[e] - _potential[v];
|
kpeter@2535
|
182 |
if (nd < heap[v]) {
|
kpeter@2535
|
183 |
heap.decrease(v, nd);
|
kpeter@2574
|
184 |
_pred[v] = e;
|
kpeter@2535
|
185 |
}
|
kpeter@2535
|
186 |
break;
|
kpeter@2535
|
187 |
case Heap::POST_HEAP:
|
kpeter@2535
|
188 |
break;
|
kpeter@2535
|
189 |
}
|
kpeter@2535
|
190 |
}
|
kpeter@2535
|
191 |
}
|
kpeter@2535
|
192 |
}
|
kpeter@2535
|
193 |
if (heap.empty()) return INVALID;
|
kpeter@2535
|
194 |
|
kpeter@2535
|
195 |
// Updating potentials of processed nodes
|
kpeter@2535
|
196 |
Node t = heap.top();
|
kpeter@2574
|
197 |
Cost t_dist = heap.prio();
|
kpeter@2574
|
198 |
for (int i = 0; i < int(_proc_nodes.size()); ++i)
|
kpeter@2574
|
199 |
_potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
|
kpeter@2535
|
200 |
|
kpeter@2535
|
201 |
return t;
|
deba@2440
|
202 |
}
|
deba@2440
|
203 |
|
kpeter@2535
|
204 |
}; //class ResidualDijkstra
|
deba@2440
|
205 |
|
kpeter@2574
|
206 |
private:
|
deba@2440
|
207 |
|
kpeter@2574
|
208 |
// The directed graph the algorithm runs on
|
kpeter@2574
|
209 |
const Graph &_graph;
|
kpeter@2574
|
210 |
// The original lower bound map
|
kpeter@2574
|
211 |
const LowerMap *_lower;
|
kpeter@2574
|
212 |
// The modified capacity map
|
kpeter@2574
|
213 |
CapacityEdgeMap _capacity;
|
kpeter@2574
|
214 |
// The original cost map
|
kpeter@2574
|
215 |
const CostMap &_cost;
|
kpeter@2574
|
216 |
// The modified supply map
|
kpeter@2574
|
217 |
SupplyNodeMap _supply;
|
kpeter@2574
|
218 |
bool _valid_supply;
|
deba@2440
|
219 |
|
kpeter@2574
|
220 |
// Edge map of the current flow
|
kpeter@2581
|
221 |
FlowMap *_flow;
|
kpeter@2581
|
222 |
bool _local_flow;
|
kpeter@2574
|
223 |
// Node map of the current potentials
|
kpeter@2581
|
224 |
PotentialMap *_potential;
|
kpeter@2581
|
225 |
bool _local_potential;
|
deba@2440
|
226 |
|
kpeter@2574
|
227 |
// The residual capacity map
|
kpeter@2574
|
228 |
CapacityEdgeMap _res_cap;
|
kpeter@2574
|
229 |
// The excess map
|
kpeter@2574
|
230 |
SupplyNodeMap _excess;
|
kpeter@2574
|
231 |
// The excess nodes (i.e. nodes with positive excess)
|
kpeter@2574
|
232 |
std::vector<Node> _excess_nodes;
|
kpeter@2574
|
233 |
// The deficit nodes (i.e. nodes with negative excess)
|
kpeter@2574
|
234 |
std::vector<Node> _deficit_nodes;
|
deba@2440
|
235 |
|
kpeter@2574
|
236 |
// The delta parameter used for capacity scaling
|
kpeter@2574
|
237 |
Capacity _delta;
|
kpeter@2574
|
238 |
// The maximum number of phases
|
kpeter@2574
|
239 |
int _phase_num;
|
deba@2440
|
240 |
|
kpeter@2574
|
241 |
// The pred edge map
|
kpeter@2574
|
242 |
PredMap _pred;
|
kpeter@2574
|
243 |
// Implementation of the Dijkstra algorithm for finding augmenting
|
kpeter@2574
|
244 |
// shortest paths in the residual network
|
kpeter@2581
|
245 |
ResidualDijkstra *_dijkstra;
|
deba@2440
|
246 |
|
kpeter@2581
|
247 |
public:
|
deba@2440
|
248 |
|
kpeter@2581
|
249 |
/// \brief General constructor (with lower bounds).
|
deba@2440
|
250 |
///
|
kpeter@2581
|
251 |
/// General constructor (with lower bounds).
|
deba@2440
|
252 |
///
|
kpeter@2574
|
253 |
/// \param graph The directed graph the algorithm runs on.
|
kpeter@2574
|
254 |
/// \param lower The lower bounds of the edges.
|
kpeter@2574
|
255 |
/// \param capacity The capacities (upper bounds) of the edges.
|
kpeter@2574
|
256 |
/// \param cost The cost (length) values of the edges.
|
kpeter@2574
|
257 |
/// \param supply The supply values of the nodes (signed).
|
kpeter@2574
|
258 |
CapacityScaling( const Graph &graph,
|
kpeter@2574
|
259 |
const LowerMap &lower,
|
kpeter@2574
|
260 |
const CapacityMap &capacity,
|
kpeter@2574
|
261 |
const CostMap &cost,
|
kpeter@2574
|
262 |
const SupplyMap &supply ) :
|
kpeter@2574
|
263 |
_graph(graph), _lower(&lower), _capacity(graph), _cost(cost),
|
kpeter@2581
|
264 |
_supply(graph), _flow(0), _local_flow(false),
|
kpeter@2581
|
265 |
_potential(0), _local_potential(false),
|
kpeter@2581
|
266 |
_res_cap(graph), _excess(graph), _pred(graph)
|
deba@2440
|
267 |
{
|
kpeter@2556
|
268 |
// Removing non-zero lower bounds
|
kpeter@2574
|
269 |
_capacity = subMap(capacity, lower);
|
kpeter@2574
|
270 |
_res_cap = _capacity;
|
deba@2440
|
271 |
Supply sum = 0;
|
kpeter@2574
|
272 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@2574
|
273 |
Supply s = supply[n];
|
kpeter@2574
|
274 |
for (InEdgeIt e(_graph, n); e != INVALID; ++e)
|
kpeter@2574
|
275 |
s += lower[e];
|
kpeter@2574
|
276 |
for (OutEdgeIt e(_graph, n); e != INVALID; ++e)
|
kpeter@2574
|
277 |
s -= lower[e];
|
kpeter@2574
|
278 |
_supply[n] = s;
|
kpeter@2535
|
279 |
sum += s;
|
deba@2440
|
280 |
}
|
kpeter@2574
|
281 |
_valid_supply = sum == 0;
|
deba@2440
|
282 |
}
|
deba@2440
|
283 |
|
kpeter@2581
|
284 |
/// \brief General constructor (without lower bounds).
|
deba@2440
|
285 |
///
|
kpeter@2581
|
286 |
/// General constructor (without lower bounds).
|
deba@2440
|
287 |
///
|
kpeter@2574
|
288 |
/// \param graph The directed graph the algorithm runs on.
|
kpeter@2574
|
289 |
/// \param capacity The capacities (upper bounds) of the edges.
|
kpeter@2574
|
290 |
/// \param cost The cost (length) values of the edges.
|
kpeter@2574
|
291 |
/// \param supply The supply values of the nodes (signed).
|
kpeter@2574
|
292 |
CapacityScaling( const Graph &graph,
|
kpeter@2574
|
293 |
const CapacityMap &capacity,
|
kpeter@2574
|
294 |
const CostMap &cost,
|
kpeter@2574
|
295 |
const SupplyMap &supply ) :
|
kpeter@2574
|
296 |
_graph(graph), _lower(NULL), _capacity(capacity), _cost(cost),
|
kpeter@2581
|
297 |
_supply(supply), _flow(0), _local_flow(false),
|
kpeter@2581
|
298 |
_potential(0), _local_potential(false),
|
kpeter@2581
|
299 |
_res_cap(capacity), _excess(graph), _pred(graph)
|
deba@2440
|
300 |
{
|
deba@2440
|
301 |
// Checking the sum of supply values
|
deba@2440
|
302 |
Supply sum = 0;
|
kpeter@2574
|
303 |
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
|
kpeter@2574
|
304 |
_valid_supply = sum == 0;
|
deba@2440
|
305 |
}
|
deba@2440
|
306 |
|
kpeter@2581
|
307 |
/// \brief Simple constructor (with lower bounds).
|
deba@2440
|
308 |
///
|
kpeter@2581
|
309 |
/// Simple constructor (with lower bounds).
|
deba@2440
|
310 |
///
|
kpeter@2574
|
311 |
/// \param graph The directed graph the algorithm runs on.
|
kpeter@2574
|
312 |
/// \param lower The lower bounds of the edges.
|
kpeter@2574
|
313 |
/// \param capacity The capacities (upper bounds) of the edges.
|
kpeter@2574
|
314 |
/// \param cost The cost (length) values of the edges.
|
kpeter@2574
|
315 |
/// \param s The source node.
|
kpeter@2574
|
316 |
/// \param t The target node.
|
kpeter@2574
|
317 |
/// \param flow_value The required amount of flow from node \c s
|
kpeter@2574
|
318 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t).
|
kpeter@2574
|
319 |
CapacityScaling( const Graph &graph,
|
kpeter@2574
|
320 |
const LowerMap &lower,
|
kpeter@2574
|
321 |
const CapacityMap &capacity,
|
kpeter@2574
|
322 |
const CostMap &cost,
|
kpeter@2574
|
323 |
Node s, Node t,
|
kpeter@2574
|
324 |
Supply flow_value ) :
|
kpeter@2574
|
325 |
_graph(graph), _lower(&lower), _capacity(graph), _cost(cost),
|
kpeter@2581
|
326 |
_supply(graph), _flow(0), _local_flow(false),
|
kpeter@2581
|
327 |
_potential(0), _local_potential(false),
|
kpeter@2581
|
328 |
_res_cap(graph), _excess(graph), _pred(graph)
|
deba@2440
|
329 |
{
|
kpeter@2556
|
330 |
// Removing non-zero lower bounds
|
kpeter@2574
|
331 |
_capacity = subMap(capacity, lower);
|
kpeter@2574
|
332 |
_res_cap = _capacity;
|
kpeter@2574
|
333 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@2574
|
334 |
Supply sum = 0;
|
kpeter@2574
|
335 |
if (n == s) sum = flow_value;
|
kpeter@2574
|
336 |
if (n == t) sum = -flow_value;
|
kpeter@2574
|
337 |
for (InEdgeIt e(_graph, n); e != INVALID; ++e)
|
kpeter@2574
|
338 |
sum += lower[e];
|
kpeter@2574
|
339 |
for (OutEdgeIt e(_graph, n); e != INVALID; ++e)
|
kpeter@2574
|
340 |
sum -= lower[e];
|
kpeter@2574
|
341 |
_supply[n] = sum;
|
deba@2440
|
342 |
}
|
kpeter@2574
|
343 |
_valid_supply = true;
|
deba@2440
|
344 |
}
|
deba@2440
|
345 |
|
kpeter@2581
|
346 |
/// \brief Simple constructor (without lower bounds).
|
deba@2440
|
347 |
///
|
kpeter@2581
|
348 |
/// Simple constructor (without lower bounds).
|
deba@2440
|
349 |
///
|
kpeter@2574
|
350 |
/// \param graph The directed graph the algorithm runs on.
|
kpeter@2574
|
351 |
/// \param capacity The capacities (upper bounds) of the edges.
|
kpeter@2574
|
352 |
/// \param cost The cost (length) values of the edges.
|
kpeter@2574
|
353 |
/// \param s The source node.
|
kpeter@2574
|
354 |
/// \param t The target node.
|
kpeter@2574
|
355 |
/// \param flow_value The required amount of flow from node \c s
|
kpeter@2574
|
356 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t).
|
kpeter@2574
|
357 |
CapacityScaling( const Graph &graph,
|
kpeter@2574
|
358 |
const CapacityMap &capacity,
|
kpeter@2574
|
359 |
const CostMap &cost,
|
kpeter@2574
|
360 |
Node s, Node t,
|
kpeter@2574
|
361 |
Supply flow_value ) :
|
kpeter@2574
|
362 |
_graph(graph), _lower(NULL), _capacity(capacity), _cost(cost),
|
kpeter@2581
|
363 |
_supply(graph, 0), _flow(0), _local_flow(false),
|
kpeter@2581
|
364 |
_potential(0), _local_potential(false),
|
kpeter@2581
|
365 |
_res_cap(capacity), _excess(graph), _pred(graph)
|
deba@2440
|
366 |
{
|
kpeter@2574
|
367 |
_supply[s] = flow_value;
|
kpeter@2574
|
368 |
_supply[t] = -flow_value;
|
kpeter@2574
|
369 |
_valid_supply = true;
|
deba@2440
|
370 |
}
|
deba@2440
|
371 |
|
kpeter@2581
|
372 |
/// Destructor.
|
kpeter@2581
|
373 |
~CapacityScaling() {
|
kpeter@2581
|
374 |
if (_local_flow) delete _flow;
|
kpeter@2581
|
375 |
if (_local_potential) delete _potential;
|
kpeter@2581
|
376 |
delete _dijkstra;
|
kpeter@2581
|
377 |
}
|
kpeter@2581
|
378 |
|
kpeter@2581
|
379 |
/// \brief Sets the flow map.
|
kpeter@2581
|
380 |
///
|
kpeter@2581
|
381 |
/// Sets the flow map.
|
kpeter@2581
|
382 |
///
|
kpeter@2581
|
383 |
/// \return \c (*this)
|
kpeter@2581
|
384 |
CapacityScaling& flowMap(FlowMap &map) {
|
kpeter@2581
|
385 |
if (_local_flow) {
|
kpeter@2581
|
386 |
delete _flow;
|
kpeter@2581
|
387 |
_local_flow = false;
|
kpeter@2581
|
388 |
}
|
kpeter@2581
|
389 |
_flow = ↦
|
kpeter@2581
|
390 |
return *this;
|
kpeter@2581
|
391 |
}
|
kpeter@2581
|
392 |
|
kpeter@2581
|
393 |
/// \brief Sets the potential map.
|
kpeter@2581
|
394 |
///
|
kpeter@2581
|
395 |
/// Sets the potential map.
|
kpeter@2581
|
396 |
///
|
kpeter@2581
|
397 |
/// \return \c (*this)
|
kpeter@2581
|
398 |
CapacityScaling& potentialMap(PotentialMap &map) {
|
kpeter@2581
|
399 |
if (_local_potential) {
|
kpeter@2581
|
400 |
delete _potential;
|
kpeter@2581
|
401 |
_local_potential = false;
|
kpeter@2581
|
402 |
}
|
kpeter@2581
|
403 |
_potential = ↦
|
kpeter@2581
|
404 |
return *this;
|
kpeter@2581
|
405 |
}
|
kpeter@2581
|
406 |
|
kpeter@2581
|
407 |
/// \name Execution control
|
kpeter@2581
|
408 |
/// The only way to execute the algorithm is to call the run()
|
kpeter@2581
|
409 |
/// function.
|
kpeter@2581
|
410 |
|
kpeter@2581
|
411 |
/// @{
|
kpeter@2581
|
412 |
|
kpeter@2556
|
413 |
/// \brief Runs the algorithm.
|
kpeter@2556
|
414 |
///
|
kpeter@2556
|
415 |
/// Runs the algorithm.
|
kpeter@2556
|
416 |
///
|
kpeter@2574
|
417 |
/// \param scaling Enable or disable capacity scaling.
|
kpeter@2556
|
418 |
/// If the maximum edge capacity and/or the amount of total supply
|
kpeter@2574
|
419 |
/// is rather small, the algorithm could be slightly faster without
|
kpeter@2556
|
420 |
/// scaling.
|
kpeter@2556
|
421 |
///
|
kpeter@2556
|
422 |
/// \return \c true if a feasible flow can be found.
|
kpeter@2574
|
423 |
bool run(bool scaling = true) {
|
kpeter@2574
|
424 |
return init(scaling) && start();
|
kpeter@2556
|
425 |
}
|
kpeter@2556
|
426 |
|
kpeter@2581
|
427 |
/// @}
|
kpeter@2581
|
428 |
|
kpeter@2581
|
429 |
/// \name Query Functions
|
kpeter@2581
|
430 |
/// The result of the algorithm can be obtained using these
|
kpeter@2581
|
431 |
/// functions.
|
kpeter@2581
|
432 |
/// \n run() must be called before using them.
|
kpeter@2581
|
433 |
|
kpeter@2581
|
434 |
/// @{
|
kpeter@2581
|
435 |
|
kpeter@2574
|
436 |
/// \brief Returns a const reference to the edge map storing the
|
kpeter@2574
|
437 |
/// found flow.
|
deba@2440
|
438 |
///
|
kpeter@2574
|
439 |
/// Returns a const reference to the edge map storing the found flow.
|
deba@2440
|
440 |
///
|
deba@2440
|
441 |
/// \pre \ref run() must be called before using this function.
|
deba@2440
|
442 |
const FlowMap& flowMap() const {
|
kpeter@2581
|
443 |
return *_flow;
|
deba@2440
|
444 |
}
|
deba@2440
|
445 |
|
kpeter@2574
|
446 |
/// \brief Returns a const reference to the node map storing the
|
kpeter@2574
|
447 |
/// found potentials (the dual solution).
|
deba@2440
|
448 |
///
|
kpeter@2574
|
449 |
/// Returns a const reference to the node map storing the found
|
kpeter@2574
|
450 |
/// potentials (the dual solution).
|
deba@2440
|
451 |
///
|
deba@2440
|
452 |
/// \pre \ref run() must be called before using this function.
|
deba@2440
|
453 |
const PotentialMap& potentialMap() const {
|
kpeter@2581
|
454 |
return *_potential;
|
kpeter@2581
|
455 |
}
|
kpeter@2581
|
456 |
|
kpeter@2581
|
457 |
/// \brief Returns the flow on the edge.
|
kpeter@2581
|
458 |
///
|
kpeter@2581
|
459 |
/// Returns the flow on the edge.
|
kpeter@2581
|
460 |
///
|
kpeter@2581
|
461 |
/// \pre \ref run() must be called before using this function.
|
kpeter@2581
|
462 |
Capacity flow(const Edge& edge) const {
|
kpeter@2581
|
463 |
return (*_flow)[edge];
|
kpeter@2581
|
464 |
}
|
kpeter@2581
|
465 |
|
kpeter@2581
|
466 |
/// \brief Returns the potential of the node.
|
kpeter@2581
|
467 |
///
|
kpeter@2581
|
468 |
/// Returns the potential of the node.
|
kpeter@2581
|
469 |
///
|
kpeter@2581
|
470 |
/// \pre \ref run() must be called before using this function.
|
kpeter@2581
|
471 |
Cost potential(const Node& node) const {
|
kpeter@2581
|
472 |
return (*_potential)[node];
|
deba@2440
|
473 |
}
|
deba@2440
|
474 |
|
deba@2440
|
475 |
/// \brief Returns the total cost of the found flow.
|
deba@2440
|
476 |
///
|
deba@2440
|
477 |
/// Returns the total cost of the found flow. The complexity of the
|
deba@2440
|
478 |
/// function is \f$ O(e) \f$.
|
deba@2440
|
479 |
///
|
deba@2440
|
480 |
/// \pre \ref run() must be called before using this function.
|
deba@2440
|
481 |
Cost totalCost() const {
|
deba@2440
|
482 |
Cost c = 0;
|
kpeter@2574
|
483 |
for (EdgeIt e(_graph); e != INVALID; ++e)
|
kpeter@2581
|
484 |
c += (*_flow)[e] * _cost[e];
|
deba@2440
|
485 |
return c;
|
deba@2440
|
486 |
}
|
deba@2440
|
487 |
|
kpeter@2581
|
488 |
/// @}
|
kpeter@2581
|
489 |
|
kpeter@2574
|
490 |
private:
|
deba@2440
|
491 |
|
kpeter@2556
|
492 |
/// Initializes the algorithm.
|
kpeter@2574
|
493 |
bool init(bool scaling) {
|
kpeter@2574
|
494 |
if (!_valid_supply) return false;
|
kpeter@2581
|
495 |
|
kpeter@2581
|
496 |
// Initializing maps
|
kpeter@2581
|
497 |
if (!_flow) {
|
kpeter@2581
|
498 |
_flow = new FlowMap(_graph);
|
kpeter@2581
|
499 |
_local_flow = true;
|
kpeter@2581
|
500 |
}
|
kpeter@2581
|
501 |
if (!_potential) {
|
kpeter@2581
|
502 |
_potential = new PotentialMap(_graph);
|
kpeter@2581
|
503 |
_local_potential = true;
|
kpeter@2581
|
504 |
}
|
kpeter@2581
|
505 |
for (EdgeIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0;
|
kpeter@2581
|
506 |
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0;
|
kpeter@2574
|
507 |
_excess = _supply;
|
deba@2440
|
508 |
|
kpeter@2581
|
509 |
_dijkstra = new ResidualDijkstra( _graph, *_flow, _res_cap, _cost,
|
kpeter@2581
|
510 |
_excess, *_potential, _pred );
|
kpeter@2581
|
511 |
|
kpeter@2581
|
512 |
// Initializing delta value
|
kpeter@2574
|
513 |
if (scaling) {
|
kpeter@2535
|
514 |
// With scaling
|
kpeter@2535
|
515 |
Supply max_sup = 0, max_dem = 0;
|
kpeter@2574
|
516 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@2574
|
517 |
if ( _supply[n] > max_sup) max_sup = _supply[n];
|
kpeter@2574
|
518 |
if (-_supply[n] > max_dem) max_dem = -_supply[n];
|
kpeter@2535
|
519 |
}
|
kpeter@2535
|
520 |
if (max_dem < max_sup) max_sup = max_dem;
|
kpeter@2574
|
521 |
_phase_num = 0;
|
kpeter@2574
|
522 |
for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2)
|
kpeter@2574
|
523 |
++_phase_num;
|
kpeter@2535
|
524 |
} else {
|
kpeter@2535
|
525 |
// Without scaling
|
kpeter@2574
|
526 |
_delta = 1;
|
deba@2440
|
527 |
}
|
kpeter@2581
|
528 |
|
deba@2440
|
529 |
return true;
|
deba@2440
|
530 |
}
|
deba@2440
|
531 |
|
kpeter@2535
|
532 |
bool start() {
|
kpeter@2574
|
533 |
if (_delta > 1)
|
kpeter@2535
|
534 |
return startWithScaling();
|
kpeter@2535
|
535 |
else
|
kpeter@2535
|
536 |
return startWithoutScaling();
|
kpeter@2535
|
537 |
}
|
kpeter@2535
|
538 |
|
kpeter@2574
|
539 |
/// Executes the capacity scaling algorithm.
|
kpeter@2535
|
540 |
bool startWithScaling() {
|
kpeter@2535
|
541 |
// Processing capacity scaling phases
|
kpeter@2535
|
542 |
Node s, t;
|
kpeter@2535
|
543 |
int phase_cnt = 0;
|
kpeter@2535
|
544 |
int factor = 4;
|
kpeter@2535
|
545 |
while (true) {
|
kpeter@2535
|
546 |
// Saturating all edges not satisfying the optimality condition
|
kpeter@2574
|
547 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
kpeter@2574
|
548 |
Node u = _graph.source(e), v = _graph.target(e);
|
kpeter@2581
|
549 |
Cost c = _cost[e] + (*_potential)[u] - (*_potential)[v];
|
kpeter@2574
|
550 |
if (c < 0 && _res_cap[e] >= _delta) {
|
kpeter@2574
|
551 |
_excess[u] -= _res_cap[e];
|
kpeter@2574
|
552 |
_excess[v] += _res_cap[e];
|
kpeter@2581
|
553 |
(*_flow)[e] = _capacity[e];
|
kpeter@2574
|
554 |
_res_cap[e] = 0;
|
kpeter@2535
|
555 |
}
|
kpeter@2581
|
556 |
else if (c > 0 && (*_flow)[e] >= _delta) {
|
kpeter@2581
|
557 |
_excess[u] += (*_flow)[e];
|
kpeter@2581
|
558 |
_excess[v] -= (*_flow)[e];
|
kpeter@2581
|
559 |
(*_flow)[e] = 0;
|
kpeter@2574
|
560 |
_res_cap[e] = _capacity[e];
|
kpeter@2535
|
561 |
}
|
kpeter@2535
|
562 |
}
|
kpeter@2535
|
563 |
|
kpeter@2535
|
564 |
// Finding excess nodes and deficit nodes
|
kpeter@2574
|
565 |
_excess_nodes.clear();
|
kpeter@2574
|
566 |
_deficit_nodes.clear();
|
kpeter@2574
|
567 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@2574
|
568 |
if (_excess[n] >= _delta) _excess_nodes.push_back(n);
|
kpeter@2574
|
569 |
if (_excess[n] <= -_delta) _deficit_nodes.push_back(n);
|
kpeter@2535
|
570 |
}
|
kpeter@2556
|
571 |
int next_node = 0;
|
kpeter@2535
|
572 |
|
kpeter@2535
|
573 |
// Finding augmenting shortest paths
|
kpeter@2574
|
574 |
while (next_node < int(_excess_nodes.size())) {
|
kpeter@2535
|
575 |
// Checking deficit nodes
|
kpeter@2574
|
576 |
if (_delta > 1) {
|
kpeter@2535
|
577 |
bool delta_deficit = false;
|
kpeter@2574
|
578 |
for (int i = 0; i < int(_deficit_nodes.size()); ++i) {
|
kpeter@2574
|
579 |
if (_excess[_deficit_nodes[i]] <= -_delta) {
|
kpeter@2535
|
580 |
delta_deficit = true;
|
kpeter@2535
|
581 |
break;
|
kpeter@2535
|
582 |
}
|
kpeter@2535
|
583 |
}
|
kpeter@2535
|
584 |
if (!delta_deficit) break;
|
kpeter@2535
|
585 |
}
|
kpeter@2535
|
586 |
|
kpeter@2535
|
587 |
// Running Dijkstra
|
kpeter@2574
|
588 |
s = _excess_nodes[next_node];
|
kpeter@2581
|
589 |
if ((t = _dijkstra->run(s, _delta)) == INVALID) {
|
kpeter@2574
|
590 |
if (_delta > 1) {
|
kpeter@2535
|
591 |
++next_node;
|
kpeter@2535
|
592 |
continue;
|
kpeter@2535
|
593 |
}
|
kpeter@2535
|
594 |
return false;
|
kpeter@2535
|
595 |
}
|
kpeter@2535
|
596 |
|
kpeter@2535
|
597 |
// Augmenting along a shortest path from s to t.
|
kpeter@2574
|
598 |
Capacity d = _excess[s] < -_excess[t] ? _excess[s] : -_excess[t];
|
kpeter@2535
|
599 |
Node u = t;
|
kpeter@2535
|
600 |
Edge e;
|
kpeter@2574
|
601 |
if (d > _delta) {
|
kpeter@2574
|
602 |
while ((e = _pred[u]) != INVALID) {
|
kpeter@2535
|
603 |
Capacity rc;
|
kpeter@2574
|
604 |
if (u == _graph.target(e)) {
|
kpeter@2574
|
605 |
rc = _res_cap[e];
|
kpeter@2574
|
606 |
u = _graph.source(e);
|
kpeter@2535
|
607 |
} else {
|
kpeter@2581
|
608 |
rc = (*_flow)[e];
|
kpeter@2574
|
609 |
u = _graph.target(e);
|
kpeter@2535
|
610 |
}
|
kpeter@2535
|
611 |
if (rc < d) d = rc;
|
kpeter@2535
|
612 |
}
|
kpeter@2535
|
613 |
}
|
kpeter@2535
|
614 |
u = t;
|
kpeter@2574
|
615 |
while ((e = _pred[u]) != INVALID) {
|
kpeter@2574
|
616 |
if (u == _graph.target(e)) {
|
kpeter@2581
|
617 |
(*_flow)[e] += d;
|
kpeter@2574
|
618 |
_res_cap[e] -= d;
|
kpeter@2574
|
619 |
u = _graph.source(e);
|
kpeter@2535
|
620 |
} else {
|
kpeter@2581
|
621 |
(*_flow)[e] -= d;
|
kpeter@2574
|
622 |
_res_cap[e] += d;
|
kpeter@2574
|
623 |
u = _graph.target(e);
|
kpeter@2535
|
624 |
}
|
kpeter@2535
|
625 |
}
|
kpeter@2574
|
626 |
_excess[s] -= d;
|
kpeter@2574
|
627 |
_excess[t] += d;
|
kpeter@2535
|
628 |
|
kpeter@2574
|
629 |
if (_excess[s] < _delta) ++next_node;
|
kpeter@2535
|
630 |
}
|
kpeter@2535
|
631 |
|
kpeter@2574
|
632 |
if (_delta == 1) break;
|
kpeter@2574
|
633 |
if (++phase_cnt > _phase_num / 4) factor = 2;
|
kpeter@2574
|
634 |
_delta = _delta <= factor ? 1 : _delta / factor;
|
kpeter@2535
|
635 |
}
|
kpeter@2535
|
636 |
|
kpeter@2556
|
637 |
// Handling non-zero lower bounds
|
kpeter@2574
|
638 |
if (_lower) {
|
kpeter@2574
|
639 |
for (EdgeIt e(_graph); e != INVALID; ++e)
|
kpeter@2581
|
640 |
(*_flow)[e] += (*_lower)[e];
|
kpeter@2535
|
641 |
}
|
kpeter@2535
|
642 |
return true;
|
kpeter@2535
|
643 |
}
|
kpeter@2535
|
644 |
|
kpeter@2574
|
645 |
/// Executes the successive shortest path algorithm.
|
kpeter@2535
|
646 |
bool startWithoutScaling() {
|
deba@2440
|
647 |
// Finding excess nodes
|
kpeter@2574
|
648 |
for (NodeIt n(_graph); n != INVALID; ++n)
|
kpeter@2574
|
649 |
if (_excess[n] > 0) _excess_nodes.push_back(n);
|
kpeter@2574
|
650 |
if (_excess_nodes.size() == 0) return true;
|
kpeter@2556
|
651 |
int next_node = 0;
|
deba@2440
|
652 |
|
deba@2457
|
653 |
// Finding shortest paths
|
kpeter@2535
|
654 |
Node s, t;
|
kpeter@2574
|
655 |
while ( _excess[_excess_nodes[next_node]] > 0 ||
|
kpeter@2574
|
656 |
++next_node < int(_excess_nodes.size()) )
|
deba@2440
|
657 |
{
|
kpeter@2535
|
658 |
// Running Dijkstra
|
kpeter@2574
|
659 |
s = _excess_nodes[next_node];
|
kpeter@2581
|
660 |
if ((t = _dijkstra->run(s, 1)) == INVALID)
|
kpeter@2535
|
661 |
return false;
|
deba@2440
|
662 |
|
kpeter@2535
|
663 |
// Augmenting along a shortest path from s to t
|
kpeter@2574
|
664 |
Capacity d = _excess[s] < -_excess[t] ? _excess[s] : -_excess[t];
|
kpeter@2535
|
665 |
Node u = t;
|
kpeter@2535
|
666 |
Edge e;
|
kpeter@2574
|
667 |
while ((e = _pred[u]) != INVALID) {
|
kpeter@2535
|
668 |
Capacity rc;
|
kpeter@2574
|
669 |
if (u == _graph.target(e)) {
|
kpeter@2574
|
670 |
rc = _res_cap[e];
|
kpeter@2574
|
671 |
u = _graph.source(e);
|
kpeter@2535
|
672 |
} else {
|
kpeter@2581
|
673 |
rc = (*_flow)[e];
|
kpeter@2574
|
674 |
u = _graph.target(e);
|
kpeter@2535
|
675 |
}
|
kpeter@2535
|
676 |
if (rc < d) d = rc;
|
kpeter@2535
|
677 |
}
|
kpeter@2535
|
678 |
u = t;
|
kpeter@2574
|
679 |
while ((e = _pred[u]) != INVALID) {
|
kpeter@2574
|
680 |
if (u == _graph.target(e)) {
|
kpeter@2581
|
681 |
(*_flow)[e] += d;
|
kpeter@2574
|
682 |
_res_cap[e] -= d;
|
kpeter@2574
|
683 |
u = _graph.source(e);
|
kpeter@2535
|
684 |
} else {
|
kpeter@2581
|
685 |
(*_flow)[e] -= d;
|
kpeter@2574
|
686 |
_res_cap[e] += d;
|
kpeter@2574
|
687 |
u = _graph.target(e);
|
kpeter@2535
|
688 |
}
|
kpeter@2535
|
689 |
}
|
kpeter@2574
|
690 |
_excess[s] -= d;
|
kpeter@2574
|
691 |
_excess[t] += d;
|
deba@2440
|
692 |
}
|
deba@2440
|
693 |
|
kpeter@2556
|
694 |
// Handling non-zero lower bounds
|
kpeter@2574
|
695 |
if (_lower) {
|
kpeter@2574
|
696 |
for (EdgeIt e(_graph); e != INVALID; ++e)
|
kpeter@2581
|
697 |
(*_flow)[e] += (*_lower)[e];
|
deba@2440
|
698 |
}
|
deba@2440
|
699 |
return true;
|
deba@2440
|
700 |
}
|
deba@2440
|
701 |
|
deba@2440
|
702 |
}; //class CapacityScaling
|
deba@2440
|
703 |
|
deba@2440
|
704 |
///@}
|
deba@2440
|
705 |
|
deba@2440
|
706 |
} //namespace lemon
|
deba@2440
|
707 |
|
deba@2440
|
708 |
#endif //LEMON_CAPACITY_SCALING_H
|