src/hugo/mincostflows.h
author alpar
Mon, 13 Sep 2004 17:14:03 +0000
changeset 840 10002fa8847a
parent 785 a9b0863c2265
child 860 3577b3db6089
permissions -rw-r--r--
Change MaxFlow to Preflow.
athos@610
     1
// -*- c++ -*-
athos@610
     2
#ifndef HUGO_MINCOSTFLOWS_H
athos@610
     3
#define HUGO_MINCOSTFLOWS_H
athos@610
     4
alpar@758
     5
///\ingroup flowalgs
athos@610
     6
///\file
athos@610
     7
///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
athos@610
     8
athos@611
     9
athos@610
    10
#include <hugo/dijkstra.h>
athos@610
    11
#include <hugo/graph_wrapper.h>
athos@610
    12
#include <hugo/maps.h>
athos@610
    13
#include <vector>
athos@610
    14
athos@610
    15
namespace hugo {
athos@610
    16
alpar@758
    17
/// \addtogroup flowalgs
athos@610
    18
/// @{
athos@610
    19
athos@610
    20
  ///\brief Implementation of an algorithm for finding a flow of value \c k 
athos@610
    21
  ///(for small values of \c k) having minimal total cost between 2 nodes 
athos@610
    22
  /// 
athos@610
    23
  ///
athos@610
    24
  /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
athos@610
    25
  /// an algorithm for finding a flow of value \c k 
athos@610
    26
  ///(for small values of \c k) having minimal total cost  
athos@610
    27
  /// from a given source node to a given target node in an
athos@610
    28
  /// edge-weighted directed graph having nonnegative integer capacities.
athos@610
    29
  /// The range of the length (weight) function is nonnegative reals but 
athos@610
    30
  /// the range of capacity function is the set of nonnegative integers. 
athos@610
    31
  /// It is not a polinomial time algorithm for counting the minimum cost
athos@610
    32
  /// maximal flow, since it counts the minimum cost flow for every value 0..M
athos@610
    33
  /// where \c M is the value of the maximal flow.
athos@610
    34
  ///
athos@610
    35
  ///\author Attila Bernath
athos@610
    36
  template <typename Graph, typename LengthMap, typename CapacityMap>
athos@610
    37
  class MinCostFlows {
athos@610
    38
athos@610
    39
    typedef typename LengthMap::ValueType Length;
athos@610
    40
athos@610
    41
    //Warning: this should be integer type
athos@610
    42
    typedef typename CapacityMap::ValueType Capacity;
athos@610
    43
    
athos@610
    44
    typedef typename Graph::Node Node;
athos@610
    45
    typedef typename Graph::NodeIt NodeIt;
athos@610
    46
    typedef typename Graph::Edge Edge;
athos@610
    47
    typedef typename Graph::OutEdgeIt OutEdgeIt;
athos@610
    48
    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
athos@610
    49
athos@610
    50
    //    typedef ConstMap<Edge,int> ConstMap;
athos@610
    51
athos@610
    52
    typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
athos@610
    53
    typedef typename ResGraphType::Edge ResGraphEdge;
athos@610
    54
athos@610
    55
    class ModLengthMap {   
athos@610
    56
      //typedef typename ResGraphType::template NodeMap<Length> NodeMap;
athos@610
    57
      typedef typename Graph::template NodeMap<Length> NodeMap;
athos@610
    58
      const ResGraphType& G;
athos@610
    59
      //      const EdgeIntMap& rev;
athos@610
    60
      const LengthMap &ol;
athos@610
    61
      const NodeMap &pot;
athos@610
    62
    public :
athos@610
    63
      typedef typename LengthMap::KeyType KeyType;
athos@610
    64
      typedef typename LengthMap::ValueType ValueType;
athos@610
    65
	
athos@610
    66
      ValueType operator[](typename ResGraphType::Edge e) const {     
athos@610
    67
	if (G.forward(e))
athos@610
    68
	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
athos@610
    69
	else
athos@610
    70
	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
athos@610
    71
      }     
athos@610
    72
	
athos@610
    73
      ModLengthMap(const ResGraphType& _G,
athos@610
    74
		   const LengthMap &o,  const NodeMap &p) : 
athos@610
    75
	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
athos@610
    76
    };//ModLengthMap
athos@610
    77
athos@610
    78
athos@610
    79
  protected:
athos@610
    80
    
athos@610
    81
    //Input
athos@610
    82
    const Graph& G;
athos@610
    83
    const LengthMap& length;
athos@610
    84
    const CapacityMap& capacity;
athos@610
    85
athos@610
    86
athos@610
    87
    //auxiliary variables
athos@610
    88
athos@610
    89
    //To store the flow
athos@610
    90
    EdgeIntMap flow; 
alpar@785
    91
    //To store the potential (dual variables)
athos@661
    92
    typedef typename Graph::template NodeMap<Length> PotentialMap;
athos@661
    93
    PotentialMap potential;
athos@610
    94
    
athos@610
    95
athos@610
    96
    Length total_length;
athos@610
    97
athos@610
    98
athos@610
    99
  public :
athos@610
   100
athos@610
   101
athos@610
   102
    MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), 
athos@610
   103
      length(_length), capacity(_cap), flow(_G), potential(_G){ }
athos@610
   104
athos@610
   105
    
athos@610
   106
    ///Runs the algorithm.
athos@610
   107
athos@610
   108
    ///Runs the algorithm.
athos@610
   109
    ///Returns k if there are at least k edge-disjoint paths from s to t.
athos@610
   110
    ///Otherwise it returns the number of found edge-disjoint paths from s to t.
athos@610
   111
    ///\todo May be it does make sense to be able to start with a nonzero 
athos@610
   112
    /// feasible primal-dual solution pair as well.
athos@610
   113
    int run(Node s, Node t, int k) {
athos@610
   114
athos@610
   115
      //Resetting variables from previous runs
athos@610
   116
      total_length = 0;
athos@610
   117
      
marci@788
   118
      for (typename Graph::EdgeIt e(G); e!=INVALID; ++e) flow.set(e, 0);
athos@634
   119
athos@634
   120
      //Initialize the potential to zero
marci@788
   121
      for (typename Graph::NodeIt n(G); n!=INVALID; ++n) potential.set(n, 0);
athos@610
   122
      
athos@610
   123
      
athos@610
   124
      //We need a residual graph
athos@610
   125
      ResGraphType res_graph(G, capacity, flow);
athos@610
   126
athos@610
   127
athos@610
   128
      ModLengthMap mod_length(res_graph, length, potential);
athos@610
   129
athos@610
   130
      Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
athos@610
   131
athos@610
   132
      int i;
athos@610
   133
      for (i=0; i<k; ++i){
athos@610
   134
	dijkstra.run(s);
athos@610
   135
	if (!dijkstra.reached(t)){
athos@610
   136
	  //There are no k paths from s to t
athos@610
   137
	  break;
athos@610
   138
	};
athos@610
   139
	
athos@634
   140
	//We have to change the potential
marci@788
   141
        for(typename ResGraphType::NodeIt n(res_graph); n!=INVALID; ++n)
athos@633
   142
	  potential[n] += dijkstra.distMap()[n];
athos@634
   143
athos@610
   144
athos@610
   145
	//Augmenting on the sortest path
athos@610
   146
	Node n=t;
athos@610
   147
	ResGraphEdge e;
athos@610
   148
	while (n!=s){
athos@610
   149
	  e = dijkstra.pred(n);
athos@610
   150
	  n = dijkstra.predNode(n);
athos@610
   151
	  res_graph.augment(e,1);
athos@610
   152
	  //Let's update the total length
athos@610
   153
	  if (res_graph.forward(e))
athos@610
   154
	    total_length += length[e];
athos@610
   155
	  else 
athos@610
   156
	    total_length -= length[e];	    
athos@610
   157
	}
athos@610
   158
athos@610
   159
	  
athos@610
   160
      }
athos@610
   161
      
athos@610
   162
athos@610
   163
      return i;
athos@610
   164
    }
athos@610
   165
athos@610
   166
athos@610
   167
athos@610
   168
athos@610
   169
    ///This function gives back the total length of the found paths.
athos@610
   170
    ///Assumes that \c run() has been run and nothing changed since then.
athos@610
   171
    Length totalLength(){
athos@610
   172
      return total_length;
athos@610
   173
    }
athos@610
   174
athos@610
   175
    ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
athos@610
   176
    ///be called before using this function.
athos@610
   177
    const EdgeIntMap &getFlow() const { return flow;}
athos@610
   178
athos@610
   179
  ///Returns a const reference to the NodeMap \c potential (the dual solution).
athos@610
   180
    /// \pre \ref run() must be called before using this function.
athos@661
   181
    const PotentialMap &getPotential() const { return potential;}
athos@610
   182
athos@610
   183
    ///This function checks, whether the given solution is optimal
athos@610
   184
    ///Running after a \c run() should return with true
athos@610
   185
    ///In this "state of the art" this only check optimality, doesn't bother with feasibility
athos@610
   186
    ///
athos@610
   187
    ///\todo Is this OK here?
athos@610
   188
    bool checkComplementarySlackness(){
athos@610
   189
      Length mod_pot;
athos@610
   190
      Length fl_e;
marci@788
   191
        for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) {
athos@610
   192
	//C^{\Pi}_{i,j}
athos@610
   193
	mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)];
athos@610
   194
	fl_e = flow[e];
athos@610
   195
	//	std::cout << fl_e << std::endl;
athos@610
   196
	if (0<fl_e && fl_e<capacity[e]){
athos@610
   197
	  if (mod_pot != 0)
athos@610
   198
	    return false;
athos@610
   199
	}
athos@610
   200
	else{
athos@610
   201
	  if (mod_pot > 0 && fl_e != 0)
athos@610
   202
	    return false;
athos@610
   203
	  if (mod_pot < 0 && fl_e != capacity[e])
athos@610
   204
	    return false;
athos@610
   205
	}
athos@610
   206
      }
athos@610
   207
      return true;
athos@610
   208
    }
athos@610
   209
    
athos@610
   210
athos@610
   211
  }; //class MinCostFlows
athos@610
   212
athos@610
   213
  ///@}
athos@610
   214
athos@610
   215
} //namespace hugo
athos@610
   216
athos@633
   217
#endif //HUGO_MINCOSTFLOWS_H