lemon/dinitz_sleator_tarjan.h
author alpar
Mon, 07 Jan 2008 17:07:40 +0000
changeset 2554 1775aaa02ac4
parent 2527 10f3b3286e63
permissions -rw-r--r--
Minor doc fix
deba@2514
     1
/* -*- C++ -*-
deba@2514
     2
 *
deba@2514
     3
 * This file is a part of LEMON, a generic C++ optimization library
deba@2514
     4
 *
alpar@2553
     5
 * Copyright (C) 2003-2008
deba@2514
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@2514
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@2514
     8
 *
deba@2514
     9
 * Permission to use, modify and distribute this software is granted
deba@2514
    10
 * provided that this copyright notice appears in all copies. For
deba@2514
    11
 * precise terms see the accompanying LICENSE file.
deba@2514
    12
 *
deba@2514
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@2514
    14
 * express or implied, and with no claim as to its suitability for any
deba@2514
    15
 * purpose.
deba@2514
    16
 *
deba@2514
    17
 */
deba@2514
    18
deba@2514
    19
#ifndef LEMON_DINITZ_SLEATOR_TARJAN_H
deba@2514
    20
#define LEMON_DINITZ_SLEATOR_TARJAN_H
deba@2514
    21
deba@2514
    22
/// \file 
deba@2514
    23
/// \ingroup max_flow 
deba@2514
    24
/// \brief Implementation the dynamic tree data structure of Sleator
deba@2514
    25
/// and Tarjan.
deba@2514
    26
deba@2514
    27
#include <lemon/graph_utils.h>
deba@2514
    28
#include <lemon/tolerance.h>
deba@2514
    29
#include <lemon/dynamic_tree.h>
deba@2514
    30
deba@2514
    31
#include <vector>
deba@2514
    32
#include <limits>
deba@2514
    33
#include <fstream>
deba@2514
    34
deba@2514
    35
deba@2514
    36
namespace lemon {
deba@2514
    37
deba@2514
    38
  /// \brief Default traits class of DinitzSleatorTarjan class.
deba@2514
    39
  ///
deba@2514
    40
  /// Default traits class of DinitzSleatorTarjan class.
deba@2514
    41
  /// \param _Graph Graph type.
deba@2514
    42
  /// \param _CapacityMap Type of capacity map.
deba@2514
    43
  template <typename _Graph, typename _CapacityMap>
deba@2514
    44
  struct DinitzSleatorTarjanDefaultTraits {
deba@2514
    45
deba@2514
    46
    /// \brief The graph type the algorithm runs on. 
deba@2514
    47
    typedef _Graph Graph;
deba@2514
    48
deba@2514
    49
    /// \brief The type of the map that stores the edge capacities.
deba@2514
    50
    ///
deba@2514
    51
    /// The type of the map that stores the edge capacities.
deba@2514
    52
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
deba@2514
    53
    typedef _CapacityMap CapacityMap;
deba@2514
    54
deba@2514
    55
    /// \brief The type of the length of the edges.
deba@2514
    56
    typedef typename CapacityMap::Value Value;
deba@2514
    57
deba@2514
    58
    /// \brief The map type that stores the flow values.
deba@2514
    59
    ///
deba@2514
    60
    /// The map type that stores the flow values. 
deba@2514
    61
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
deba@2514
    62
    typedef typename Graph::template EdgeMap<Value> FlowMap;
deba@2514
    63
deba@2514
    64
    /// \brief Instantiates a FlowMap.
deba@2514
    65
    ///
deba@2514
    66
    /// This function instantiates a \ref FlowMap. 
deba@2514
    67
    /// \param graph The graph, to which we would like to define the flow map.
deba@2514
    68
    static FlowMap* createFlowMap(const Graph& graph) {
deba@2514
    69
      return new FlowMap(graph);
deba@2514
    70
    }
deba@2514
    71
deba@2514
    72
    /// \brief The tolerance used by the algorithm
deba@2514
    73
    ///
deba@2514
    74
    /// The tolerance used by the algorithm to handle inexact computation.
deba@2514
    75
    typedef Tolerance<Value> Tolerance;
deba@2514
    76
deba@2514
    77
  };
deba@2514
    78
deba@2514
    79
  /// \ingroup max_flow
deba@2514
    80
  ///
deba@2514
    81
  /// \brief Dinitz-Sleator-Tarjan algorithms class.
deba@2514
    82
  ///
deba@2514
    83
  /// This class provides an implementation of the \e
deba@2514
    84
  /// Dinitz-Sleator-Tarjan \e algorithm producing a flow of maximum
deba@2514
    85
  /// value in a directed graph. The DinitzSleatorTarjan algorithm is
deba@2514
    86
  /// the fastest known max flow algorithms wich using blocking
deba@2514
    87
  /// flow. It is an improvement of the Dinitz algorithm by using the
deba@2514
    88
  /// \ref DynamicTree "dynamic tree" data structure of Sleator and
deba@2514
    89
  /// Tarjan.
deba@2514
    90
  ///
deba@2514
    91
  /// This blocking flow algorithms builds a layered graph according
deba@2514
    92
  /// to \ref Bfs "breadth-first search" distance from the target node
deba@2514
    93
  /// in the reversed residual graph. The layered graph contains each
deba@2514
    94
  /// residual edge which steps one level down. After that the
deba@2514
    95
  /// algorithm constructs a blocking flow on the layered graph and
deba@2514
    96
  /// augments the overall flow with it. The number of the levels in
deba@2514
    97
  /// the layered graph is strictly increasing in each augmenting
deba@2514
    98
  /// phase therefore the number of the augmentings is at most
deba@2514
    99
  /// \f$n-1\f$.  The length of each phase is at most
deba@2514
   100
  /// \f$O(m\log(n))\f$, that the overall time complexity is
deba@2514
   101
  /// \f$O(nm\log(n))\f$.
deba@2514
   102
  ///
deba@2514
   103
  /// \param _Graph The directed graph type the algorithm runs on.
deba@2514
   104
  /// \param _CapacityMap The capacity map type.
deba@2514
   105
  /// \param _Traits Traits class to set various data types used by
deba@2514
   106
  /// the algorithm.  The default traits class is \ref
deba@2514
   107
  /// DinitzSleatorTarjanDefaultTraits.  See \ref
deba@2514
   108
  /// DinitzSleatorTarjanDefaultTraits for the documentation of a
deba@2514
   109
  /// Dinitz-Sleator-Tarjan traits class.
deba@2514
   110
  ///
deba@2514
   111
  /// \author Tamas Hamori and Balazs Dezso
deba@2514
   112
#ifdef DOXYGEN
deba@2514
   113
  template <typename _Graph, typename _CapacityMap, typename _Traits>
deba@2514
   114
#else
deba@2514
   115
  template <typename _Graph, 
deba@2514
   116
	    typename _CapacityMap = typename _Graph::template EdgeMap<int>,
deba@2514
   117
	    typename _Traits = 
deba@2514
   118
	    DinitzSleatorTarjanDefaultTraits<_Graph, _CapacityMap> >
deba@2514
   119
#endif
deba@2514
   120
  class DinitzSleatorTarjan {
deba@2514
   121
  public:
deba@2514
   122
deba@2514
   123
    typedef _Traits Traits;
deba@2514
   124
    typedef typename Traits::Graph Graph;
deba@2514
   125
    typedef typename Traits::CapacityMap CapacityMap;
deba@2514
   126
    typedef typename Traits::Value Value; 
deba@2514
   127
deba@2514
   128
    typedef typename Traits::FlowMap FlowMap;
deba@2514
   129
    typedef typename Traits::Tolerance Tolerance;
deba@2514
   130
deba@2514
   131
deba@2514
   132
  private:
deba@2514
   133
deba@2514
   134
    GRAPH_TYPEDEFS(typename Graph);
deba@2514
   135
deba@2514
   136
deba@2514
   137
    typedef typename Graph::template NodeMap<int> LevelMap;
deba@2514
   138
    typedef typename Graph::template NodeMap<int> IntNodeMap;
deba@2514
   139
    typedef typename Graph::template NodeMap<Edge> EdgeNodeMap;
deba@2514
   140
    typedef DynamicTree<Value, IntNodeMap, Tolerance, false> DynTree;
deba@2514
   141
deba@2514
   142
  private:
deba@2514
   143
    
deba@2514
   144
    const Graph& _graph;
deba@2514
   145
    const CapacityMap* _capacity;
deba@2514
   146
deba@2514
   147
    Node _source, _target;
deba@2514
   148
deba@2514
   149
    FlowMap* _flow;
deba@2514
   150
    bool _local_flow;
deba@2514
   151
deba@2514
   152
    IntNodeMap* _level;
deba@2514
   153
    EdgeNodeMap* _dt_edges;
deba@2514
   154
    
deba@2514
   155
    IntNodeMap* _dt_index;
deba@2514
   156
    DynTree* _dt;
deba@2514
   157
deba@2519
   158
    std::vector<Node> _queue;
deba@2519
   159
deba@2514
   160
    Tolerance _tolerance;
deba@2514
   161
    
deba@2514
   162
    Value _flow_value;
deba@2514
   163
    Value _max_value;
deba@2514
   164
deba@2514
   165
deba@2514
   166
  public:
deba@2514
   167
deba@2514
   168
    typedef DinitzSleatorTarjan Create;
deba@2514
   169
deba@2514
   170
    ///\name Named template parameters
deba@2514
   171
deba@2514
   172
    ///@{
deba@2514
   173
deba@2514
   174
    template <typename _FlowMap>
deba@2514
   175
    struct DefFlowMapTraits : public Traits {
deba@2514
   176
      typedef _FlowMap FlowMap;
deba@2514
   177
      static FlowMap *createFlowMap(const Graph&) {
deba@2514
   178
	throw UninitializedParameter();
deba@2514
   179
      }
deba@2514
   180
    };
deba@2514
   181
deba@2514
   182
    /// \brief \ref named-templ-param "Named parameter" for setting
deba@2514
   183
    /// FlowMap type
deba@2514
   184
    ///
deba@2514
   185
    /// \ref named-templ-param "Named parameter" for setting FlowMap
deba@2514
   186
    /// type
deba@2514
   187
    template <typename _FlowMap>
deba@2514
   188
    struct DefFlowMap 
deba@2514
   189
      : public DinitzSleatorTarjan<Graph, CapacityMap, 
deba@2514
   190
			      DefFlowMapTraits<_FlowMap> > {
deba@2514
   191
      typedef DinitzSleatorTarjan<Graph, CapacityMap, 
deba@2514
   192
			     DefFlowMapTraits<_FlowMap> > Create;
deba@2514
   193
    };
deba@2514
   194
deba@2514
   195
    template <typename _Elevator>
deba@2514
   196
    struct DefElevatorTraits : public Traits {
deba@2514
   197
      typedef _Elevator Elevator;
deba@2514
   198
      static Elevator *createElevator(const Graph&, int) {
deba@2514
   199
	throw UninitializedParameter();
deba@2514
   200
      }
deba@2514
   201
    };
deba@2514
   202
deba@2514
   203
    /// @}
deba@2514
   204
deba@2514
   205
    /// \brief \ref Exception for the case when the source equals the target.
deba@2514
   206
    ///
deba@2514
   207
    /// \ref Exception for the case when the source equals the target.
deba@2514
   208
    ///
deba@2514
   209
    class InvalidArgument : public lemon::LogicError {
deba@2514
   210
    public:
deba@2514
   211
      virtual const char* what() const throw() {
deba@2514
   212
	return "lemon::DinitzSleatorTarjan::InvalidArgument";
deba@2514
   213
      }
deba@2514
   214
    };
deba@2514
   215
deba@2527
   216
  protected:
deba@2527
   217
    
deba@2527
   218
    DinitzSleatorTarjan() {}
deba@2527
   219
deba@2527
   220
  public:
deba@2527
   221
deba@2514
   222
    /// \brief The constructor of the class.
deba@2514
   223
    ///
deba@2514
   224
    /// The constructor of the class. 
deba@2514
   225
    /// \param graph The directed graph the algorithm runs on. 
deba@2514
   226
    /// \param capacity The capacity of the edges. 
deba@2514
   227
    /// \param source The source node.
deba@2514
   228
    /// \param target The target node.
deba@2514
   229
    DinitzSleatorTarjan(const Graph& graph, const CapacityMap& capacity,
deba@2514
   230
			Node source, Node target)
deba@2514
   231
      : _graph(graph), _capacity(&capacity),
deba@2514
   232
	_source(source), _target(target),
deba@2514
   233
	_flow(0), _local_flow(false),
deba@2514
   234
	_level(0), _dt_edges(0),
deba@2519
   235
	_dt_index(0), _dt(0), _queue(),
deba@2514
   236
	_tolerance(), _flow_value(), _max_value()
deba@2514
   237
    {
deba@2514
   238
      if (_source == _target) {
deba@2514
   239
	throw InvalidArgument();
deba@2514
   240
      }
deba@2514
   241
    }
deba@2514
   242
deba@2514
   243
    /// \brief Destrcutor.
deba@2514
   244
    ///
deba@2514
   245
    /// Destructor.
deba@2514
   246
    ~DinitzSleatorTarjan() {
deba@2514
   247
      destroyStructures();
deba@2514
   248
    }
deba@2514
   249
deba@2514
   250
    /// \brief Sets the capacity map.
deba@2514
   251
    ///
deba@2514
   252
    /// Sets the capacity map.
deba@2514
   253
    /// \return \c (*this)
deba@2514
   254
    DinitzSleatorTarjan& capacityMap(const CapacityMap& map) {
deba@2514
   255
      _capacity = &map;
deba@2514
   256
      return *this;
deba@2514
   257
    }
deba@2514
   258
deba@2514
   259
    /// \brief Sets the flow map.
deba@2514
   260
    ///
deba@2514
   261
    /// Sets the flow map.
deba@2514
   262
    /// \return \c (*this)
deba@2514
   263
    DinitzSleatorTarjan& flowMap(FlowMap& map) {
deba@2514
   264
      if (_local_flow) {
deba@2514
   265
	delete _flow;
deba@2514
   266
	_local_flow = false;
deba@2514
   267
      }
deba@2514
   268
      _flow = &map;
deba@2514
   269
      return *this;
deba@2514
   270
    }
deba@2514
   271
deba@2514
   272
    /// \brief Returns the flow map.
deba@2514
   273
    ///
deba@2514
   274
    /// \return The flow map.
deba@2514
   275
    const FlowMap& flowMap() {
deba@2514
   276
      return *_flow;
deba@2514
   277
    }
deba@2514
   278
deba@2514
   279
    /// \brief Sets the source node.
deba@2514
   280
    ///
deba@2514
   281
    /// Sets the source node.
deba@2514
   282
    /// \return \c (*this)
deba@2514
   283
    DinitzSleatorTarjan& source(const Node& node) {
deba@2514
   284
      _source = node;
deba@2514
   285
      return *this;
deba@2514
   286
    }
deba@2514
   287
deba@2514
   288
    /// \brief Sets the target node.
deba@2514
   289
    ///
deba@2514
   290
    /// Sets the target node.
deba@2514
   291
    /// \return \c (*this)
deba@2514
   292
    DinitzSleatorTarjan& target(const Node& node) {
deba@2514
   293
      _target = node;
deba@2514
   294
      return *this;
deba@2514
   295
    }
deba@2514
   296
deba@2514
   297
    /// \brief Sets the tolerance used by algorithm.
deba@2514
   298
    ///
deba@2514
   299
    /// Sets the tolerance used by algorithm.
deba@2514
   300
    DinitzSleatorTarjan& tolerance(const Tolerance& tolerance) const {
deba@2514
   301
      _tolerance = tolerance;
deba@2514
   302
      if (_dt) {
deba@2514
   303
	_dt.tolerance(_tolerance);
deba@2514
   304
      }
deba@2514
   305
      return *this;
deba@2514
   306
    } 
deba@2514
   307
deba@2514
   308
    /// \brief Returns the tolerance used by algorithm.
deba@2514
   309
    ///
deba@2514
   310
    /// Returns the tolerance used by algorithm.
deba@2514
   311
    const Tolerance& tolerance() const {
deba@2514
   312
      return tolerance;
deba@2514
   313
    } 
deba@2514
   314
deba@2514
   315
  private:
deba@2514
   316
        
deba@2514
   317
    void createStructures() {
deba@2514
   318
      if (!_flow) {
deba@2514
   319
	_flow = Traits::createFlowMap(_graph);
deba@2514
   320
	_local_flow = true;
deba@2514
   321
      }
deba@2514
   322
      if (!_level) {
deba@2514
   323
	_level = new LevelMap(_graph);
deba@2514
   324
      }
deba@2514
   325
      if (!_dt_index && !_dt) {
deba@2514
   326
	_dt_index = new IntNodeMap(_graph);
deba@2514
   327
	_dt = new DynTree(*_dt_index, _tolerance);
deba@2514
   328
      }
deba@2514
   329
      if (!_dt_edges) {
deba@2514
   330
	_dt_edges = new EdgeNodeMap(_graph);
deba@2514
   331
      }
deba@2519
   332
      _queue.resize(countNodes(_graph));
deba@2514
   333
      _max_value = _dt->maxValue();
deba@2514
   334
    }
deba@2514
   335
deba@2514
   336
    void destroyStructures() {
deba@2514
   337
      if (_local_flow) {
deba@2514
   338
	delete _flow;
deba@2514
   339
      }
deba@2514
   340
      if (_level) {
deba@2514
   341
	delete _level;
deba@2514
   342
      }
deba@2514
   343
      if (_dt) {
deba@2514
   344
	delete _dt;
deba@2514
   345
      }
deba@2514
   346
      if (_dt_index) {
deba@2514
   347
	delete _dt_index;
deba@2514
   348
      }
deba@2514
   349
      if (_dt_edges) {
deba@2514
   350
	delete _dt_edges;
deba@2514
   351
      }
deba@2514
   352
    }
deba@2514
   353
deba@2514
   354
    bool createLayeredGraph() {
deba@2514
   355
deba@2514
   356
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@2514
   357
	_level->set(n, -2);
deba@2514
   358
      }
deba@2514
   359
      
deba@2514
   360
      int level = 0;
deba@2514
   361
deba@2519
   362
      _queue[0] = _target;
deba@2514
   363
      _level->set(_target, level);
deba@2519
   364
deba@2519
   365
      int first = 0, last = 1, limit = 0;
deba@2514
   366
      
deba@2519
   367
      while (first != last && (*_level)[_source] == -2) {
deba@2519
   368
	if (first == limit) {
deba@2519
   369
	  limit = last;
deba@2519
   370
	  ++level;
deba@2519
   371
	}
deba@2514
   372
	
deba@2519
   373
	Node n = _queue[first++];
deba@2514
   374
	  
deba@2519
   375
	for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
deba@2519
   376
	  Node v = _graph.target(e);
deba@2519
   377
	  if ((*_level)[v] != -2) continue;
deba@2519
   378
	  Value rem = (*_flow)[e];
deba@2519
   379
	  if (!_tolerance.positive(rem)) continue;
deba@2519
   380
	  _level->set(v, level);
deba@2519
   381
	  _queue[last++] = v;
deba@2514
   382
	}
deba@2519
   383
	
deba@2519
   384
	for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
deba@2519
   385
	  Node v = _graph.source(e);
deba@2519
   386
	  if ((*_level)[v] != -2) continue;
deba@2519
   387
	  Value rem = (*_capacity)[e] - (*_flow)[e];
deba@2519
   388
	  if (!_tolerance.positive(rem)) continue;
deba@2519
   389
	  _level->set(v, level);
deba@2519
   390
	  _queue[last++] = v;
deba@2519
   391
	}
deba@2514
   392
      }
deba@2514
   393
      return (*_level)[_source] != -2;
deba@2514
   394
    }
deba@2514
   395
deba@2514
   396
    void initEdges() {
deba@2514
   397
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@2514
   398
	_graph.firstOut((*_dt_edges)[n], n);
deba@2514
   399
      }
deba@2514
   400
    }
deba@2514
   401
        
deba@2514
   402
    
deba@2514
   403
    void augmentPath() {
deba@2514
   404
      Value rem;
deba@2514
   405
      Node n = _dt->findCost(_source, rem);
deba@2514
   406
      _flow_value += rem;
deba@2514
   407
      _dt->addCost(_source, - rem);
deba@2514
   408
deba@2514
   409
      _dt->cut(n);
deba@2514
   410
      _dt->addCost(n, _max_value);
deba@2514
   411
deba@2514
   412
      Edge e = (*_dt_edges)[n];
deba@2514
   413
      if (_graph.source(e) == n) {
deba@2514
   414
	_flow->set(e, (*_capacity)[e]);
deba@2514
   415
	
deba@2514
   416
	_graph.nextOut(e);
deba@2514
   417
	if (e == INVALID) {
deba@2514
   418
	  _graph.firstIn(e, n);
deba@2514
   419
	}
deba@2514
   420
      } else {
deba@2514
   421
	_flow->set(e, 0);
deba@2514
   422
	_graph.nextIn(e);
deba@2514
   423
      }
deba@2514
   424
      _dt_edges->set(n, e);
deba@2514
   425
deba@2514
   426
    }
deba@2514
   427
deba@2514
   428
    bool advance(Node n) {
deba@2514
   429
      Edge e = (*_dt_edges)[n];
deba@2514
   430
      if (e == INVALID) return false;
deba@2514
   431
deba@2514
   432
      Node u;
deba@2514
   433
      Value rem;      
deba@2514
   434
      if (_graph.source(e) == n) {
deba@2514
   435
	u = _graph.target(e);
deba@2514
   436
	while ((*_level)[n] != (*_level)[u] + 1 || 
deba@2514
   437
	       !_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
deba@2514
   438
	  _graph.nextOut(e);
deba@2514
   439
	  if (e == INVALID) break;
deba@2514
   440
	  u = _graph.target(e);
deba@2514
   441
	}
deba@2514
   442
	if (e != INVALID) {
deba@2514
   443
	  rem = (*_capacity)[e] - (*_flow)[e];
deba@2514
   444
	} else {
deba@2514
   445
	  _graph.firstIn(e, n);
deba@2514
   446
	  if (e == INVALID) {
deba@2514
   447
	    _dt_edges->set(n, INVALID);
deba@2514
   448
	    return false;
deba@2514
   449
	  }
deba@2514
   450
	  u = _graph.source(e);
deba@2514
   451
	  while ((*_level)[n] != (*_level)[u] + 1 ||
deba@2514
   452
		 !_tolerance.positive((*_flow)[e])) {
deba@2514
   453
	    _graph.nextIn(e);
deba@2514
   454
	    if (e == INVALID) {
deba@2514
   455
	      _dt_edges->set(n, INVALID);
deba@2514
   456
	      return false;
deba@2514
   457
	    }
deba@2514
   458
	    u = _graph.source(e);
deba@2514
   459
	  }
deba@2514
   460
	  rem = (*_flow)[e];
deba@2514
   461
	}
deba@2514
   462
      } else {
deba@2514
   463
	u = _graph.source(e);
deba@2514
   464
	while ((*_level)[n] != (*_level)[u] + 1 ||
deba@2514
   465
	       !_tolerance.positive((*_flow)[e])) {
deba@2514
   466
	  _graph.nextIn(e);
deba@2514
   467
	  if (e == INVALID) {
deba@2514
   468
	    _dt_edges->set(n, INVALID);
deba@2514
   469
	    return false;
deba@2514
   470
	  }
deba@2514
   471
	  u = _graph.source(e);
deba@2514
   472
	}
deba@2514
   473
	rem = (*_flow)[e];
deba@2514
   474
      }
deba@2514
   475
deba@2514
   476
      _dt->addCost(n, - std::numeric_limits<Value>::max());
deba@2514
   477
      _dt->addCost(n, rem);
deba@2514
   478
      _dt->link(n, u);
deba@2514
   479
      _dt_edges->set(n, e);
deba@2514
   480
      return true;
deba@2514
   481
    }
deba@2514
   482
deba@2514
   483
    void retreat(Node n) {
deba@2514
   484
      _level->set(n, -1);
deba@2514
   485
      
deba@2514
   486
      for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
deba@2514
   487
	Node u = _graph.target(e);
deba@2514
   488
	if ((*_dt_edges)[u] == e && _dt->findRoot(u) == n) {
deba@2514
   489
	  Value rem;
deba@2514
   490
	  _dt->findCost(u, rem);
deba@2514
   491
	  _flow->set(e, rem);
deba@2514
   492
	  _dt->cut(u);
deba@2514
   493
	  _dt->addCost(u, - rem);
deba@2514
   494
	  _dt->addCost(u, _max_value);
deba@2514
   495
	}
deba@2514
   496
      }
deba@2514
   497
      for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
deba@2514
   498
	Node u = _graph.source(e);
deba@2514
   499
	if ((*_dt_edges)[u] == e && _dt->findRoot(u) == n) {
deba@2514
   500
	  Value rem;
deba@2514
   501
	  _dt->findCost(u, rem);
deba@2514
   502
	  _flow->set(e, (*_capacity)[e] - rem);
deba@2514
   503
	  _dt->cut(u);
deba@2514
   504
	  _dt->addCost(u, - rem);
deba@2514
   505
	  _dt->addCost(u, _max_value);
deba@2514
   506
	}
deba@2514
   507
      }
deba@2514
   508
    }
deba@2514
   509
deba@2514
   510
    void extractTrees() {
deba@2514
   511
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@2514
   512
	
deba@2514
   513
	Node w = _dt->findRoot(n);
deba@2514
   514
      
deba@2514
   515
	while (w != n) {
deba@2514
   516
      
deba@2514
   517
	  Value rem;      
deba@2514
   518
	  Node u = _dt->findCost(n, rem);
deba@2514
   519
deba@2514
   520
	  _dt->cut(u);
deba@2514
   521
	  _dt->addCost(u, - rem);
deba@2514
   522
	  _dt->addCost(u, _max_value);
deba@2514
   523
	  
deba@2514
   524
	  Edge e = (*_dt_edges)[u];
deba@2514
   525
	  _dt_edges->set(u, INVALID);
deba@2514
   526
	  
deba@2514
   527
	  if (u == _graph.source(e)) {
deba@2514
   528
	    _flow->set(e, (*_capacity)[e] - rem);
deba@2514
   529
	  } else {
deba@2514
   530
	    _flow->set(e, rem);
deba@2514
   531
	  }
deba@2514
   532
	  
deba@2514
   533
	  w = _dt->findRoot(n);
deba@2514
   534
	}      
deba@2514
   535
      }
deba@2514
   536
    }
deba@2514
   537
deba@2514
   538
deba@2514
   539
  public:
deba@2514
   540
    
deba@2514
   541
    /// \name Execution control The simplest way to execute the
deba@2514
   542
    /// algorithm is to use the \c run() member functions.
deba@2514
   543
    /// \n
deba@2514
   544
    /// If you need more control on initial solution or
deba@2514
   545
    /// execution then you have to call one \ref init() function and then
deba@2514
   546
    /// the start() or multiple times the \c augment() member function.  
deba@2514
   547
    
deba@2514
   548
    ///@{
deba@2514
   549
deba@2514
   550
    /// \brief Initializes the algorithm
deba@2514
   551
    /// 
deba@2514
   552
    /// It sets the flow to empty flow.
deba@2514
   553
    void init() {
deba@2514
   554
      createStructures();
deba@2514
   555
deba@2514
   556
      _dt->clear();
deba@2514
   557
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@2514
   558
        _dt->makeTree(n);
deba@2514
   559
        _dt->addCost(n, _max_value);
deba@2514
   560
      }
deba@2514
   561
deba@2514
   562
      for (EdgeIt it(_graph); it != INVALID; ++it) {
deba@2514
   563
        _flow->set(it, 0);
deba@2514
   564
      }
deba@2514
   565
      _flow_value = 0;
deba@2514
   566
    }
deba@2514
   567
    
deba@2514
   568
    /// \brief Initializes the algorithm
deba@2514
   569
    /// 
deba@2514
   570
    /// Initializes the flow to the \c flowMap. The \c flowMap should
deba@2514
   571
    /// contain a feasible flow, ie. in each node excluding the source
deba@2514
   572
    /// and the target the incoming flow should be equal to the
deba@2514
   573
    /// outgoing flow.
deba@2514
   574
    template <typename FlowMap>
deba@2514
   575
    void flowInit(const FlowMap& flowMap) {
deba@2514
   576
      createStructures();
deba@2514
   577
deba@2514
   578
      _dt->clear();
deba@2514
   579
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@2514
   580
        _dt->makeTree(n);
deba@2514
   581
        _dt->addCost(n, _max_value);
deba@2514
   582
      }
deba@2514
   583
deba@2514
   584
      for (EdgeIt e(_graph); e != INVALID; ++e) {
deba@2514
   585
	_flow->set(e, flowMap[e]);
deba@2514
   586
      }
deba@2514
   587
      _flow_value = 0;
deba@2514
   588
      for (OutEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
deba@2514
   589
        _flow_value += (*_flow)[jt];
deba@2514
   590
      }
deba@2514
   591
      for (InEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
deba@2514
   592
        _flow_value -= (*_flow)[jt];
deba@2514
   593
      }
deba@2514
   594
    }
deba@2514
   595
deba@2514
   596
    /// \brief Initializes the algorithm
deba@2514
   597
    /// 
deba@2514
   598
    /// Initializes the flow to the \c flowMap. The \c flowMap should
deba@2514
   599
    /// contain a feasible flow, ie. in each node excluding the source
deba@2514
   600
    /// and the target the incoming flow should be equal to the
deba@2514
   601
    /// outgoing flow.  
deba@2514
   602
    /// \return %False when the given flowMap does not contain
deba@2514
   603
    /// feasible flow.
deba@2514
   604
    template <typename FlowMap>
deba@2514
   605
    bool checkedFlowInit(const FlowMap& flowMap) {
deba@2514
   606
      createStructures();
deba@2514
   607
deba@2514
   608
      _dt->clear();
deba@2514
   609
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@2514
   610
        _dt->makeTree(n);
deba@2514
   611
        _dt->addCost(n, _max_value);
deba@2514
   612
      }
deba@2514
   613
deba@2514
   614
      for (EdgeIt e(_graph); e != INVALID; ++e) {
deba@2514
   615
	_flow->set(e, flowMap[e]);
deba@2514
   616
      }
deba@2514
   617
      for (NodeIt it(_graph); it != INVALID; ++it) {
deba@2514
   618
        if (it == _source || it == _target) continue;
deba@2514
   619
        Value outFlow = 0;
deba@2514
   620
        for (OutEdgeIt jt(_graph, it); jt != INVALID; ++jt) {
deba@2514
   621
          outFlow += (*_flow)[jt];
deba@2514
   622
        }
deba@2514
   623
        Value inFlow = 0;
deba@2514
   624
        for (InEdgeIt jt(_graph, it); jt != INVALID; ++jt) {
deba@2514
   625
          inFlow += (*_flow)[jt];
deba@2514
   626
        }
deba@2514
   627
        if (_tolerance.different(outFlow, inFlow)) {
deba@2514
   628
          return false;
deba@2514
   629
        }
deba@2514
   630
      }
deba@2514
   631
      for (EdgeIt it(_graph); it != INVALID; ++it) {
deba@2514
   632
        if (_tolerance.less((*_flow)[it], 0)) return false;
deba@2514
   633
        if (_tolerance.less((*_capacity)[it], (*_flow)[it])) return false;
deba@2514
   634
      }
deba@2514
   635
      _flow_value = 0;
deba@2514
   636
      for (OutEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
deba@2514
   637
        _flow_value += (*_flow)[jt];
deba@2514
   638
      }
deba@2514
   639
      for (InEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
deba@2514
   640
        _flow_value -= (*_flow)[jt];
deba@2514
   641
      }
deba@2514
   642
      return true;
deba@2514
   643
    }
deba@2514
   644
deba@2514
   645
    /// \brief Executes the algorithm
deba@2514
   646
    ///
deba@2514
   647
    /// It runs augmenting phases by adding blocking flow until the
deba@2514
   648
    /// optimal solution is reached.
deba@2514
   649
    void start() {
deba@2514
   650
      while (augment());
deba@2514
   651
    }
deba@2514
   652
deba@2514
   653
    /// \brief Augments the flow with a blocking flow on a layered
deba@2514
   654
    /// graph.
deba@2514
   655
    /// 
deba@2514
   656
    /// This function builds a layered graph and then find a blocking
deba@2514
   657
    /// flow on this graph. The number of the levels in the layered
deba@2514
   658
    /// graph is strictly increasing in each augmenting phase
deba@2514
   659
    /// therefore the number of the augmentings is at most \f$ n-1
deba@2514
   660
    /// \f$.  The length of each phase is at most \f$ O(m \log(n))
deba@2514
   661
    /// \f$, that the overall time complexity is \f$ O(nm \log(n)) \f$.
deba@2514
   662
    /// \return %False when there is not residual path between the
deba@2514
   663
    /// source and the target so the current flow is a feasible and
deba@2514
   664
    /// optimal solution.
deba@2514
   665
    bool augment() {
deba@2514
   666
      Node n;
deba@2514
   667
deba@2514
   668
      if (createLayeredGraph()) {
deba@2514
   669
	
deba@2514
   670
	Timer bf_timer;
deba@2514
   671
	initEdges();
deba@2514
   672
deba@2514
   673
	n = _dt->findRoot(_source);
deba@2514
   674
	while (true) {
deba@2514
   675
	  Edge e;
deba@2514
   676
	  if (n == _target) {
deba@2514
   677
	    augmentPath();
deba@2514
   678
	  } else if (!advance(n)) {
deba@2514
   679
	    if (n != _source) {
deba@2514
   680
	      retreat(n);
deba@2514
   681
	    } else {
deba@2514
   682
	      break;
deba@2514
   683
	    }
deba@2514
   684
	  }
deba@2514
   685
	  n = _dt->findRoot(_source);
deba@2514
   686
	}     
deba@2514
   687
	extractTrees();
deba@2514
   688
deba@2514
   689
	return true;
deba@2514
   690
      } else {
deba@2514
   691
	return false;
deba@2514
   692
      }
deba@2514
   693
    }
deba@2514
   694
    
deba@2514
   695
    /// \brief runs the algorithm.
deba@2514
   696
    /// 
deba@2514
   697
    /// It is just a shorthand for:
deba@2514
   698
    ///
deba@2514
   699
    ///\code 
deba@2514
   700
    /// ek.init();
deba@2514
   701
    /// ek.start();
deba@2514
   702
    ///\endcode
deba@2514
   703
    void run() {
deba@2514
   704
      init();
deba@2514
   705
      start();
deba@2514
   706
    }
deba@2514
   707
deba@2514
   708
    /// @}
deba@2514
   709
deba@2522
   710
    /// \name Query Functions 
deba@2522
   711
    /// The result of the Dinitz-Sleator-Tarjan algorithm can be
deba@2522
   712
    /// obtained using these functions.
deba@2522
   713
    /// \n
deba@2514
   714
    /// Before the use of these functions,
deba@2514
   715
    /// either run() or start() must be called.
deba@2514
   716
    
deba@2514
   717
    ///@{
deba@2514
   718
deba@2514
   719
    /// \brief Returns the value of the maximum flow.
deba@2514
   720
    ///
deba@2514
   721
    /// Returns the value of the maximum flow by returning the excess
deba@2514
   722
    /// of the target node \c t. This value equals to the value of
deba@2514
   723
    /// the maximum flow already after the first phase.
deba@2514
   724
    Value flowValue() const {
deba@2514
   725
      return _flow_value;
deba@2514
   726
    }
deba@2514
   727
deba@2514
   728
deba@2514
   729
    /// \brief Returns the flow on the edge.
deba@2514
   730
    ///
deba@2514
   731
    /// Sets the \c flowMap to the flow on the edges. This method can
deba@2514
   732
    /// be called after the second phase of algorithm.
deba@2514
   733
    Value flow(const Edge& edge) const {
deba@2514
   734
      return (*_flow)[edge];
deba@2514
   735
    }
deba@2514
   736
deba@2514
   737
    /// \brief Returns true when the node is on the source side of minimum cut.
deba@2514
   738
    ///
deba@2514
   739
deba@2514
   740
    /// Returns true when the node is on the source side of minimum
deba@2514
   741
    /// cut. This method can be called both after running \ref
deba@2514
   742
    /// startFirstPhase() and \ref startSecondPhase().
deba@2514
   743
    bool minCut(const Node& node) const {
deba@2514
   744
      return (*_level)[node] == -2;
deba@2514
   745
    }
deba@2514
   746
deba@2514
   747
    /// \brief Returns a minimum value cut.
deba@2514
   748
    ///
deba@2514
   749
    /// Sets \c cut to the characteristic vector of a minimum value cut
deba@2514
   750
    /// It simply calls the minMinCut member.
deba@2514
   751
    /// \retval cut Write node bool map. 
deba@2514
   752
    template <typename CutMap>
deba@2514
   753
    void minCutMap(CutMap& cutMap) const {
deba@2514
   754
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@2514
   755
	cutMap.set(n, (*_level)[n] == -2);
deba@2514
   756
      }
deba@2514
   757
      cutMap.set(_source, true);
deba@2514
   758
    }    
deba@2514
   759
deba@2514
   760
    /// @}
deba@2514
   761
deba@2514
   762
  };
deba@2514
   763
}
deba@2514
   764
deba@2514
   765
#endif