athos@1247
|
1 |
/* -*- C++ -*-
|
alpar@1253
|
2 |
* src/lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
|
athos@1247
|
3 |
*
|
athos@1247
|
4 |
* Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@1359
|
5 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
athos@1247
|
6 |
*
|
athos@1247
|
7 |
* Permission to use, modify and distribute this software is granted
|
athos@1247
|
8 |
* provided that this copyright notice appears in all copies. For
|
athos@1247
|
9 |
* precise terms see the accompanying LICENSE file.
|
athos@1247
|
10 |
*
|
athos@1247
|
11 |
* This software is provided "AS IS" with no warranty of any kind,
|
athos@1247
|
12 |
* express or implied, and with no claim as to its suitability for any
|
athos@1247
|
13 |
* purpose.
|
athos@1247
|
14 |
*
|
athos@1247
|
15 |
*/
|
athos@1247
|
16 |
|
athos@1246
|
17 |
#ifndef LEMON_LP_BASE_H
|
athos@1246
|
18 |
#define LEMON_LP_BASE_H
|
athos@1246
|
19 |
|
alpar@1253
|
20 |
#include<vector>
|
alpar@1272
|
21 |
#include<map>
|
alpar@1256
|
22 |
#include<limits>
|
alpar@1397
|
23 |
#include<cmath>
|
alpar@1253
|
24 |
|
alpar@1256
|
25 |
#include<lemon/utility.h>
|
alpar@1253
|
26 |
#include<lemon/error.h>
|
alpar@1256
|
27 |
#include<lemon/invalid.h>
|
alpar@1253
|
28 |
|
alpar@1272
|
29 |
//#include"lin_expr.h"
|
alpar@1272
|
30 |
|
athos@1246
|
31 |
///\file
|
athos@1246
|
32 |
///\brief The interface of the LP solver interface.
|
alpar@1328
|
33 |
///\ingroup gen_opt_group
|
athos@1246
|
34 |
namespace lemon {
|
alpar@1253
|
35 |
|
alpar@1253
|
36 |
///Internal data structure to convert floating id's to fix one's
|
alpar@1253
|
37 |
|
alpar@1279
|
38 |
///\todo This might be implemented to be also usable in other places.
|
alpar@1253
|
39 |
class _FixId
|
alpar@1253
|
40 |
{
|
alpar@1253
|
41 |
std::vector<int> index;
|
alpar@1253
|
42 |
std::vector<int> cross;
|
alpar@1253
|
43 |
int first_free;
|
alpar@1253
|
44 |
public:
|
alpar@1253
|
45 |
_FixId() : first_free(-1) {};
|
alpar@1253
|
46 |
///Convert a floating id to a fix one
|
alpar@1253
|
47 |
|
alpar@1253
|
48 |
///\param n is a floating id
|
alpar@1253
|
49 |
///\return the corresponding fix id
|
alpar@1253
|
50 |
int fixId(int n) {return cross[n];}
|
alpar@1253
|
51 |
///Convert a fix id to a floating one
|
alpar@1253
|
52 |
|
alpar@1253
|
53 |
///\param n is a fix id
|
alpar@1253
|
54 |
///\return the corresponding floating id
|
alpar@1253
|
55 |
int floatingId(int n) { return index[n];}
|
alpar@1253
|
56 |
///Add a new floating id.
|
alpar@1253
|
57 |
|
alpar@1253
|
58 |
///\param n is a floating id
|
alpar@1253
|
59 |
///\return the fix id of the new value
|
alpar@1253
|
60 |
///\todo Multiple additions should also be handled.
|
alpar@1253
|
61 |
int insert(int n)
|
alpar@1253
|
62 |
{
|
alpar@1253
|
63 |
if(n>=int(cross.size())) {
|
alpar@1253
|
64 |
cross.resize(n+1);
|
alpar@1253
|
65 |
if(first_free==-1) {
|
alpar@1253
|
66 |
cross[n]=index.size();
|
alpar@1253
|
67 |
index.push_back(n);
|
alpar@1253
|
68 |
}
|
alpar@1253
|
69 |
else {
|
alpar@1253
|
70 |
cross[n]=first_free;
|
alpar@1253
|
71 |
int next=index[first_free];
|
alpar@1253
|
72 |
index[first_free]=n;
|
alpar@1253
|
73 |
first_free=next;
|
alpar@1253
|
74 |
}
|
alpar@1256
|
75 |
return cross[n];
|
alpar@1253
|
76 |
}
|
alpar@1273
|
77 |
///\todo Create an own exception type.
|
alpar@1253
|
78 |
else throw LogicError(); //floatingId-s must form a continuous range;
|
alpar@1253
|
79 |
}
|
alpar@1253
|
80 |
///Remove a fix id.
|
alpar@1253
|
81 |
|
alpar@1253
|
82 |
///\param n is a fix id
|
alpar@1253
|
83 |
///
|
alpar@1253
|
84 |
void erase(int n)
|
alpar@1253
|
85 |
{
|
alpar@1253
|
86 |
int fl=index[n];
|
alpar@1253
|
87 |
index[n]=first_free;
|
alpar@1253
|
88 |
first_free=n;
|
alpar@1253
|
89 |
for(int i=fl+1;i<int(cross.size());++i) {
|
alpar@1253
|
90 |
cross[i-1]=cross[i];
|
alpar@1253
|
91 |
index[cross[i]]--;
|
alpar@1253
|
92 |
}
|
alpar@1253
|
93 |
cross.pop_back();
|
alpar@1253
|
94 |
}
|
alpar@1253
|
95 |
///An upper bound on the largest fix id.
|
alpar@1253
|
96 |
|
alpar@1253
|
97 |
///\todo Do we need this?
|
alpar@1253
|
98 |
///
|
alpar@1253
|
99 |
std::size_t maxFixId() { return cross.size()-1; }
|
alpar@1253
|
100 |
|
alpar@1253
|
101 |
};
|
alpar@1253
|
102 |
|
alpar@1253
|
103 |
///Common base class for LP solvers
|
alpar@1328
|
104 |
|
alpar@1328
|
105 |
///\todo Much more docs
|
alpar@1328
|
106 |
///\ingroup gen_opt_group
|
athos@1246
|
107 |
class LpSolverBase {
|
alpar@1323
|
108 |
|
athos@1247
|
109 |
public:
|
athos@1247
|
110 |
|
alpar@1263
|
111 |
///\e
|
alpar@1303
|
112 |
enum SolveExitStatus {
|
alpar@1263
|
113 |
///\e
|
alpar@1293
|
114 |
SOLVED = 0,
|
alpar@1263
|
115 |
///\e
|
alpar@1293
|
116 |
UNSOLVED = 1
|
athos@1291
|
117 |
};
|
athos@1291
|
118 |
|
athos@1291
|
119 |
///\e
|
alpar@1303
|
120 |
enum SolutionStatus {
|
alpar@1295
|
121 |
///Feasible solution has'n been found (but may exist).
|
alpar@1295
|
122 |
|
alpar@1295
|
123 |
///\todo NOTFOUND might be a better name.
|
alpar@1295
|
124 |
///
|
alpar@1293
|
125 |
UNDEFINED = 0,
|
alpar@1295
|
126 |
///The problem has no feasible solution
|
alpar@1293
|
127 |
INFEASIBLE = 1,
|
alpar@1295
|
128 |
///Feasible solution found
|
alpar@1293
|
129 |
FEASIBLE = 2,
|
alpar@1295
|
130 |
///Optimal solution exists and found
|
alpar@1295
|
131 |
OPTIMAL = 3,
|
alpar@1295
|
132 |
///The cost function is unbounded
|
alpar@1295
|
133 |
|
alpar@1295
|
134 |
///\todo Give a feasible solution and an infinite ray (and the
|
alpar@1295
|
135 |
///corresponding bases)
|
alpar@1295
|
136 |
INFINITE = 4
|
alpar@1263
|
137 |
};
|
alpar@1263
|
138 |
|
alpar@1256
|
139 |
///The floating point type used by the solver
|
athos@1247
|
140 |
typedef double Value;
|
alpar@1256
|
141 |
///The infinity constant
|
athos@1247
|
142 |
static const Value INF;
|
alpar@1264
|
143 |
///The not a number constant
|
alpar@1264
|
144 |
static const Value NaN;
|
alpar@1253
|
145 |
|
alpar@1256
|
146 |
///Refer to a column of the LP.
|
alpar@1256
|
147 |
|
alpar@1256
|
148 |
///This type is used to refer to a column of the LP.
|
alpar@1256
|
149 |
///
|
alpar@1256
|
150 |
///Its value remains valid and correct even after the addition or erase of
|
alpar@1273
|
151 |
///other columns.
|
alpar@1256
|
152 |
///
|
alpar@1256
|
153 |
///\todo Document what can one do with a Col (INVALID, comparing,
|
alpar@1256
|
154 |
///it is similar to Node/Edge)
|
alpar@1256
|
155 |
class Col {
|
alpar@1256
|
156 |
protected:
|
alpar@1256
|
157 |
int id;
|
alpar@1256
|
158 |
friend class LpSolverBase;
|
alpar@1256
|
159 |
public:
|
alpar@1259
|
160 |
typedef Value ExprValue;
|
alpar@1256
|
161 |
typedef True LpSolverCol;
|
alpar@1256
|
162 |
Col() {}
|
alpar@1256
|
163 |
Col(const Invalid&) : id(-1) {}
|
alpar@1256
|
164 |
bool operator<(Col c) const {return id<c.id;}
|
alpar@1256
|
165 |
bool operator==(Col c) const {return id==c.id;}
|
alpar@1256
|
166 |
bool operator!=(Col c) const {return id==c.id;}
|
alpar@1256
|
167 |
};
|
alpar@1256
|
168 |
|
alpar@1256
|
169 |
///Refer to a row of the LP.
|
alpar@1256
|
170 |
|
alpar@1256
|
171 |
///This type is used to refer to a row of the LP.
|
alpar@1256
|
172 |
///
|
alpar@1256
|
173 |
///Its value remains valid and correct even after the addition or erase of
|
alpar@1273
|
174 |
///other rows.
|
alpar@1256
|
175 |
///
|
alpar@1256
|
176 |
///\todo Document what can one do with a Row (INVALID, comparing,
|
alpar@1256
|
177 |
///it is similar to Node/Edge)
|
alpar@1256
|
178 |
class Row {
|
alpar@1256
|
179 |
protected:
|
alpar@1256
|
180 |
int id;
|
alpar@1256
|
181 |
friend class LpSolverBase;
|
alpar@1256
|
182 |
public:
|
alpar@1259
|
183 |
typedef Value ExprValue;
|
alpar@1256
|
184 |
typedef True LpSolverRow;
|
alpar@1256
|
185 |
Row() {}
|
alpar@1256
|
186 |
Row(const Invalid&) : id(-1) {}
|
alpar@1256
|
187 |
typedef True LpSolverRow;
|
alpar@1256
|
188 |
bool operator<(Row c) const {return id<c.id;}
|
alpar@1256
|
189 |
bool operator==(Row c) const {return id==c.id;}
|
alpar@1256
|
190 |
bool operator!=(Row c) const {return id==c.id;}
|
alpar@1256
|
191 |
};
|
alpar@1259
|
192 |
|
alpar@1279
|
193 |
///Linear expression of variables and a constant component
|
alpar@1279
|
194 |
|
alpar@1279
|
195 |
///This data structure strores a linear expression of the variables
|
alpar@1279
|
196 |
///(\ref Col "Col"s) and also has a constant component.
|
alpar@1279
|
197 |
///
|
alpar@1279
|
198 |
///There are several ways to access and modify the contents of this
|
alpar@1279
|
199 |
///container.
|
alpar@1279
|
200 |
///- Its it fully compatible with \c std::map<Col,double>, so for expamle
|
alpar@1364
|
201 |
///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
|
alpar@1279
|
202 |
///read and modify the coefficients like
|
alpar@1279
|
203 |
///these.
|
alpar@1279
|
204 |
///\code
|
alpar@1279
|
205 |
///e[v]=5;
|
alpar@1279
|
206 |
///e[v]+=12;
|
alpar@1279
|
207 |
///e.erase(v);
|
alpar@1279
|
208 |
///\endcode
|
alpar@1279
|
209 |
///or you can also iterate through its elements.
|
alpar@1279
|
210 |
///\code
|
alpar@1279
|
211 |
///double s=0;
|
alpar@1279
|
212 |
///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
|
alpar@1279
|
213 |
/// s+=i->second;
|
alpar@1279
|
214 |
///\endcode
|
alpar@1279
|
215 |
///(This code computes the sum of all coefficients).
|
alpar@1279
|
216 |
///- Numbers (<tt>double</tt>'s)
|
alpar@1279
|
217 |
///and variables (\ref Col "Col"s) directly convert to an
|
alpar@1279
|
218 |
///\ref Expr and the usual linear operations are defined so
|
alpar@1279
|
219 |
///\code
|
alpar@1279
|
220 |
///v+w
|
alpar@1279
|
221 |
///2*v-3.12*(v-w/2)+2
|
alpar@1279
|
222 |
///v*2.1+(3*v+(v*12+w+6)*3)/2
|
alpar@1279
|
223 |
///\endcode
|
alpar@1328
|
224 |
///are valid \ref Expr "Expr"essions.
|
alpar@1328
|
225 |
///The usual assignment operations are also defined.
|
alpar@1279
|
226 |
///\code
|
alpar@1279
|
227 |
///e=v+w;
|
alpar@1279
|
228 |
///e+=2*v-3.12*(v-w/2)+2;
|
alpar@1279
|
229 |
///e*=3.4;
|
alpar@1279
|
230 |
///e/=5;
|
alpar@1279
|
231 |
///\endcode
|
alpar@1279
|
232 |
///- The constant member can be set and read by \ref constComp()
|
alpar@1279
|
233 |
///\code
|
alpar@1279
|
234 |
///e.constComp()=12;
|
alpar@1279
|
235 |
///double c=e.constComp();
|
alpar@1279
|
236 |
///\endcode
|
alpar@1279
|
237 |
///
|
alpar@1328
|
238 |
///\note \ref clear() not only sets all coefficients to 0 but also
|
alpar@1279
|
239 |
///clears the constant components.
|
alpar@1328
|
240 |
///
|
alpar@1328
|
241 |
///\sa Constr
|
alpar@1328
|
242 |
///
|
alpar@1273
|
243 |
class Expr : public std::map<Col,Value>
|
alpar@1272
|
244 |
{
|
alpar@1272
|
245 |
public:
|
alpar@1273
|
246 |
typedef LpSolverBase::Col Key;
|
alpar@1273
|
247 |
typedef LpSolverBase::Value Value;
|
alpar@1272
|
248 |
|
alpar@1272
|
249 |
protected:
|
alpar@1273
|
250 |
typedef std::map<Col,Value> Base;
|
alpar@1272
|
251 |
|
alpar@1273
|
252 |
Value const_comp;
|
alpar@1272
|
253 |
public:
|
alpar@1272
|
254 |
typedef True IsLinExpression;
|
alpar@1272
|
255 |
///\e
|
alpar@1272
|
256 |
Expr() : Base(), const_comp(0) { }
|
alpar@1272
|
257 |
///\e
|
alpar@1273
|
258 |
Expr(const Key &v) : const_comp(0) {
|
alpar@1272
|
259 |
Base::insert(std::make_pair(v, 1));
|
alpar@1272
|
260 |
}
|
alpar@1272
|
261 |
///\e
|
alpar@1273
|
262 |
Expr(const Value &v) : const_comp(v) {}
|
alpar@1272
|
263 |
///\e
|
alpar@1273
|
264 |
void set(const Key &v,const Value &c) {
|
alpar@1272
|
265 |
Base::insert(std::make_pair(v, c));
|
alpar@1272
|
266 |
}
|
alpar@1272
|
267 |
///\e
|
alpar@1273
|
268 |
Value &constComp() { return const_comp; }
|
alpar@1272
|
269 |
///\e
|
alpar@1273
|
270 |
const Value &constComp() const { return const_comp; }
|
alpar@1272
|
271 |
|
alpar@1272
|
272 |
///Removes the components with zero coefficient.
|
alpar@1272
|
273 |
void simplify() {
|
alpar@1272
|
274 |
for (Base::iterator i=Base::begin(); i!=Base::end();) {
|
alpar@1272
|
275 |
Base::iterator j=i;
|
alpar@1272
|
276 |
++j;
|
alpar@1272
|
277 |
if ((*i).second==0) Base::erase(i);
|
alpar@1272
|
278 |
j=i;
|
alpar@1272
|
279 |
}
|
alpar@1272
|
280 |
}
|
alpar@1273
|
281 |
|
alpar@1273
|
282 |
///Sets all coefficients and the constant component to 0.
|
alpar@1273
|
283 |
void clear() {
|
alpar@1273
|
284 |
Base::clear();
|
alpar@1273
|
285 |
const_comp=0;
|
alpar@1273
|
286 |
}
|
alpar@1273
|
287 |
|
alpar@1272
|
288 |
///\e
|
alpar@1272
|
289 |
Expr &operator+=(const Expr &e) {
|
alpar@1272
|
290 |
for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
|
alpar@1272
|
291 |
(*this)[j->first]+=j->second;
|
alpar@1272
|
292 |
///\todo it might be speeded up using "hints"
|
alpar@1272
|
293 |
const_comp+=e.const_comp;
|
alpar@1272
|
294 |
return *this;
|
alpar@1272
|
295 |
}
|
alpar@1272
|
296 |
///\e
|
alpar@1272
|
297 |
Expr &operator-=(const Expr &e) {
|
alpar@1272
|
298 |
for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
|
alpar@1272
|
299 |
(*this)[j->first]-=j->second;
|
alpar@1272
|
300 |
const_comp-=e.const_comp;
|
alpar@1272
|
301 |
return *this;
|
alpar@1272
|
302 |
}
|
alpar@1272
|
303 |
///\e
|
alpar@1273
|
304 |
Expr &operator*=(const Value &c) {
|
alpar@1272
|
305 |
for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
|
alpar@1272
|
306 |
j->second*=c;
|
alpar@1272
|
307 |
const_comp*=c;
|
alpar@1272
|
308 |
return *this;
|
alpar@1272
|
309 |
}
|
alpar@1272
|
310 |
///\e
|
alpar@1273
|
311 |
Expr &operator/=(const Value &c) {
|
alpar@1272
|
312 |
for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
|
alpar@1272
|
313 |
j->second/=c;
|
alpar@1272
|
314 |
const_comp/=c;
|
alpar@1272
|
315 |
return *this;
|
alpar@1272
|
316 |
}
|
alpar@1272
|
317 |
};
|
alpar@1272
|
318 |
|
alpar@1264
|
319 |
///Linear constraint
|
alpar@1328
|
320 |
|
alpar@1364
|
321 |
///This data stucture represents a linear constraint in the LP.
|
alpar@1364
|
322 |
///Basically it is a linear expression with a lower or an upper bound
|
alpar@1364
|
323 |
///(or both). These parts of the constraint can be obtained by the member
|
alpar@1364
|
324 |
///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
|
alpar@1364
|
325 |
///respectively.
|
alpar@1364
|
326 |
///There are two ways to construct a constraint.
|
alpar@1364
|
327 |
///- You can set the linear expression and the bounds directly
|
alpar@1364
|
328 |
/// by the functions above.
|
alpar@1364
|
329 |
///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt>
|
alpar@1364
|
330 |
/// are defined between expressions, or even between constraints whenever
|
alpar@1364
|
331 |
/// it makes sense. Therefore if \c e and \c f are linear expressions and
|
alpar@1364
|
332 |
/// \c s and \c t are numbers, then the followings are valid expressions
|
alpar@1364
|
333 |
/// and thus they can be used directly e.g. in \ref addRow() whenever
|
alpar@1364
|
334 |
/// it makes sense.
|
alpar@1364
|
335 |
/// \code
|
alpar@1364
|
336 |
/// e<=s
|
alpar@1364
|
337 |
/// e<=f
|
alpar@1364
|
338 |
/// s<=e<=t
|
alpar@1364
|
339 |
/// e>=t
|
alpar@1364
|
340 |
/// \endcode
|
alpar@1364
|
341 |
///\warning The validity of a constraint is checked only at run time, so
|
alpar@1364
|
342 |
///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
|
alpar@1364
|
343 |
///\ref LogicError exception.
|
alpar@1272
|
344 |
class Constr
|
alpar@1272
|
345 |
{
|
alpar@1272
|
346 |
public:
|
alpar@1272
|
347 |
typedef LpSolverBase::Expr Expr;
|
alpar@1273
|
348 |
typedef Expr::Key Key;
|
alpar@1273
|
349 |
typedef Expr::Value Value;
|
alpar@1272
|
350 |
|
alpar@1364
|
351 |
// static const Value INF;
|
alpar@1364
|
352 |
// static const Value NaN;
|
alpar@1364
|
353 |
|
alpar@1273
|
354 |
protected:
|
alpar@1273
|
355 |
Expr _expr;
|
alpar@1273
|
356 |
Value _lb,_ub;
|
alpar@1273
|
357 |
public:
|
alpar@1273
|
358 |
///\e
|
alpar@1273
|
359 |
Constr() : _expr(), _lb(NaN), _ub(NaN) {}
|
alpar@1273
|
360 |
///\e
|
alpar@1273
|
361 |
Constr(Value lb,const Expr &e,Value ub) :
|
alpar@1273
|
362 |
_expr(e), _lb(lb), _ub(ub) {}
|
alpar@1273
|
363 |
///\e
|
alpar@1273
|
364 |
Constr(const Expr &e,Value ub) :
|
alpar@1273
|
365 |
_expr(e), _lb(NaN), _ub(ub) {}
|
alpar@1273
|
366 |
///\e
|
alpar@1273
|
367 |
Constr(Value lb,const Expr &e) :
|
alpar@1273
|
368 |
_expr(e), _lb(lb), _ub(NaN) {}
|
alpar@1273
|
369 |
///\e
|
alpar@1272
|
370 |
Constr(const Expr &e) :
|
alpar@1273
|
371 |
_expr(e), _lb(NaN), _ub(NaN) {}
|
alpar@1273
|
372 |
///\e
|
alpar@1273
|
373 |
void clear()
|
alpar@1273
|
374 |
{
|
alpar@1273
|
375 |
_expr.clear();
|
alpar@1273
|
376 |
_lb=_ub=NaN;
|
alpar@1273
|
377 |
}
|
alpar@1364
|
378 |
|
alpar@1364
|
379 |
///Reference to the linear expression
|
alpar@1273
|
380 |
Expr &expr() { return _expr; }
|
alpar@1364
|
381 |
///Cont reference to the linear expression
|
alpar@1273
|
382 |
const Expr &expr() const { return _expr; }
|
alpar@1364
|
383 |
///Reference to the lower bound.
|
alpar@1364
|
384 |
|
alpar@1364
|
385 |
///\return
|
alpar@1364
|
386 |
///- -\ref INF: the constraint is lower unbounded.
|
alpar@1364
|
387 |
///- -\ref NaN: lower bound has not been set.
|
alpar@1364
|
388 |
///- finite number: the lower bound
|
alpar@1273
|
389 |
Value &lowerBound() { return _lb; }
|
alpar@1364
|
390 |
///The const version of \ref lowerBound()
|
alpar@1273
|
391 |
const Value &lowerBound() const { return _lb; }
|
alpar@1364
|
392 |
///Reference to the upper bound.
|
alpar@1364
|
393 |
|
alpar@1364
|
394 |
///\return
|
alpar@1364
|
395 |
///- -\ref INF: the constraint is upper unbounded.
|
alpar@1364
|
396 |
///- -\ref NaN: upper bound has not been set.
|
alpar@1364
|
397 |
///- finite number: the upper bound
|
alpar@1273
|
398 |
Value &upperBound() { return _ub; }
|
alpar@1364
|
399 |
///The const version of \ref upperBound()
|
alpar@1273
|
400 |
const Value &upperBound() const { return _ub; }
|
alpar@1364
|
401 |
///Is the constraint lower bounded?
|
alpar@1295
|
402 |
bool lowerBounded() const {
|
alpar@1295
|
403 |
using namespace std;
|
alpar@1397
|
404 |
return finite(_lb);
|
alpar@1295
|
405 |
}
|
alpar@1364
|
406 |
///Is the constraint upper bounded?
|
alpar@1295
|
407 |
bool upperBounded() const {
|
alpar@1295
|
408 |
using namespace std;
|
alpar@1397
|
409 |
return finite(_ub);
|
alpar@1295
|
410 |
}
|
alpar@1272
|
411 |
};
|
alpar@1272
|
412 |
|
alpar@1253
|
413 |
|
alpar@1253
|
414 |
protected:
|
alpar@1253
|
415 |
_FixId rows;
|
alpar@1253
|
416 |
_FixId cols;
|
athos@1246
|
417 |
|
alpar@1323
|
418 |
//Abstract virtual functions
|
alpar@1364
|
419 |
virtual LpSolverBase &_newLp() = 0;
|
alpar@1364
|
420 |
virtual LpSolverBase &_copyLp() = 0;
|
alpar@1364
|
421 |
|
athos@1246
|
422 |
virtual int _addCol() = 0;
|
athos@1246
|
423 |
virtual int _addRow() = 0;
|
athos@1246
|
424 |
virtual void _setRowCoeffs(int i,
|
athos@1251
|
425 |
int length,
|
athos@1247
|
426 |
int const * indices,
|
athos@1247
|
427 |
Value const * values ) = 0;
|
athos@1246
|
428 |
virtual void _setColCoeffs(int i,
|
athos@1251
|
429 |
int length,
|
athos@1247
|
430 |
int const * indices,
|
athos@1247
|
431 |
Value const * values ) = 0;
|
alpar@1294
|
432 |
virtual void _setColLowerBound(int i, Value value) = 0;
|
alpar@1294
|
433 |
virtual void _setColUpperBound(int i, Value value) = 0;
|
alpar@1294
|
434 |
virtual void _setRowLowerBound(int i, Value value) = 0;
|
alpar@1294
|
435 |
virtual void _setRowUpperBound(int i, Value value) = 0;
|
athos@1379
|
436 |
virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
|
alpar@1294
|
437 |
virtual void _setObjCoeff(int i, Value obj_coef) = 0;
|
athos@1377
|
438 |
virtual void _clearObj()=0;
|
athos@1377
|
439 |
// virtual void _setObj(int length,
|
athos@1377
|
440 |
// int const * indices,
|
athos@1377
|
441 |
// Value const * values ) = 0;
|
alpar@1303
|
442 |
virtual SolveExitStatus _solve() = 0;
|
alpar@1294
|
443 |
virtual Value _getPrimal(int i) = 0;
|
alpar@1312
|
444 |
virtual Value _getPrimalValue() = 0;
|
alpar@1312
|
445 |
virtual SolutionStatus _getPrimalStatus() = 0;
|
alpar@1312
|
446 |
virtual void _setMax() = 0;
|
alpar@1312
|
447 |
virtual void _setMin() = 0;
|
alpar@1312
|
448 |
|
alpar@1323
|
449 |
//Own protected stuff
|
alpar@1323
|
450 |
|
alpar@1323
|
451 |
//Constant component of the objective function
|
alpar@1323
|
452 |
Value obj_const_comp;
|
alpar@1323
|
453 |
|
athos@1377
|
454 |
|
athos@1377
|
455 |
|
alpar@1323
|
456 |
|
alpar@1253
|
457 |
public:
|
alpar@1253
|
458 |
|
alpar@1323
|
459 |
///\e
|
alpar@1323
|
460 |
LpSolverBase() : obj_const_comp(0) {}
|
alpar@1253
|
461 |
|
alpar@1253
|
462 |
///\e
|
alpar@1253
|
463 |
virtual ~LpSolverBase() {}
|
alpar@1253
|
464 |
|
alpar@1364
|
465 |
///Creates a new LP problem
|
alpar@1364
|
466 |
LpSolverBase &newLp() {return _newLp();}
|
alpar@1381
|
467 |
///Makes a copy of the LP problem
|
alpar@1364
|
468 |
LpSolverBase ©Lp() {return _copyLp();}
|
alpar@1364
|
469 |
|
alpar@1294
|
470 |
///\name Build up and modify of the LP
|
alpar@1263
|
471 |
|
alpar@1263
|
472 |
///@{
|
alpar@1263
|
473 |
|
alpar@1253
|
474 |
///Add a new empty column (i.e a new variable) to the LP
|
alpar@1253
|
475 |
Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
|
alpar@1263
|
476 |
|
alpar@1294
|
477 |
///\brief Adds several new columns
|
alpar@1294
|
478 |
///(i.e a variables) at once
|
alpar@1256
|
479 |
///
|
alpar@1273
|
480 |
///This magic function takes a container as its argument
|
alpar@1256
|
481 |
///and fills its elements
|
alpar@1256
|
482 |
///with new columns (i.e. variables)
|
alpar@1273
|
483 |
///\param t can be
|
alpar@1273
|
484 |
///- a standard STL compatible iterable container with
|
alpar@1273
|
485 |
///\ref Col as its \c values_type
|
alpar@1273
|
486 |
///like
|
alpar@1273
|
487 |
///\code
|
alpar@1273
|
488 |
///std::vector<LpSolverBase::Col>
|
alpar@1273
|
489 |
///std::list<LpSolverBase::Col>
|
alpar@1273
|
490 |
///\endcode
|
alpar@1273
|
491 |
///- a standard STL compatible iterable container with
|
alpar@1273
|
492 |
///\ref Col as its \c mapped_type
|
alpar@1273
|
493 |
///like
|
alpar@1273
|
494 |
///\code
|
alpar@1364
|
495 |
///std::map<AnyType,LpSolverBase::Col>
|
alpar@1273
|
496 |
///\endcode
|
alpar@1273
|
497 |
///- an iterable lemon \ref concept::WriteMap "write map" like
|
alpar@1273
|
498 |
///\code
|
alpar@1273
|
499 |
///ListGraph::NodeMap<LpSolverBase::Col>
|
alpar@1273
|
500 |
///ListGraph::EdgeMap<LpSolverBase::Col>
|
alpar@1273
|
501 |
///\endcode
|
alpar@1256
|
502 |
///\return The number of the created column.
|
alpar@1256
|
503 |
#ifdef DOXYGEN
|
alpar@1256
|
504 |
template<class T>
|
alpar@1256
|
505 |
int addColSet(T &t) { return 0;}
|
alpar@1256
|
506 |
#else
|
alpar@1256
|
507 |
template<class T>
|
alpar@1256
|
508 |
typename enable_if<typename T::value_type::LpSolverCol,int>::type
|
alpar@1256
|
509 |
addColSet(T &t,dummy<0> = 0) {
|
alpar@1256
|
510 |
int s=0;
|
alpar@1256
|
511 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
|
alpar@1256
|
512 |
return s;
|
alpar@1256
|
513 |
}
|
alpar@1256
|
514 |
template<class T>
|
alpar@1256
|
515 |
typename enable_if<typename T::value_type::second_type::LpSolverCol,
|
alpar@1256
|
516 |
int>::type
|
alpar@1256
|
517 |
addColSet(T &t,dummy<1> = 1) {
|
alpar@1256
|
518 |
int s=0;
|
alpar@1256
|
519 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
alpar@1256
|
520 |
i->second=addCol();
|
alpar@1256
|
521 |
s++;
|
alpar@1256
|
522 |
}
|
alpar@1256
|
523 |
return s;
|
alpar@1256
|
524 |
}
|
alpar@1272
|
525 |
template<class T>
|
alpar@1272
|
526 |
typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
|
alpar@1272
|
527 |
int>::type
|
alpar@1272
|
528 |
addColSet(T &t,dummy<2> = 2) {
|
alpar@1272
|
529 |
///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
|
alpar@1272
|
530 |
int s=0;
|
alpar@1272
|
531 |
for(typename T::ValueSet::iterator i=t.valueSet().begin();
|
alpar@1272
|
532 |
i!=t.valueSet().end();
|
alpar@1272
|
533 |
++i)
|
alpar@1272
|
534 |
{
|
alpar@1272
|
535 |
*i=addCol();
|
alpar@1272
|
536 |
s++;
|
alpar@1272
|
537 |
}
|
alpar@1272
|
538 |
return s;
|
alpar@1272
|
539 |
}
|
alpar@1256
|
540 |
#endif
|
alpar@1263
|
541 |
|
alpar@1253
|
542 |
///Add a new empty row (i.e a new constaint) to the LP
|
alpar@1258
|
543 |
|
alpar@1258
|
544 |
///This function adds a new empty row (i.e a new constaint) to the LP.
|
alpar@1258
|
545 |
///\return The created row
|
alpar@1253
|
546 |
Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
|
alpar@1253
|
547 |
|
alpar@1258
|
548 |
///Set a row (i.e a constaint) of the LP
|
alpar@1253
|
549 |
|
alpar@1258
|
550 |
///\param r is the row to be modified
|
alpar@1259
|
551 |
///\param l is lower bound (-\ref INF means no bound)
|
alpar@1258
|
552 |
///\param e is a linear expression (see \ref Expr)
|
alpar@1259
|
553 |
///\param u is the upper bound (\ref INF means no bound)
|
alpar@1253
|
554 |
///\bug This is a temportary function. The interface will change to
|
alpar@1253
|
555 |
///a better one.
|
alpar@1328
|
556 |
///\todo Option to control whether a constraint with a single variable is
|
alpar@1328
|
557 |
///added or not.
|
alpar@1258
|
558 |
void setRow(Row r, Value l,const Expr &e, Value u) {
|
alpar@1253
|
559 |
std::vector<int> indices;
|
alpar@1253
|
560 |
std::vector<Value> values;
|
alpar@1253
|
561 |
indices.push_back(0);
|
alpar@1253
|
562 |
values.push_back(0);
|
alpar@1258
|
563 |
for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
|
alpar@1256
|
564 |
if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
|
alpar@1256
|
565 |
indices.push_back(cols.floatingId((*i).first.id));
|
alpar@1256
|
566 |
values.push_back((*i).second);
|
alpar@1256
|
567 |
}
|
alpar@1253
|
568 |
_setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
|
alpar@1253
|
569 |
&indices[0],&values[0]);
|
alpar@1256
|
570 |
_setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
|
alpar@1256
|
571 |
_setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
|
alpar@1258
|
572 |
}
|
alpar@1258
|
573 |
|
alpar@1264
|
574 |
///Set a row (i.e a constaint) of the LP
|
alpar@1264
|
575 |
|
alpar@1264
|
576 |
///\param r is the row to be modified
|
alpar@1264
|
577 |
///\param c is a linear expression (see \ref Constr)
|
alpar@1264
|
578 |
void setRow(Row r, const Constr &c) {
|
alpar@1273
|
579 |
setRow(r,
|
alpar@1275
|
580 |
c.lowerBounded()?c.lowerBound():-INF,
|
alpar@1273
|
581 |
c.expr(),
|
alpar@1275
|
582 |
c.upperBounded()?c.upperBound():INF);
|
alpar@1264
|
583 |
}
|
alpar@1264
|
584 |
|
alpar@1258
|
585 |
///Add a new row (i.e a new constaint) to the LP
|
alpar@1258
|
586 |
|
alpar@1259
|
587 |
///\param l is the lower bound (-\ref INF means no bound)
|
alpar@1258
|
588 |
///\param e is a linear expression (see \ref Expr)
|
alpar@1259
|
589 |
///\param u is the upper bound (\ref INF means no bound)
|
alpar@1258
|
590 |
///\return The created row.
|
alpar@1258
|
591 |
///\bug This is a temportary function. The interface will change to
|
alpar@1258
|
592 |
///a better one.
|
alpar@1258
|
593 |
Row addRow(Value l,const Expr &e, Value u) {
|
alpar@1258
|
594 |
Row r=addRow();
|
alpar@1258
|
595 |
setRow(r,l,e,u);
|
alpar@1253
|
596 |
return r;
|
alpar@1253
|
597 |
}
|
alpar@1253
|
598 |
|
alpar@1264
|
599 |
///Add a new row (i.e a new constaint) to the LP
|
alpar@1264
|
600 |
|
alpar@1264
|
601 |
///\param c is a linear expression (see \ref Constr)
|
alpar@1264
|
602 |
///\return The created row.
|
alpar@1264
|
603 |
Row addRow(const Constr &c) {
|
alpar@1264
|
604 |
Row r=addRow();
|
alpar@1264
|
605 |
setRow(r,c);
|
alpar@1264
|
606 |
return r;
|
alpar@1264
|
607 |
}
|
alpar@1264
|
608 |
|
alpar@1253
|
609 |
/// Set the lower bound of a column (i.e a variable)
|
alpar@1253
|
610 |
|
alpar@1293
|
611 |
/// The upper bound of a variable (column) has to be given by an
|
alpar@1253
|
612 |
/// extended number of type Value, i.e. a finite number of type
|
alpar@1259
|
613 |
/// Value or -\ref INF.
|
alpar@1293
|
614 |
void colLowerBound(Col c, Value value) {
|
alpar@1253
|
615 |
_setColLowerBound(cols.floatingId(c.id),value);
|
alpar@1253
|
616 |
}
|
alpar@1253
|
617 |
/// Set the upper bound of a column (i.e a variable)
|
alpar@1253
|
618 |
|
alpar@1293
|
619 |
/// The upper bound of a variable (column) has to be given by an
|
alpar@1253
|
620 |
/// extended number of type Value, i.e. a finite number of type
|
alpar@1259
|
621 |
/// Value or \ref INF.
|
alpar@1293
|
622 |
void colUpperBound(Col c, Value value) {
|
alpar@1253
|
623 |
_setColUpperBound(cols.floatingId(c.id),value);
|
alpar@1253
|
624 |
};
|
alpar@1293
|
625 |
/// Set the lower and the upper bounds of a column (i.e a variable)
|
alpar@1293
|
626 |
|
alpar@1293
|
627 |
/// The lower and the upper bounds of
|
alpar@1293
|
628 |
/// a variable (column) have to be given by an
|
alpar@1293
|
629 |
/// extended number of type Value, i.e. a finite number of type
|
alpar@1293
|
630 |
/// Value, -\ref INF or \ref INF.
|
alpar@1293
|
631 |
void colBounds(Col c, Value lower, Value upper) {
|
alpar@1293
|
632 |
_setColLowerBound(cols.floatingId(c.id),lower);
|
alpar@1293
|
633 |
_setColUpperBound(cols.floatingId(c.id),upper);
|
alpar@1293
|
634 |
}
|
alpar@1293
|
635 |
|
alpar@1253
|
636 |
/// Set the lower bound of a row (i.e a constraint)
|
alpar@1253
|
637 |
|
alpar@1293
|
638 |
/// The lower bound of a linear expression (row) has to be given by an
|
alpar@1253
|
639 |
/// extended number of type Value, i.e. a finite number of type
|
alpar@1259
|
640 |
/// Value or -\ref INF.
|
alpar@1293
|
641 |
void rowLowerBound(Row r, Value value) {
|
alpar@1253
|
642 |
_setRowLowerBound(rows.floatingId(r.id),value);
|
alpar@1253
|
643 |
};
|
alpar@1253
|
644 |
/// Set the upper bound of a row (i.e a constraint)
|
alpar@1253
|
645 |
|
alpar@1293
|
646 |
/// The upper bound of a linear expression (row) has to be given by an
|
alpar@1253
|
647 |
/// extended number of type Value, i.e. a finite number of type
|
alpar@1259
|
648 |
/// Value or \ref INF.
|
alpar@1293
|
649 |
void rowUpperBound(Row r, Value value) {
|
alpar@1253
|
650 |
_setRowUpperBound(rows.floatingId(r.id),value);
|
alpar@1253
|
651 |
};
|
alpar@1293
|
652 |
/// Set the lower and the upper bounds of a row (i.e a variable)
|
alpar@1293
|
653 |
|
alpar@1293
|
654 |
/// The lower and the upper bounds of
|
alpar@1293
|
655 |
/// a constraint (row) have to be given by an
|
alpar@1293
|
656 |
/// extended number of type Value, i.e. a finite number of type
|
alpar@1293
|
657 |
/// Value, -\ref INF or \ref INF.
|
alpar@1293
|
658 |
void rowBounds(Row c, Value lower, Value upper) {
|
athos@1379
|
659 |
_setRowBounds(rows.floatingId(c.id),lower, upper);
|
athos@1379
|
660 |
// _setRowUpperBound(rows.floatingId(c.id),upper);
|
alpar@1293
|
661 |
}
|
alpar@1293
|
662 |
|
alpar@1253
|
663 |
///Set an element of the objective function
|
alpar@1293
|
664 |
void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
|
alpar@1253
|
665 |
///Set the objective function
|
alpar@1253
|
666 |
|
alpar@1253
|
667 |
///\param e is a linear expression of type \ref Expr.
|
alpar@1323
|
668 |
///\bug The previous objective function is not cleared!
|
alpar@1253
|
669 |
void setObj(Expr e) {
|
athos@1377
|
670 |
_clearObj();
|
alpar@1253
|
671 |
for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
|
alpar@1293
|
672 |
objCoeff((*i).first,(*i).second);
|
alpar@1323
|
673 |
obj_const_comp=e.constComp();
|
alpar@1253
|
674 |
}
|
alpar@1263
|
675 |
|
alpar@1312
|
676 |
///Maximize
|
alpar@1312
|
677 |
void max() { _setMax(); }
|
alpar@1312
|
678 |
///Minimize
|
alpar@1312
|
679 |
void min() { _setMin(); }
|
alpar@1312
|
680 |
|
alpar@1312
|
681 |
|
alpar@1263
|
682 |
///@}
|
alpar@1263
|
683 |
|
alpar@1263
|
684 |
|
alpar@1294
|
685 |
///\name Solve the LP
|
alpar@1263
|
686 |
|
alpar@1263
|
687 |
///@{
|
alpar@1263
|
688 |
|
alpar@1263
|
689 |
///\e
|
alpar@1303
|
690 |
SolveExitStatus solve() { return _solve(); }
|
alpar@1263
|
691 |
|
alpar@1263
|
692 |
///@}
|
alpar@1263
|
693 |
|
alpar@1294
|
694 |
///\name Obtain the solution
|
alpar@1263
|
695 |
|
alpar@1263
|
696 |
///@{
|
alpar@1263
|
697 |
|
alpar@1263
|
698 |
///\e
|
alpar@1312
|
699 |
SolutionStatus primalStatus() {
|
alpar@1312
|
700 |
return _getPrimalStatus();
|
alpar@1294
|
701 |
}
|
alpar@1294
|
702 |
|
alpar@1294
|
703 |
///\e
|
alpar@1293
|
704 |
Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
|
alpar@1263
|
705 |
|
alpar@1312
|
706 |
///\e
|
alpar@1312
|
707 |
|
alpar@1312
|
708 |
///\return
|
alpar@1312
|
709 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness
|
alpar@1312
|
710 |
/// of the primal problem, depending on whether we minimize or maximize.
|
alpar@1364
|
711 |
///- \ref NaN if no primal solution is found.
|
alpar@1312
|
712 |
///- The (finite) objective value if an optimal solution is found.
|
alpar@1323
|
713 |
Value primalValue() { return _getPrimalValue()+obj_const_comp;}
|
alpar@1263
|
714 |
///@}
|
alpar@1253
|
715 |
|
athos@1248
|
716 |
};
|
athos@1246
|
717 |
|
alpar@1272
|
718 |
///\e
|
alpar@1272
|
719 |
|
alpar@1272
|
720 |
///\relates LpSolverBase::Expr
|
alpar@1272
|
721 |
///
|
alpar@1272
|
722 |
inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
|
alpar@1272
|
723 |
const LpSolverBase::Expr &b)
|
alpar@1272
|
724 |
{
|
alpar@1272
|
725 |
LpSolverBase::Expr tmp(a);
|
alpar@1364
|
726 |
tmp+=b; ///\todo Doesn't STL have some special 'merge' algorithm?
|
alpar@1272
|
727 |
return tmp;
|
alpar@1272
|
728 |
}
|
alpar@1272
|
729 |
///\e
|
alpar@1272
|
730 |
|
alpar@1272
|
731 |
///\relates LpSolverBase::Expr
|
alpar@1272
|
732 |
///
|
alpar@1272
|
733 |
inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
|
alpar@1272
|
734 |
const LpSolverBase::Expr &b)
|
alpar@1272
|
735 |
{
|
alpar@1272
|
736 |
LpSolverBase::Expr tmp(a);
|
alpar@1364
|
737 |
tmp-=b; ///\todo Doesn't STL have some special 'merge' algorithm?
|
alpar@1272
|
738 |
return tmp;
|
alpar@1272
|
739 |
}
|
alpar@1272
|
740 |
///\e
|
alpar@1272
|
741 |
|
alpar@1272
|
742 |
///\relates LpSolverBase::Expr
|
alpar@1272
|
743 |
///
|
alpar@1272
|
744 |
inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
|
alpar@1273
|
745 |
const LpSolverBase::Value &b)
|
alpar@1272
|
746 |
{
|
alpar@1272
|
747 |
LpSolverBase::Expr tmp(a);
|
alpar@1364
|
748 |
tmp*=b; ///\todo Doesn't STL have some special 'merge' algorithm?
|
alpar@1272
|
749 |
return tmp;
|
alpar@1272
|
750 |
}
|
alpar@1272
|
751 |
|
alpar@1272
|
752 |
///\e
|
alpar@1272
|
753 |
|
alpar@1272
|
754 |
///\relates LpSolverBase::Expr
|
alpar@1272
|
755 |
///
|
alpar@1273
|
756 |
inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
|
alpar@1272
|
757 |
const LpSolverBase::Expr &b)
|
alpar@1272
|
758 |
{
|
alpar@1272
|
759 |
LpSolverBase::Expr tmp(b);
|
alpar@1364
|
760 |
tmp*=a; ///\todo Doesn't STL have some special 'merge' algorithm?
|
alpar@1272
|
761 |
return tmp;
|
alpar@1272
|
762 |
}
|
alpar@1272
|
763 |
///\e
|
alpar@1272
|
764 |
|
alpar@1272
|
765 |
///\relates LpSolverBase::Expr
|
alpar@1272
|
766 |
///
|
alpar@1272
|
767 |
inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
|
alpar@1273
|
768 |
const LpSolverBase::Value &b)
|
alpar@1272
|
769 |
{
|
alpar@1272
|
770 |
LpSolverBase::Expr tmp(a);
|
alpar@1364
|
771 |
tmp/=b; ///\todo Doesn't STL have some special 'merge' algorithm?
|
alpar@1272
|
772 |
return tmp;
|
alpar@1272
|
773 |
}
|
alpar@1272
|
774 |
|
alpar@1272
|
775 |
///\e
|
alpar@1272
|
776 |
|
alpar@1272
|
777 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
778 |
///
|
alpar@1272
|
779 |
inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
|
alpar@1272
|
780 |
const LpSolverBase::Expr &f)
|
alpar@1272
|
781 |
{
|
alpar@1272
|
782 |
return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
|
alpar@1272
|
783 |
}
|
alpar@1272
|
784 |
|
alpar@1272
|
785 |
///\e
|
alpar@1272
|
786 |
|
alpar@1272
|
787 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
788 |
///
|
alpar@1273
|
789 |
inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
|
alpar@1272
|
790 |
const LpSolverBase::Expr &f)
|
alpar@1272
|
791 |
{
|
alpar@1272
|
792 |
return LpSolverBase::Constr(e,f);
|
alpar@1272
|
793 |
}
|
alpar@1272
|
794 |
|
alpar@1272
|
795 |
///\e
|
alpar@1272
|
796 |
|
alpar@1272
|
797 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
798 |
///
|
alpar@1272
|
799 |
inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
|
alpar@1273
|
800 |
const LpSolverBase::Value &f)
|
alpar@1272
|
801 |
{
|
alpar@1272
|
802 |
return LpSolverBase::Constr(e,f);
|
alpar@1272
|
803 |
}
|
alpar@1272
|
804 |
|
alpar@1272
|
805 |
///\e
|
alpar@1272
|
806 |
|
alpar@1272
|
807 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
808 |
///
|
alpar@1272
|
809 |
inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
|
alpar@1272
|
810 |
const LpSolverBase::Expr &f)
|
alpar@1272
|
811 |
{
|
alpar@1272
|
812 |
return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
|
alpar@1272
|
813 |
}
|
alpar@1272
|
814 |
|
alpar@1272
|
815 |
|
alpar@1272
|
816 |
///\e
|
alpar@1272
|
817 |
|
alpar@1272
|
818 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
819 |
///
|
alpar@1273
|
820 |
inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
|
alpar@1272
|
821 |
const LpSolverBase::Expr &f)
|
alpar@1272
|
822 |
{
|
alpar@1272
|
823 |
return LpSolverBase::Constr(f,e);
|
alpar@1272
|
824 |
}
|
alpar@1272
|
825 |
|
alpar@1272
|
826 |
|
alpar@1272
|
827 |
///\e
|
alpar@1272
|
828 |
|
alpar@1272
|
829 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
830 |
///
|
alpar@1272
|
831 |
inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
|
alpar@1273
|
832 |
const LpSolverBase::Value &f)
|
alpar@1272
|
833 |
{
|
alpar@1272
|
834 |
return LpSolverBase::Constr(f,e);
|
alpar@1272
|
835 |
}
|
alpar@1272
|
836 |
|
alpar@1272
|
837 |
///\e
|
alpar@1272
|
838 |
|
alpar@1272
|
839 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
840 |
///
|
alpar@1272
|
841 |
inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
|
alpar@1272
|
842 |
const LpSolverBase::Expr &f)
|
alpar@1272
|
843 |
{
|
alpar@1272
|
844 |
return LpSolverBase::Constr(0,e-f,0);
|
alpar@1272
|
845 |
}
|
alpar@1272
|
846 |
|
alpar@1272
|
847 |
///\e
|
alpar@1272
|
848 |
|
alpar@1272
|
849 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
850 |
///
|
alpar@1273
|
851 |
inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
|
alpar@1272
|
852 |
const LpSolverBase::Constr&c)
|
alpar@1272
|
853 |
{
|
alpar@1272
|
854 |
LpSolverBase::Constr tmp(c);
|
alpar@1273
|
855 |
///\todo Create an own exception type.
|
alpar@1273
|
856 |
if(!isnan(tmp.lowerBound())) throw LogicError();
|
alpar@1273
|
857 |
else tmp.lowerBound()=n;
|
alpar@1272
|
858 |
return tmp;
|
alpar@1272
|
859 |
}
|
alpar@1272
|
860 |
///\e
|
alpar@1272
|
861 |
|
alpar@1272
|
862 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
863 |
///
|
alpar@1272
|
864 |
inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
|
alpar@1273
|
865 |
const LpSolverBase::Value &n)
|
alpar@1272
|
866 |
{
|
alpar@1272
|
867 |
LpSolverBase::Constr tmp(c);
|
alpar@1273
|
868 |
///\todo Create an own exception type.
|
alpar@1273
|
869 |
if(!isnan(tmp.upperBound())) throw LogicError();
|
alpar@1273
|
870 |
else tmp.upperBound()=n;
|
alpar@1272
|
871 |
return tmp;
|
alpar@1272
|
872 |
}
|
alpar@1272
|
873 |
|
alpar@1272
|
874 |
///\e
|
alpar@1272
|
875 |
|
alpar@1272
|
876 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
877 |
///
|
alpar@1273
|
878 |
inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
|
alpar@1272
|
879 |
const LpSolverBase::Constr&c)
|
alpar@1272
|
880 |
{
|
alpar@1272
|
881 |
LpSolverBase::Constr tmp(c);
|
alpar@1273
|
882 |
///\todo Create an own exception type.
|
alpar@1273
|
883 |
if(!isnan(tmp.upperBound())) throw LogicError();
|
alpar@1273
|
884 |
else tmp.upperBound()=n;
|
alpar@1272
|
885 |
return tmp;
|
alpar@1272
|
886 |
}
|
alpar@1272
|
887 |
///\e
|
alpar@1272
|
888 |
|
alpar@1272
|
889 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
890 |
///
|
alpar@1272
|
891 |
inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
|
alpar@1273
|
892 |
const LpSolverBase::Value &n)
|
alpar@1272
|
893 |
{
|
alpar@1272
|
894 |
LpSolverBase::Constr tmp(c);
|
alpar@1273
|
895 |
///\todo Create an own exception type.
|
alpar@1273
|
896 |
if(!isnan(tmp.lowerBound())) throw LogicError();
|
alpar@1273
|
897 |
else tmp.lowerBound()=n;
|
alpar@1272
|
898 |
return tmp;
|
alpar@1272
|
899 |
}
|
alpar@1272
|
900 |
|
alpar@1272
|
901 |
|
athos@1246
|
902 |
} //namespace lemon
|
athos@1246
|
903 |
|
athos@1246
|
904 |
#endif //LEMON_LP_BASE_H
|