deba@2480
|
1 |
/* -*- C++ -*-
|
deba@2480
|
2 |
*
|
deba@2480
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
deba@2480
|
4 |
*
|
deba@2480
|
5 |
* Copyright (C) 2003-2007
|
deba@2480
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@2480
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@2480
|
8 |
*
|
deba@2480
|
9 |
* Permission to use, modify and distribute this software is granted
|
deba@2480
|
10 |
* provided that this copyright notice appears in all copies. For
|
deba@2480
|
11 |
* precise terms see the accompanying LICENSE file.
|
deba@2480
|
12 |
*
|
deba@2480
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@2480
|
14 |
* express or implied, and with no claim as to its suitability for any
|
deba@2480
|
15 |
* purpose.
|
deba@2480
|
16 |
*
|
deba@2480
|
17 |
*/
|
deba@2480
|
18 |
#ifndef LEMON_PLANARITY_H
|
deba@2480
|
19 |
#define LEMON_PLANARITY_H
|
deba@2480
|
20 |
|
deba@2499
|
21 |
/// \ingroup planar
|
deba@2480
|
22 |
/// \file
|
deba@2480
|
23 |
/// \brief Planarity checking, embedding
|
deba@2480
|
24 |
|
deba@2480
|
25 |
#include <vector>
|
deba@2480
|
26 |
#include <list>
|
deba@2480
|
27 |
|
deba@2480
|
28 |
#include <lemon/dfs.h>
|
deba@2480
|
29 |
#include <lemon/radix_sort.h>
|
deba@2480
|
30 |
#include <lemon/maps.h>
|
deba@2480
|
31 |
#include <lemon/path.h>
|
deba@2499
|
32 |
#include <lemon/iterable_maps.h>
|
deba@2499
|
33 |
#include <lemon/edge_set.h>
|
deba@2480
|
34 |
|
deba@2480
|
35 |
|
deba@2480
|
36 |
namespace lemon {
|
deba@2480
|
37 |
|
deba@2480
|
38 |
namespace _planarity_bits {
|
deba@2480
|
39 |
|
deba@2480
|
40 |
template <typename UGraph>
|
deba@2480
|
41 |
struct PlanarityVisitor : DfsVisitor<UGraph> {
|
deba@2480
|
42 |
|
deba@2480
|
43 |
typedef typename UGraph::Node Node;
|
deba@2480
|
44 |
typedef typename UGraph::Edge Edge;
|
deba@2480
|
45 |
|
deba@2480
|
46 |
typedef typename UGraph::template NodeMap<Edge> PredMap;
|
deba@2480
|
47 |
|
deba@2480
|
48 |
typedef typename UGraph::template UEdgeMap<bool> TreeMap;
|
deba@2480
|
49 |
|
deba@2480
|
50 |
typedef typename UGraph::template NodeMap<int> OrderMap;
|
deba@2480
|
51 |
typedef std::vector<Node> OrderList;
|
deba@2480
|
52 |
|
deba@2480
|
53 |
typedef typename UGraph::template NodeMap<int> LowMap;
|
deba@2480
|
54 |
typedef typename UGraph::template NodeMap<int> AncestorMap;
|
deba@2480
|
55 |
|
deba@2480
|
56 |
PlanarityVisitor(const UGraph& ugraph,
|
deba@2480
|
57 |
PredMap& pred_map, TreeMap& tree_map,
|
deba@2480
|
58 |
OrderMap& order_map, OrderList& order_list,
|
deba@2480
|
59 |
AncestorMap& ancestor_map, LowMap& low_map)
|
deba@2480
|
60 |
: _ugraph(ugraph), _pred_map(pred_map), _tree_map(tree_map),
|
deba@2480
|
61 |
_order_map(order_map), _order_list(order_list),
|
deba@2480
|
62 |
_ancestor_map(ancestor_map), _low_map(low_map) {}
|
deba@2480
|
63 |
|
deba@2480
|
64 |
void reach(const Node& node) {
|
deba@2480
|
65 |
_order_map[node] = _order_list.size();
|
deba@2480
|
66 |
_low_map[node] = _order_list.size();
|
deba@2480
|
67 |
_ancestor_map[node] = _order_list.size();
|
deba@2480
|
68 |
_order_list.push_back(node);
|
deba@2480
|
69 |
}
|
deba@2480
|
70 |
|
deba@2480
|
71 |
void discover(const Edge& edge) {
|
deba@2480
|
72 |
Node source = _ugraph.source(edge);
|
deba@2480
|
73 |
Node target = _ugraph.target(edge);
|
deba@2480
|
74 |
|
deba@2480
|
75 |
_tree_map[edge] = true;
|
deba@2480
|
76 |
_pred_map[target] = edge;
|
deba@2480
|
77 |
}
|
deba@2480
|
78 |
|
deba@2480
|
79 |
void examine(const Edge& edge) {
|
deba@2480
|
80 |
Node source = _ugraph.source(edge);
|
deba@2480
|
81 |
Node target = _ugraph.target(edge);
|
deba@2480
|
82 |
|
deba@2480
|
83 |
if (_order_map[target] < _order_map[source] && !_tree_map[edge]) {
|
deba@2480
|
84 |
if (_low_map[source] > _order_map[target]) {
|
deba@2480
|
85 |
_low_map[source] = _order_map[target];
|
deba@2480
|
86 |
}
|
deba@2480
|
87 |
if (_ancestor_map[source] > _order_map[target]) {
|
deba@2480
|
88 |
_ancestor_map[source] = _order_map[target];
|
deba@2480
|
89 |
}
|
deba@2480
|
90 |
}
|
deba@2480
|
91 |
}
|
deba@2480
|
92 |
|
deba@2480
|
93 |
void backtrack(const Edge& edge) {
|
deba@2480
|
94 |
Node source = _ugraph.source(edge);
|
deba@2480
|
95 |
Node target = _ugraph.target(edge);
|
deba@2480
|
96 |
|
deba@2480
|
97 |
if (_low_map[source] > _low_map[target]) {
|
deba@2480
|
98 |
_low_map[source] = _low_map[target];
|
deba@2480
|
99 |
}
|
deba@2480
|
100 |
}
|
deba@2480
|
101 |
|
deba@2480
|
102 |
const UGraph& _ugraph;
|
deba@2480
|
103 |
PredMap& _pred_map;
|
deba@2480
|
104 |
TreeMap& _tree_map;
|
deba@2480
|
105 |
OrderMap& _order_map;
|
deba@2480
|
106 |
OrderList& _order_list;
|
deba@2480
|
107 |
AncestorMap& _ancestor_map;
|
deba@2480
|
108 |
LowMap& _low_map;
|
deba@2480
|
109 |
};
|
deba@2480
|
110 |
|
deba@2480
|
111 |
template <typename UGraph, bool embedding = true>
|
deba@2480
|
112 |
struct NodeDataNode {
|
deba@2480
|
113 |
int prev, next;
|
deba@2480
|
114 |
int visited;
|
deba@2480
|
115 |
typename UGraph::Edge first;
|
deba@2480
|
116 |
bool inverted;
|
deba@2480
|
117 |
};
|
deba@2480
|
118 |
|
deba@2480
|
119 |
template <typename UGraph>
|
deba@2480
|
120 |
struct NodeDataNode<UGraph, false> {
|
deba@2480
|
121 |
int prev, next;
|
deba@2480
|
122 |
int visited;
|
deba@2480
|
123 |
};
|
deba@2480
|
124 |
|
deba@2480
|
125 |
template <typename UGraph>
|
deba@2480
|
126 |
struct ChildListNode {
|
deba@2480
|
127 |
typedef typename UGraph::Node Node;
|
deba@2480
|
128 |
Node first;
|
deba@2480
|
129 |
Node prev, next;
|
deba@2480
|
130 |
};
|
deba@2480
|
131 |
|
deba@2480
|
132 |
template <typename UGraph>
|
deba@2480
|
133 |
struct EdgeListNode {
|
deba@2480
|
134 |
typename UGraph::Edge prev, next;
|
deba@2480
|
135 |
};
|
deba@2480
|
136 |
|
deba@2480
|
137 |
}
|
deba@2480
|
138 |
|
deba@2499
|
139 |
/// \ingroup planar
|
deba@2480
|
140 |
///
|
deba@2480
|
141 |
/// \brief Planarity checking of an undirected simple graph
|
deba@2480
|
142 |
///
|
deba@2499
|
143 |
/// This class implements the Boyer-Myrvold algorithm for planarity
|
deba@2480
|
144 |
/// checking of an undirected graph. This class is a simplified
|
deba@2480
|
145 |
/// version of the PlanarEmbedding algorithm class, and it does
|
deba@2480
|
146 |
/// provide neither embedding nor kuratowski subdivisons.
|
deba@2480
|
147 |
template <typename UGraph>
|
deba@2480
|
148 |
class PlanarityChecking {
|
deba@2480
|
149 |
private:
|
deba@2480
|
150 |
|
deba@2499
|
151 |
UGRAPH_TYPEDEFS(typename UGraph);
|
deba@2480
|
152 |
|
deba@2480
|
153 |
const UGraph& _ugraph;
|
deba@2480
|
154 |
|
deba@2480
|
155 |
private:
|
deba@2480
|
156 |
|
deba@2480
|
157 |
typedef typename UGraph::template NodeMap<Edge> PredMap;
|
deba@2480
|
158 |
|
deba@2480
|
159 |
typedef typename UGraph::template UEdgeMap<bool> TreeMap;
|
deba@2480
|
160 |
|
deba@2480
|
161 |
typedef typename UGraph::template NodeMap<int> OrderMap;
|
deba@2480
|
162 |
typedef std::vector<Node> OrderList;
|
deba@2480
|
163 |
|
deba@2480
|
164 |
typedef typename UGraph::template NodeMap<int> LowMap;
|
deba@2480
|
165 |
typedef typename UGraph::template NodeMap<int> AncestorMap;
|
deba@2480
|
166 |
|
deba@2480
|
167 |
typedef _planarity_bits::NodeDataNode<UGraph> NodeDataNode;
|
deba@2480
|
168 |
typedef std::vector<NodeDataNode> NodeData;
|
deba@2480
|
169 |
|
deba@2480
|
170 |
typedef _planarity_bits::ChildListNode<UGraph> ChildListNode;
|
deba@2480
|
171 |
typedef typename UGraph::template NodeMap<ChildListNode> ChildLists;
|
deba@2480
|
172 |
|
deba@2480
|
173 |
typedef typename UGraph::template NodeMap<std::list<int> > MergeRoots;
|
deba@2480
|
174 |
|
deba@2480
|
175 |
typedef typename UGraph::template NodeMap<bool> EmbedEdge;
|
deba@2480
|
176 |
|
deba@2480
|
177 |
public:
|
deba@2480
|
178 |
|
deba@2480
|
179 |
/// \brief Constructor
|
deba@2480
|
180 |
///
|
deba@2480
|
181 |
/// \warining The graph should be simple, i.e. parallel and loop edge
|
deba@2480
|
182 |
/// free.
|
deba@2480
|
183 |
PlanarityChecking(const UGraph& ugraph) : _ugraph(ugraph) {}
|
deba@2480
|
184 |
|
deba@2480
|
185 |
/// \brief Runs the algorithm.
|
deba@2480
|
186 |
///
|
deba@2480
|
187 |
/// Runs the algorithm.
|
deba@2480
|
188 |
/// \return %True when the graph is planar.
|
deba@2481
|
189 |
bool run() {
|
deba@2480
|
190 |
typedef _planarity_bits::PlanarityVisitor<UGraph> Visitor;
|
deba@2480
|
191 |
|
deba@2480
|
192 |
PredMap pred_map(_ugraph, INVALID);
|
deba@2480
|
193 |
TreeMap tree_map(_ugraph, false);
|
deba@2480
|
194 |
|
deba@2480
|
195 |
OrderMap order_map(_ugraph, -1);
|
deba@2480
|
196 |
OrderList order_list;
|
deba@2480
|
197 |
|
deba@2480
|
198 |
AncestorMap ancestor_map(_ugraph, -1);
|
deba@2480
|
199 |
LowMap low_map(_ugraph, -1);
|
deba@2480
|
200 |
|
deba@2480
|
201 |
Visitor visitor(_ugraph, pred_map, tree_map,
|
deba@2480
|
202 |
order_map, order_list, ancestor_map, low_map);
|
deba@2480
|
203 |
DfsVisit<UGraph, Visitor> visit(_ugraph, visitor);
|
deba@2480
|
204 |
visit.run();
|
deba@2480
|
205 |
|
deba@2480
|
206 |
ChildLists child_lists(_ugraph);
|
deba@2480
|
207 |
createChildLists(tree_map, order_map, low_map, child_lists);
|
deba@2480
|
208 |
|
deba@2480
|
209 |
NodeData node_data(2 * order_list.size());
|
deba@2480
|
210 |
|
deba@2480
|
211 |
EmbedEdge embed_edge(_ugraph, false);
|
deba@2480
|
212 |
|
deba@2480
|
213 |
MergeRoots merge_roots(_ugraph);
|
deba@2480
|
214 |
|
deba@2480
|
215 |
for (int i = order_list.size() - 1; i >= 0; --i) {
|
deba@2480
|
216 |
|
deba@2480
|
217 |
Node node = order_list[i];
|
deba@2480
|
218 |
|
deba@2480
|
219 |
Node source = node;
|
deba@2480
|
220 |
for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
|
deba@2480
|
221 |
Node target = _ugraph.target(e);
|
deba@2480
|
222 |
|
deba@2480
|
223 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
deba@2481
|
224 |
initFace(target, node_data, order_map, order_list);
|
deba@2480
|
225 |
}
|
deba@2480
|
226 |
}
|
deba@2480
|
227 |
|
deba@2480
|
228 |
for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
|
deba@2480
|
229 |
Node target = _ugraph.target(e);
|
deba@2480
|
230 |
|
deba@2480
|
231 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
deba@2480
|
232 |
embed_edge[target] = true;
|
deba@2480
|
233 |
walkUp(target, source, i, pred_map, low_map,
|
deba@2480
|
234 |
order_map, order_list, node_data, merge_roots);
|
deba@2480
|
235 |
}
|
deba@2480
|
236 |
}
|
deba@2480
|
237 |
|
deba@2480
|
238 |
for (typename MergeRoots::Value::iterator it =
|
deba@2480
|
239 |
merge_roots[node].begin(); it != merge_roots[node].end(); ++it) {
|
deba@2480
|
240 |
int rn = *it;
|
deba@2480
|
241 |
walkDown(rn, i, node_data, order_list, child_lists,
|
deba@2480
|
242 |
ancestor_map, low_map, embed_edge, merge_roots);
|
deba@2480
|
243 |
}
|
deba@2480
|
244 |
merge_roots[node].clear();
|
deba@2480
|
245 |
|
deba@2480
|
246 |
for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
|
deba@2480
|
247 |
Node target = _ugraph.target(e);
|
deba@2480
|
248 |
|
deba@2480
|
249 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
deba@2480
|
250 |
if (embed_edge[target]) {
|
deba@2480
|
251 |
return false;
|
deba@2480
|
252 |
}
|
deba@2480
|
253 |
}
|
deba@2480
|
254 |
}
|
deba@2480
|
255 |
}
|
deba@2480
|
256 |
|
deba@2480
|
257 |
return true;
|
deba@2480
|
258 |
}
|
deba@2480
|
259 |
|
deba@2480
|
260 |
private:
|
deba@2480
|
261 |
|
deba@2480
|
262 |
void createChildLists(const TreeMap& tree_map, const OrderMap& order_map,
|
deba@2480
|
263 |
const LowMap& low_map, ChildLists& child_lists) {
|
deba@2480
|
264 |
|
deba@2480
|
265 |
for (NodeIt n(_ugraph); n != INVALID; ++n) {
|
deba@2480
|
266 |
Node source = n;
|
deba@2480
|
267 |
|
deba@2480
|
268 |
std::vector<Node> targets;
|
deba@2480
|
269 |
for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
|
deba@2480
|
270 |
Node target = _ugraph.target(e);
|
deba@2480
|
271 |
|
deba@2480
|
272 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
deba@2480
|
273 |
targets.push_back(target);
|
deba@2480
|
274 |
}
|
deba@2480
|
275 |
}
|
deba@2480
|
276 |
|
deba@2480
|
277 |
if (targets.size() == 0) {
|
deba@2480
|
278 |
child_lists[source].first = INVALID;
|
deba@2480
|
279 |
} else if (targets.size() == 1) {
|
deba@2480
|
280 |
child_lists[source].first = targets[0];
|
deba@2480
|
281 |
child_lists[targets[0]].prev = INVALID;
|
deba@2480
|
282 |
child_lists[targets[0]].next = INVALID;
|
deba@2480
|
283 |
} else {
|
deba@2480
|
284 |
radixSort(targets.begin(), targets.end(), mapFunctor(low_map));
|
deba@2480
|
285 |
for (int i = 1; i < int(targets.size()); ++i) {
|
deba@2480
|
286 |
child_lists[targets[i]].prev = targets[i - 1];
|
deba@2480
|
287 |
child_lists[targets[i - 1]].next = targets[i];
|
deba@2480
|
288 |
}
|
deba@2480
|
289 |
child_lists[targets.back()].next = INVALID;
|
deba@2480
|
290 |
child_lists[targets.front()].prev = INVALID;
|
deba@2480
|
291 |
child_lists[source].first = targets.front();
|
deba@2480
|
292 |
}
|
deba@2480
|
293 |
}
|
deba@2480
|
294 |
}
|
deba@2480
|
295 |
|
deba@2480
|
296 |
void walkUp(const Node& node, Node root, int rorder,
|
deba@2480
|
297 |
const PredMap& pred_map, const LowMap& low_map,
|
deba@2480
|
298 |
const OrderMap& order_map, const OrderList& order_list,
|
deba@2480
|
299 |
NodeData& node_data, MergeRoots& merge_roots) {
|
deba@2480
|
300 |
|
deba@2480
|
301 |
int na, nb;
|
deba@2480
|
302 |
bool da, db;
|
deba@2480
|
303 |
|
deba@2480
|
304 |
na = nb = order_map[node];
|
deba@2480
|
305 |
da = true; db = false;
|
deba@2480
|
306 |
|
deba@2480
|
307 |
while (true) {
|
deba@2480
|
308 |
|
deba@2480
|
309 |
if (node_data[na].visited == rorder) break;
|
deba@2480
|
310 |
if (node_data[nb].visited == rorder) break;
|
deba@2480
|
311 |
|
deba@2480
|
312 |
node_data[na].visited = rorder;
|
deba@2480
|
313 |
node_data[nb].visited = rorder;
|
deba@2480
|
314 |
|
deba@2480
|
315 |
int rn = -1;
|
deba@2480
|
316 |
|
deba@2480
|
317 |
if (na >= int(order_list.size())) {
|
deba@2480
|
318 |
rn = na;
|
deba@2480
|
319 |
} else if (nb >= int(order_list.size())) {
|
deba@2480
|
320 |
rn = nb;
|
deba@2480
|
321 |
}
|
deba@2480
|
322 |
|
deba@2480
|
323 |
if (rn == -1) {
|
deba@2480
|
324 |
int nn;
|
deba@2480
|
325 |
|
deba@2480
|
326 |
nn = da ? node_data[na].prev : node_data[na].next;
|
deba@2480
|
327 |
da = node_data[nn].prev != na;
|
deba@2480
|
328 |
na = nn;
|
deba@2480
|
329 |
|
deba@2480
|
330 |
nn = db ? node_data[nb].prev : node_data[nb].next;
|
deba@2480
|
331 |
db = node_data[nn].prev != nb;
|
deba@2480
|
332 |
nb = nn;
|
deba@2480
|
333 |
|
deba@2480
|
334 |
} else {
|
deba@2480
|
335 |
|
deba@2480
|
336 |
Node rep = order_list[rn - order_list.size()];
|
deba@2480
|
337 |
Node parent = _ugraph.source(pred_map[rep]);
|
deba@2480
|
338 |
|
deba@2480
|
339 |
if (low_map[rep] < rorder) {
|
deba@2480
|
340 |
merge_roots[parent].push_back(rn);
|
deba@2480
|
341 |
} else {
|
deba@2480
|
342 |
merge_roots[parent].push_front(rn);
|
deba@2480
|
343 |
}
|
deba@2480
|
344 |
|
deba@2480
|
345 |
if (parent != root) {
|
deba@2480
|
346 |
na = nb = order_map[parent];
|
deba@2480
|
347 |
da = true; db = false;
|
deba@2480
|
348 |
} else {
|
deba@2480
|
349 |
break;
|
deba@2480
|
350 |
}
|
deba@2480
|
351 |
}
|
deba@2480
|
352 |
}
|
deba@2480
|
353 |
}
|
deba@2480
|
354 |
|
deba@2480
|
355 |
void walkDown(int rn, int rorder, NodeData& node_data,
|
deba@2480
|
356 |
OrderList& order_list, ChildLists& child_lists,
|
deba@2480
|
357 |
AncestorMap& ancestor_map, LowMap& low_map,
|
deba@2480
|
358 |
EmbedEdge& embed_edge, MergeRoots& merge_roots) {
|
deba@2480
|
359 |
|
deba@2480
|
360 |
std::vector<std::pair<int, bool> > merge_stack;
|
deba@2480
|
361 |
|
deba@2480
|
362 |
for (int di = 0; di < 2; ++di) {
|
deba@2480
|
363 |
bool rd = di == 0;
|
deba@2480
|
364 |
int pn = rn;
|
deba@2480
|
365 |
int n = rd ? node_data[rn].next : node_data[rn].prev;
|
deba@2480
|
366 |
|
deba@2480
|
367 |
while (n != rn) {
|
deba@2480
|
368 |
|
deba@2480
|
369 |
Node node = order_list[n];
|
deba@2480
|
370 |
|
deba@2480
|
371 |
if (embed_edge[node]) {
|
deba@2480
|
372 |
|
deba@2480
|
373 |
// Merging components on the critical path
|
deba@2480
|
374 |
while (!merge_stack.empty()) {
|
deba@2480
|
375 |
|
deba@2480
|
376 |
// Component root
|
deba@2480
|
377 |
int cn = merge_stack.back().first;
|
deba@2480
|
378 |
bool cd = merge_stack.back().second;
|
deba@2480
|
379 |
merge_stack.pop_back();
|
deba@2480
|
380 |
|
deba@2480
|
381 |
// Parent of component
|
deba@2480
|
382 |
int dn = merge_stack.back().first;
|
deba@2480
|
383 |
bool dd = merge_stack.back().second;
|
deba@2480
|
384 |
merge_stack.pop_back();
|
deba@2480
|
385 |
|
deba@2480
|
386 |
Node parent = order_list[dn];
|
deba@2480
|
387 |
|
deba@2480
|
388 |
// Erasing from merge_roots
|
deba@2480
|
389 |
merge_roots[parent].pop_front();
|
deba@2480
|
390 |
|
deba@2480
|
391 |
Node child = order_list[cn - order_list.size()];
|
deba@2480
|
392 |
|
deba@2480
|
393 |
// Erasing from child_lists
|
deba@2480
|
394 |
if (child_lists[child].prev != INVALID) {
|
deba@2480
|
395 |
child_lists[child_lists[child].prev].next =
|
deba@2480
|
396 |
child_lists[child].next;
|
deba@2480
|
397 |
} else {
|
deba@2480
|
398 |
child_lists[parent].first = child_lists[child].next;
|
deba@2480
|
399 |
}
|
deba@2480
|
400 |
|
deba@2480
|
401 |
if (child_lists[child].next != INVALID) {
|
deba@2480
|
402 |
child_lists[child_lists[child].next].prev =
|
deba@2480
|
403 |
child_lists[child].prev;
|
deba@2480
|
404 |
}
|
deba@2480
|
405 |
|
deba@2480
|
406 |
// Merging external faces
|
deba@2480
|
407 |
{
|
deba@2480
|
408 |
int en = cn;
|
deba@2480
|
409 |
cn = cd ? node_data[cn].prev : node_data[cn].next;
|
deba@2480
|
410 |
cd = node_data[cn].next == en;
|
deba@2480
|
411 |
|
deba@2480
|
412 |
}
|
deba@2480
|
413 |
|
deba@2480
|
414 |
if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn;
|
deba@2480
|
415 |
if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn;
|
deba@2480
|
416 |
|
deba@2480
|
417 |
}
|
deba@2480
|
418 |
|
deba@2480
|
419 |
bool d = pn == node_data[n].prev;
|
deba@2480
|
420 |
|
deba@2480
|
421 |
if (node_data[n].prev == node_data[n].next &&
|
deba@2480
|
422 |
node_data[n].inverted) {
|
deba@2480
|
423 |
d = !d;
|
deba@2480
|
424 |
}
|
deba@2480
|
425 |
|
deba@2480
|
426 |
// Embedding edge into external face
|
deba@2480
|
427 |
if (rd) node_data[rn].next = n; else node_data[rn].prev = n;
|
deba@2480
|
428 |
if (d) node_data[n].prev = rn; else node_data[n].next = rn;
|
deba@2480
|
429 |
pn = rn;
|
deba@2480
|
430 |
|
deba@2480
|
431 |
embed_edge[order_list[n]] = false;
|
deba@2480
|
432 |
}
|
deba@2480
|
433 |
|
deba@2480
|
434 |
if (!merge_roots[node].empty()) {
|
deba@2480
|
435 |
|
deba@2480
|
436 |
bool d = pn == node_data[n].prev;
|
deba@2480
|
437 |
|
deba@2480
|
438 |
merge_stack.push_back(std::make_pair(n, d));
|
deba@2480
|
439 |
|
deba@2480
|
440 |
int rn = merge_roots[node].front();
|
deba@2480
|
441 |
|
deba@2480
|
442 |
int xn = node_data[rn].next;
|
deba@2480
|
443 |
Node xnode = order_list[xn];
|
deba@2480
|
444 |
|
deba@2480
|
445 |
int yn = node_data[rn].prev;
|
deba@2480
|
446 |
Node ynode = order_list[yn];
|
deba@2480
|
447 |
|
deba@2480
|
448 |
bool rd;
|
deba@2480
|
449 |
if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) {
|
deba@2480
|
450 |
rd = true;
|
deba@2480
|
451 |
} else if (!external(ynode, rorder, child_lists,
|
deba@2480
|
452 |
ancestor_map, low_map)) {
|
deba@2480
|
453 |
rd = false;
|
deba@2480
|
454 |
} else if (pertinent(xnode, embed_edge, merge_roots)) {
|
deba@2480
|
455 |
rd = true;
|
deba@2480
|
456 |
} else {
|
deba@2480
|
457 |
rd = false;
|
deba@2480
|
458 |
}
|
deba@2480
|
459 |
|
deba@2480
|
460 |
merge_stack.push_back(std::make_pair(rn, rd));
|
deba@2480
|
461 |
|
deba@2480
|
462 |
pn = rn;
|
deba@2480
|
463 |
n = rd ? xn : yn;
|
deba@2480
|
464 |
|
deba@2480
|
465 |
} else if (!external(node, rorder, child_lists,
|
deba@2480
|
466 |
ancestor_map, low_map)) {
|
deba@2480
|
467 |
int nn = (node_data[n].next != pn ?
|
deba@2480
|
468 |
node_data[n].next : node_data[n].prev);
|
deba@2480
|
469 |
|
deba@2480
|
470 |
bool nd = n == node_data[nn].prev;
|
deba@2480
|
471 |
|
deba@2480
|
472 |
if (nd) node_data[nn].prev = pn;
|
deba@2480
|
473 |
else node_data[nn].next = pn;
|
deba@2480
|
474 |
|
deba@2480
|
475 |
if (n == node_data[pn].prev) node_data[pn].prev = nn;
|
deba@2480
|
476 |
else node_data[pn].next = nn;
|
deba@2480
|
477 |
|
deba@2480
|
478 |
node_data[nn].inverted =
|
deba@2480
|
479 |
(node_data[nn].prev == node_data[nn].next && nd != rd);
|
deba@2480
|
480 |
|
deba@2480
|
481 |
n = nn;
|
deba@2480
|
482 |
}
|
deba@2480
|
483 |
else break;
|
deba@2480
|
484 |
|
deba@2480
|
485 |
}
|
deba@2480
|
486 |
|
deba@2480
|
487 |
if (!merge_stack.empty() || n == rn) {
|
deba@2480
|
488 |
break;
|
deba@2480
|
489 |
}
|
deba@2480
|
490 |
}
|
deba@2480
|
491 |
}
|
deba@2480
|
492 |
|
deba@2480
|
493 |
void initFace(const Node& node, NodeData& node_data,
|
deba@2481
|
494 |
const OrderMap& order_map, const OrderList& order_list) {
|
deba@2480
|
495 |
int n = order_map[node];
|
deba@2480
|
496 |
int rn = n + order_list.size();
|
deba@2480
|
497 |
|
deba@2480
|
498 |
node_data[n].next = node_data[n].prev = rn;
|
deba@2480
|
499 |
node_data[rn].next = node_data[rn].prev = n;
|
deba@2480
|
500 |
|
deba@2480
|
501 |
node_data[n].visited = order_list.size();
|
deba@2480
|
502 |
node_data[rn].visited = order_list.size();
|
deba@2480
|
503 |
|
deba@2480
|
504 |
}
|
deba@2480
|
505 |
|
deba@2480
|
506 |
bool external(const Node& node, int rorder,
|
deba@2480
|
507 |
ChildLists& child_lists, AncestorMap& ancestor_map,
|
deba@2480
|
508 |
LowMap& low_map) {
|
deba@2480
|
509 |
Node child = child_lists[node].first;
|
deba@2480
|
510 |
|
deba@2480
|
511 |
if (child != INVALID) {
|
deba@2480
|
512 |
if (low_map[child] < rorder) return true;
|
deba@2480
|
513 |
}
|
deba@2480
|
514 |
|
deba@2480
|
515 |
if (ancestor_map[node] < rorder) return true;
|
deba@2480
|
516 |
|
deba@2480
|
517 |
return false;
|
deba@2480
|
518 |
}
|
deba@2480
|
519 |
|
deba@2480
|
520 |
bool pertinent(const Node& node, const EmbedEdge& embed_edge,
|
deba@2480
|
521 |
const MergeRoots& merge_roots) {
|
deba@2480
|
522 |
return !merge_roots[node].empty() || embed_edge[node];
|
deba@2480
|
523 |
}
|
deba@2480
|
524 |
|
deba@2480
|
525 |
};
|
deba@2480
|
526 |
|
deba@2499
|
527 |
/// \ingroup planar
|
deba@2480
|
528 |
///
|
deba@2480
|
529 |
/// \brief Planar embedding of an undirected simple graph
|
deba@2480
|
530 |
///
|
deba@2480
|
531 |
/// This class implements the Boyer-Myrvold algorithm for planar
|
deba@2480
|
532 |
/// embedding of an undirected graph. The planar embeding is an
|
deba@2480
|
533 |
/// ordering of the outgoing edges in each node, which is a possible
|
deba@2480
|
534 |
/// configuration to draw the graph in the plane. If there is not
|
deba@2480
|
535 |
/// such ordering then the graph contains a \f$ K_5 \f$ (full graph
|
deba@2480
|
536 |
/// with 5 nodes) or an \f$ K_{3,3} \f$ (complete bipartite graph on
|
deba@2480
|
537 |
/// 3 ANode and 3 BNode) subdivision.
|
deba@2480
|
538 |
///
|
deba@2480
|
539 |
/// The current implementation calculates an embedding or an
|
deba@2480
|
540 |
/// Kuratowski subdivision if the graph is not planar. The running
|
deba@2480
|
541 |
/// time of the algorithm is \f$ O(n) \f$.
|
deba@2480
|
542 |
template <typename UGraph>
|
deba@2480
|
543 |
class PlanarEmbedding {
|
deba@2480
|
544 |
private:
|
deba@2480
|
545 |
|
deba@2499
|
546 |
UGRAPH_TYPEDEFS(typename UGraph);
|
deba@2480
|
547 |
|
deba@2480
|
548 |
const UGraph& _ugraph;
|
deba@2480
|
549 |
typename UGraph::template EdgeMap<Edge> _embedding;
|
deba@2480
|
550 |
|
deba@2480
|
551 |
typename UGraph::template UEdgeMap<bool> _kuratowski;
|
deba@2480
|
552 |
|
deba@2480
|
553 |
private:
|
deba@2480
|
554 |
|
deba@2480
|
555 |
typedef typename UGraph::template NodeMap<Edge> PredMap;
|
deba@2480
|
556 |
|
deba@2480
|
557 |
typedef typename UGraph::template UEdgeMap<bool> TreeMap;
|
deba@2480
|
558 |
|
deba@2480
|
559 |
typedef typename UGraph::template NodeMap<int> OrderMap;
|
deba@2480
|
560 |
typedef std::vector<Node> OrderList;
|
deba@2480
|
561 |
|
deba@2480
|
562 |
typedef typename UGraph::template NodeMap<int> LowMap;
|
deba@2480
|
563 |
typedef typename UGraph::template NodeMap<int> AncestorMap;
|
deba@2480
|
564 |
|
deba@2480
|
565 |
typedef _planarity_bits::NodeDataNode<UGraph> NodeDataNode;
|
deba@2480
|
566 |
typedef std::vector<NodeDataNode> NodeData;
|
deba@2480
|
567 |
|
deba@2480
|
568 |
typedef _planarity_bits::ChildListNode<UGraph> ChildListNode;
|
deba@2480
|
569 |
typedef typename UGraph::template NodeMap<ChildListNode> ChildLists;
|
deba@2480
|
570 |
|
deba@2480
|
571 |
typedef typename UGraph::template NodeMap<std::list<int> > MergeRoots;
|
deba@2480
|
572 |
|
deba@2480
|
573 |
typedef typename UGraph::template NodeMap<Edge> EmbedEdge;
|
deba@2480
|
574 |
|
deba@2480
|
575 |
typedef _planarity_bits::EdgeListNode<UGraph> EdgeListNode;
|
deba@2480
|
576 |
typedef typename UGraph::template EdgeMap<EdgeListNode> EdgeLists;
|
deba@2480
|
577 |
|
deba@2480
|
578 |
typedef typename UGraph::template NodeMap<bool> FlipMap;
|
deba@2480
|
579 |
|
deba@2480
|
580 |
typedef typename UGraph::template NodeMap<int> TypeMap;
|
deba@2480
|
581 |
|
deba@2480
|
582 |
enum IsolatorNodeType {
|
deba@2480
|
583 |
HIGHX = 6, LOWX = 7,
|
deba@2480
|
584 |
HIGHY = 8, LOWY = 9,
|
deba@2480
|
585 |
ROOT = 10, PERTINENT = 11,
|
deba@2480
|
586 |
INTERNAL = 12
|
deba@2480
|
587 |
};
|
deba@2480
|
588 |
|
deba@2480
|
589 |
public:
|
deba@2480
|
590 |
|
deba@2499
|
591 |
/// \brief The map for store of embedding
|
deba@2499
|
592 |
typedef typename UGraph::template EdgeMap<Edge> EmbeddingMap;
|
deba@2499
|
593 |
|
deba@2480
|
594 |
/// \brief Constructor
|
deba@2480
|
595 |
///
|
deba@2480
|
596 |
/// \warining The graph should be simple, i.e. parallel and loop edge
|
deba@2480
|
597 |
/// free.
|
deba@2480
|
598 |
PlanarEmbedding(const UGraph& ugraph)
|
deba@2480
|
599 |
: _ugraph(ugraph), _embedding(_ugraph), _kuratowski(ugraph, false) {}
|
deba@2480
|
600 |
|
deba@2480
|
601 |
/// \brief Runs the algorithm.
|
deba@2480
|
602 |
///
|
deba@2480
|
603 |
/// Runs the algorithm.
|
deba@2480
|
604 |
/// \param kuratowski If the parameter is false, then the
|
deba@2480
|
605 |
/// algorithm does not calculate the isolate Kuratowski
|
deba@2480
|
606 |
/// subdivisions.
|
deba@2480
|
607 |
///\return %True when the graph is planar.
|
deba@2480
|
608 |
bool run(bool kuratowski = true) {
|
deba@2480
|
609 |
typedef _planarity_bits::PlanarityVisitor<UGraph> Visitor;
|
deba@2480
|
610 |
|
deba@2480
|
611 |
PredMap pred_map(_ugraph, INVALID);
|
deba@2480
|
612 |
TreeMap tree_map(_ugraph, false);
|
deba@2480
|
613 |
|
deba@2480
|
614 |
OrderMap order_map(_ugraph, -1);
|
deba@2480
|
615 |
OrderList order_list;
|
deba@2480
|
616 |
|
deba@2480
|
617 |
AncestorMap ancestor_map(_ugraph, -1);
|
deba@2480
|
618 |
LowMap low_map(_ugraph, -1);
|
deba@2480
|
619 |
|
deba@2480
|
620 |
Visitor visitor(_ugraph, pred_map, tree_map,
|
deba@2480
|
621 |
order_map, order_list, ancestor_map, low_map);
|
deba@2480
|
622 |
DfsVisit<UGraph, Visitor> visit(_ugraph, visitor);
|
deba@2480
|
623 |
visit.run();
|
deba@2480
|
624 |
|
deba@2480
|
625 |
ChildLists child_lists(_ugraph);
|
deba@2480
|
626 |
createChildLists(tree_map, order_map, low_map, child_lists);
|
deba@2480
|
627 |
|
deba@2480
|
628 |
NodeData node_data(2 * order_list.size());
|
deba@2480
|
629 |
|
deba@2480
|
630 |
EmbedEdge embed_edge(_ugraph, INVALID);
|
deba@2480
|
631 |
|
deba@2480
|
632 |
MergeRoots merge_roots(_ugraph);
|
deba@2480
|
633 |
|
deba@2480
|
634 |
EdgeLists edge_lists(_ugraph);
|
deba@2480
|
635 |
|
deba@2480
|
636 |
FlipMap flip_map(_ugraph, false);
|
deba@2480
|
637 |
|
deba@2480
|
638 |
for (int i = order_list.size() - 1; i >= 0; --i) {
|
deba@2480
|
639 |
|
deba@2480
|
640 |
Node node = order_list[i];
|
deba@2480
|
641 |
|
deba@2480
|
642 |
node_data[i].first = INVALID;
|
deba@2480
|
643 |
|
deba@2480
|
644 |
Node source = node;
|
deba@2480
|
645 |
for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
|
deba@2480
|
646 |
Node target = _ugraph.target(e);
|
deba@2480
|
647 |
|
deba@2480
|
648 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
deba@2480
|
649 |
initFace(target, edge_lists, node_data,
|
deba@2480
|
650 |
pred_map, order_map, order_list);
|
deba@2480
|
651 |
}
|
deba@2480
|
652 |
}
|
deba@2480
|
653 |
|
deba@2480
|
654 |
for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
|
deba@2480
|
655 |
Node target = _ugraph.target(e);
|
deba@2480
|
656 |
|
deba@2480
|
657 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
deba@2480
|
658 |
embed_edge[target] = e;
|
deba@2480
|
659 |
walkUp(target, source, i, pred_map, low_map,
|
deba@2480
|
660 |
order_map, order_list, node_data, merge_roots);
|
deba@2480
|
661 |
}
|
deba@2480
|
662 |
}
|
deba@2480
|
663 |
|
deba@2480
|
664 |
for (typename MergeRoots::Value::iterator it =
|
deba@2480
|
665 |
merge_roots[node].begin(); it != merge_roots[node].end(); ++it) {
|
deba@2480
|
666 |
int rn = *it;
|
deba@2480
|
667 |
walkDown(rn, i, node_data, edge_lists, flip_map, order_list,
|
deba@2480
|
668 |
child_lists, ancestor_map, low_map, embed_edge, merge_roots);
|
deba@2480
|
669 |
}
|
deba@2480
|
670 |
merge_roots[node].clear();
|
deba@2480
|
671 |
|
deba@2480
|
672 |
for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
|
deba@2480
|
673 |
Node target = _ugraph.target(e);
|
deba@2480
|
674 |
|
deba@2480
|
675 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
deba@2480
|
676 |
if (embed_edge[target] != INVALID) {
|
deba@2480
|
677 |
if (kuratowski) {
|
deba@2480
|
678 |
isolateKuratowski(e, node_data, edge_lists, flip_map,
|
deba@2480
|
679 |
order_map, order_list, pred_map, child_lists,
|
deba@2480
|
680 |
ancestor_map, low_map,
|
deba@2480
|
681 |
embed_edge, merge_roots);
|
deba@2480
|
682 |
}
|
deba@2480
|
683 |
return false;
|
deba@2480
|
684 |
}
|
deba@2480
|
685 |
}
|
deba@2480
|
686 |
}
|
deba@2480
|
687 |
}
|
deba@2480
|
688 |
|
deba@2480
|
689 |
for (int i = 0; i < int(order_list.size()); ++i) {
|
deba@2480
|
690 |
|
deba@2480
|
691 |
mergeRemainingFaces(order_list[i], node_data, order_list, order_map,
|
deba@2480
|
692 |
child_lists, edge_lists);
|
deba@2480
|
693 |
storeEmbedding(order_list[i], node_data, order_map, pred_map,
|
deba@2480
|
694 |
edge_lists, flip_map);
|
deba@2480
|
695 |
}
|
deba@2480
|
696 |
|
deba@2480
|
697 |
return true;
|
deba@2480
|
698 |
}
|
deba@2480
|
699 |
|
deba@2480
|
700 |
/// \brief Gives back the successor of an edge
|
deba@2480
|
701 |
///
|
deba@2480
|
702 |
/// Gives back the successor of an edge. This function makes
|
deba@2480
|
703 |
/// possible to query the cyclic order of the outgoing edges from
|
deba@2480
|
704 |
/// a node.
|
deba@2480
|
705 |
Edge next(const Edge& edge) const {
|
deba@2480
|
706 |
return _embedding[edge];
|
deba@2480
|
707 |
}
|
deba@2480
|
708 |
|
deba@2499
|
709 |
/// \brief Gives back the calculated embedding map
|
deba@2499
|
710 |
///
|
deba@2499
|
711 |
/// The returned map contains the successor of each edge in the
|
deba@2499
|
712 |
/// graph.
|
deba@2499
|
713 |
const EmbeddingMap& embedding() const {
|
deba@2499
|
714 |
return _embedding;
|
deba@2499
|
715 |
}
|
deba@2499
|
716 |
|
deba@2480
|
717 |
/// \brief Gives back true when the undirected edge is in the
|
deba@2480
|
718 |
/// kuratowski subdivision
|
deba@2480
|
719 |
///
|
deba@2480
|
720 |
/// Gives back true when the undirected edge is in the kuratowski
|
deba@2480
|
721 |
/// subdivision
|
deba@2480
|
722 |
bool kuratowski(const UEdge& uedge) {
|
deba@2480
|
723 |
return _kuratowski[uedge];
|
deba@2480
|
724 |
}
|
deba@2480
|
725 |
|
deba@2480
|
726 |
private:
|
deba@2480
|
727 |
|
deba@2480
|
728 |
void createChildLists(const TreeMap& tree_map, const OrderMap& order_map,
|
deba@2480
|
729 |
const LowMap& low_map, ChildLists& child_lists) {
|
deba@2480
|
730 |
|
deba@2480
|
731 |
for (NodeIt n(_ugraph); n != INVALID; ++n) {
|
deba@2480
|
732 |
Node source = n;
|
deba@2480
|
733 |
|
deba@2480
|
734 |
std::vector<Node> targets;
|
deba@2480
|
735 |
for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
|
deba@2480
|
736 |
Node target = _ugraph.target(e);
|
deba@2480
|
737 |
|
deba@2480
|
738 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
deba@2480
|
739 |
targets.push_back(target);
|
deba@2480
|
740 |
}
|
deba@2480
|
741 |
}
|
deba@2480
|
742 |
|
deba@2480
|
743 |
if (targets.size() == 0) {
|
deba@2480
|
744 |
child_lists[source].first = INVALID;
|
deba@2480
|
745 |
} else if (targets.size() == 1) {
|
deba@2480
|
746 |
child_lists[source].first = targets[0];
|
deba@2480
|
747 |
child_lists[targets[0]].prev = INVALID;
|
deba@2480
|
748 |
child_lists[targets[0]].next = INVALID;
|
deba@2480
|
749 |
} else {
|
deba@2480
|
750 |
radixSort(targets.begin(), targets.end(), mapFunctor(low_map));
|
deba@2480
|
751 |
for (int i = 1; i < int(targets.size()); ++i) {
|
deba@2480
|
752 |
child_lists[targets[i]].prev = targets[i - 1];
|
deba@2480
|
753 |
child_lists[targets[i - 1]].next = targets[i];
|
deba@2480
|
754 |
}
|
deba@2480
|
755 |
child_lists[targets.back()].next = INVALID;
|
deba@2480
|
756 |
child_lists[targets.front()].prev = INVALID;
|
deba@2480
|
757 |
child_lists[source].first = targets.front();
|
deba@2480
|
758 |
}
|
deba@2480
|
759 |
}
|
deba@2480
|
760 |
}
|
deba@2480
|
761 |
|
deba@2480
|
762 |
void walkUp(const Node& node, Node root, int rorder,
|
deba@2480
|
763 |
const PredMap& pred_map, const LowMap& low_map,
|
deba@2480
|
764 |
const OrderMap& order_map, const OrderList& order_list,
|
deba@2480
|
765 |
NodeData& node_data, MergeRoots& merge_roots) {
|
deba@2480
|
766 |
|
deba@2480
|
767 |
int na, nb;
|
deba@2480
|
768 |
bool da, db;
|
deba@2480
|
769 |
|
deba@2480
|
770 |
na = nb = order_map[node];
|
deba@2480
|
771 |
da = true; db = false;
|
deba@2480
|
772 |
|
deba@2480
|
773 |
while (true) {
|
deba@2480
|
774 |
|
deba@2480
|
775 |
if (node_data[na].visited == rorder) break;
|
deba@2480
|
776 |
if (node_data[nb].visited == rorder) break;
|
deba@2480
|
777 |
|
deba@2480
|
778 |
node_data[na].visited = rorder;
|
deba@2480
|
779 |
node_data[nb].visited = rorder;
|
deba@2480
|
780 |
|
deba@2480
|
781 |
int rn = -1;
|
deba@2480
|
782 |
|
deba@2480
|
783 |
if (na >= int(order_list.size())) {
|
deba@2480
|
784 |
rn = na;
|
deba@2480
|
785 |
} else if (nb >= int(order_list.size())) {
|
deba@2480
|
786 |
rn = nb;
|
deba@2480
|
787 |
}
|
deba@2480
|
788 |
|
deba@2480
|
789 |
if (rn == -1) {
|
deba@2480
|
790 |
int nn;
|
deba@2480
|
791 |
|
deba@2480
|
792 |
nn = da ? node_data[na].prev : node_data[na].next;
|
deba@2480
|
793 |
da = node_data[nn].prev != na;
|
deba@2480
|
794 |
na = nn;
|
deba@2480
|
795 |
|
deba@2480
|
796 |
nn = db ? node_data[nb].prev : node_data[nb].next;
|
deba@2480
|
797 |
db = node_data[nn].prev != nb;
|
deba@2480
|
798 |
nb = nn;
|
deba@2480
|
799 |
|
deba@2480
|
800 |
} else {
|
deba@2480
|
801 |
|
deba@2480
|
802 |
Node rep = order_list[rn - order_list.size()];
|
deba@2480
|
803 |
Node parent = _ugraph.source(pred_map[rep]);
|
deba@2480
|
804 |
|
deba@2480
|
805 |
if (low_map[rep] < rorder) {
|
deba@2480
|
806 |
merge_roots[parent].push_back(rn);
|
deba@2480
|
807 |
} else {
|
deba@2480
|
808 |
merge_roots[parent].push_front(rn);
|
deba@2480
|
809 |
}
|
deba@2480
|
810 |
|
deba@2480
|
811 |
if (parent != root) {
|
deba@2480
|
812 |
na = nb = order_map[parent];
|
deba@2480
|
813 |
da = true; db = false;
|
deba@2480
|
814 |
} else {
|
deba@2480
|
815 |
break;
|
deba@2480
|
816 |
}
|
deba@2480
|
817 |
}
|
deba@2480
|
818 |
}
|
deba@2480
|
819 |
}
|
deba@2480
|
820 |
|
deba@2480
|
821 |
void walkDown(int rn, int rorder, NodeData& node_data,
|
deba@2480
|
822 |
EdgeLists& edge_lists, FlipMap& flip_map,
|
deba@2480
|
823 |
OrderList& order_list, ChildLists& child_lists,
|
deba@2480
|
824 |
AncestorMap& ancestor_map, LowMap& low_map,
|
deba@2480
|
825 |
EmbedEdge& embed_edge, MergeRoots& merge_roots) {
|
deba@2480
|
826 |
|
deba@2480
|
827 |
std::vector<std::pair<int, bool> > merge_stack;
|
deba@2480
|
828 |
|
deba@2480
|
829 |
for (int di = 0; di < 2; ++di) {
|
deba@2480
|
830 |
bool rd = di == 0;
|
deba@2480
|
831 |
int pn = rn;
|
deba@2480
|
832 |
int n = rd ? node_data[rn].next : node_data[rn].prev;
|
deba@2480
|
833 |
|
deba@2480
|
834 |
while (n != rn) {
|
deba@2480
|
835 |
|
deba@2480
|
836 |
Node node = order_list[n];
|
deba@2480
|
837 |
|
deba@2480
|
838 |
if (embed_edge[node] != INVALID) {
|
deba@2480
|
839 |
|
deba@2480
|
840 |
// Merging components on the critical path
|
deba@2480
|
841 |
while (!merge_stack.empty()) {
|
deba@2480
|
842 |
|
deba@2480
|
843 |
// Component root
|
deba@2480
|
844 |
int cn = merge_stack.back().first;
|
deba@2480
|
845 |
bool cd = merge_stack.back().second;
|
deba@2480
|
846 |
merge_stack.pop_back();
|
deba@2480
|
847 |
|
deba@2480
|
848 |
// Parent of component
|
deba@2480
|
849 |
int dn = merge_stack.back().first;
|
deba@2480
|
850 |
bool dd = merge_stack.back().second;
|
deba@2480
|
851 |
merge_stack.pop_back();
|
deba@2480
|
852 |
|
deba@2480
|
853 |
Node parent = order_list[dn];
|
deba@2480
|
854 |
|
deba@2480
|
855 |
// Erasing from merge_roots
|
deba@2480
|
856 |
merge_roots[parent].pop_front();
|
deba@2480
|
857 |
|
deba@2480
|
858 |
Node child = order_list[cn - order_list.size()];
|
deba@2480
|
859 |
|
deba@2480
|
860 |
// Erasing from child_lists
|
deba@2480
|
861 |
if (child_lists[child].prev != INVALID) {
|
deba@2480
|
862 |
child_lists[child_lists[child].prev].next =
|
deba@2480
|
863 |
child_lists[child].next;
|
deba@2480
|
864 |
} else {
|
deba@2480
|
865 |
child_lists[parent].first = child_lists[child].next;
|
deba@2480
|
866 |
}
|
deba@2480
|
867 |
|
deba@2480
|
868 |
if (child_lists[child].next != INVALID) {
|
deba@2480
|
869 |
child_lists[child_lists[child].next].prev =
|
deba@2480
|
870 |
child_lists[child].prev;
|
deba@2480
|
871 |
}
|
deba@2480
|
872 |
|
deba@2480
|
873 |
// Merging edges + flipping
|
deba@2480
|
874 |
Edge de = node_data[dn].first;
|
deba@2480
|
875 |
Edge ce = node_data[cn].first;
|
deba@2480
|
876 |
|
deba@2480
|
877 |
flip_map[order_list[cn - order_list.size()]] = cd != dd;
|
deba@2480
|
878 |
if (cd != dd) {
|
deba@2480
|
879 |
std::swap(edge_lists[ce].prev, edge_lists[ce].next);
|
deba@2480
|
880 |
ce = edge_lists[ce].prev;
|
deba@2480
|
881 |
std::swap(edge_lists[ce].prev, edge_lists[ce].next);
|
deba@2480
|
882 |
}
|
deba@2480
|
883 |
|
deba@2480
|
884 |
{
|
deba@2480
|
885 |
Edge dne = edge_lists[de].next;
|
deba@2480
|
886 |
Edge cne = edge_lists[ce].next;
|
deba@2480
|
887 |
|
deba@2480
|
888 |
edge_lists[de].next = cne;
|
deba@2480
|
889 |
edge_lists[ce].next = dne;
|
deba@2480
|
890 |
|
deba@2480
|
891 |
edge_lists[dne].prev = ce;
|
deba@2480
|
892 |
edge_lists[cne].prev = de;
|
deba@2480
|
893 |
}
|
deba@2480
|
894 |
|
deba@2480
|
895 |
if (dd) {
|
deba@2480
|
896 |
node_data[dn].first = ce;
|
deba@2480
|
897 |
}
|
deba@2480
|
898 |
|
deba@2480
|
899 |
// Merging external faces
|
deba@2480
|
900 |
{
|
deba@2480
|
901 |
int en = cn;
|
deba@2480
|
902 |
cn = cd ? node_data[cn].prev : node_data[cn].next;
|
deba@2480
|
903 |
cd = node_data[cn].next == en;
|
deba@2480
|
904 |
|
deba@2480
|
905 |
if (node_data[cn].prev == node_data[cn].next &&
|
deba@2480
|
906 |
node_data[cn].inverted) {
|
deba@2480
|
907 |
cd = !cd;
|
deba@2480
|
908 |
}
|
deba@2480
|
909 |
}
|
deba@2480
|
910 |
|
deba@2480
|
911 |
if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn;
|
deba@2480
|
912 |
if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn;
|
deba@2480
|
913 |
|
deba@2480
|
914 |
}
|
deba@2480
|
915 |
|
deba@2480
|
916 |
bool d = pn == node_data[n].prev;
|
deba@2480
|
917 |
|
deba@2480
|
918 |
if (node_data[n].prev == node_data[n].next &&
|
deba@2480
|
919 |
node_data[n].inverted) {
|
deba@2480
|
920 |
d = !d;
|
deba@2480
|
921 |
}
|
deba@2480
|
922 |
|
deba@2480
|
923 |
// Add new edge
|
deba@2480
|
924 |
{
|
deba@2480
|
925 |
Edge edge = embed_edge[node];
|
deba@2480
|
926 |
Edge re = node_data[rn].first;
|
deba@2480
|
927 |
|
deba@2480
|
928 |
edge_lists[edge_lists[re].next].prev = edge;
|
deba@2480
|
929 |
edge_lists[edge].next = edge_lists[re].next;
|
deba@2480
|
930 |
edge_lists[edge].prev = re;
|
deba@2480
|
931 |
edge_lists[re].next = edge;
|
deba@2480
|
932 |
|
deba@2480
|
933 |
if (!rd) {
|
deba@2480
|
934 |
node_data[rn].first = edge;
|
deba@2480
|
935 |
}
|
deba@2480
|
936 |
|
deba@2480
|
937 |
Edge rev = _ugraph.oppositeEdge(edge);
|
deba@2480
|
938 |
Edge e = node_data[n].first;
|
deba@2480
|
939 |
|
deba@2480
|
940 |
edge_lists[edge_lists[e].next].prev = rev;
|
deba@2480
|
941 |
edge_lists[rev].next = edge_lists[e].next;
|
deba@2480
|
942 |
edge_lists[rev].prev = e;
|
deba@2480
|
943 |
edge_lists[e].next = rev;
|
deba@2480
|
944 |
|
deba@2480
|
945 |
if (d) {
|
deba@2480
|
946 |
node_data[n].first = rev;
|
deba@2480
|
947 |
}
|
deba@2480
|
948 |
|
deba@2480
|
949 |
}
|
deba@2480
|
950 |
|
deba@2480
|
951 |
// Embedding edge into external face
|
deba@2480
|
952 |
if (rd) node_data[rn].next = n; else node_data[rn].prev = n;
|
deba@2480
|
953 |
if (d) node_data[n].prev = rn; else node_data[n].next = rn;
|
deba@2480
|
954 |
pn = rn;
|
deba@2480
|
955 |
|
deba@2480
|
956 |
embed_edge[order_list[n]] = INVALID;
|
deba@2480
|
957 |
}
|
deba@2480
|
958 |
|
deba@2480
|
959 |
if (!merge_roots[node].empty()) {
|
deba@2480
|
960 |
|
deba@2480
|
961 |
bool d = pn == node_data[n].prev;
|
deba@2480
|
962 |
if (node_data[n].prev == node_data[n].next &&
|
deba@2480
|
963 |
node_data[n].inverted) {
|
deba@2480
|
964 |
d = !d;
|
deba@2480
|
965 |
}
|
deba@2480
|
966 |
|
deba@2480
|
967 |
merge_stack.push_back(std::make_pair(n, d));
|
deba@2480
|
968 |
|
deba@2480
|
969 |
int rn = merge_roots[node].front();
|
deba@2480
|
970 |
|
deba@2480
|
971 |
int xn = node_data[rn].next;
|
deba@2480
|
972 |
Node xnode = order_list[xn];
|
deba@2480
|
973 |
|
deba@2480
|
974 |
int yn = node_data[rn].prev;
|
deba@2480
|
975 |
Node ynode = order_list[yn];
|
deba@2480
|
976 |
|
deba@2480
|
977 |
bool rd;
|
deba@2480
|
978 |
if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) {
|
deba@2480
|
979 |
rd = true;
|
deba@2480
|
980 |
} else if (!external(ynode, rorder, child_lists,
|
deba@2480
|
981 |
ancestor_map, low_map)) {
|
deba@2480
|
982 |
rd = false;
|
deba@2480
|
983 |
} else if (pertinent(xnode, embed_edge, merge_roots)) {
|
deba@2480
|
984 |
rd = true;
|
deba@2480
|
985 |
} else {
|
deba@2480
|
986 |
rd = false;
|
deba@2480
|
987 |
}
|
deba@2480
|
988 |
|
deba@2480
|
989 |
merge_stack.push_back(std::make_pair(rn, rd));
|
deba@2480
|
990 |
|
deba@2480
|
991 |
pn = rn;
|
deba@2480
|
992 |
n = rd ? xn : yn;
|
deba@2480
|
993 |
|
deba@2480
|
994 |
} else if (!external(node, rorder, child_lists,
|
deba@2480
|
995 |
ancestor_map, low_map)) {
|
deba@2480
|
996 |
int nn = (node_data[n].next != pn ?
|
deba@2480
|
997 |
node_data[n].next : node_data[n].prev);
|
deba@2480
|
998 |
|
deba@2480
|
999 |
bool nd = n == node_data[nn].prev;
|
deba@2480
|
1000 |
|
deba@2480
|
1001 |
if (nd) node_data[nn].prev = pn;
|
deba@2480
|
1002 |
else node_data[nn].next = pn;
|
deba@2480
|
1003 |
|
deba@2480
|
1004 |
if (n == node_data[pn].prev) node_data[pn].prev = nn;
|
deba@2480
|
1005 |
else node_data[pn].next = nn;
|
deba@2480
|
1006 |
|
deba@2480
|
1007 |
node_data[nn].inverted =
|
deba@2480
|
1008 |
(node_data[nn].prev == node_data[nn].next && nd != rd);
|
deba@2480
|
1009 |
|
deba@2480
|
1010 |
n = nn;
|
deba@2480
|
1011 |
}
|
deba@2480
|
1012 |
else break;
|
deba@2480
|
1013 |
|
deba@2480
|
1014 |
}
|
deba@2480
|
1015 |
|
deba@2480
|
1016 |
if (!merge_stack.empty() || n == rn) {
|
deba@2480
|
1017 |
break;
|
deba@2480
|
1018 |
}
|
deba@2480
|
1019 |
}
|
deba@2480
|
1020 |
}
|
deba@2480
|
1021 |
|
deba@2480
|
1022 |
void initFace(const Node& node, EdgeLists& edge_lists,
|
deba@2480
|
1023 |
NodeData& node_data, const PredMap& pred_map,
|
deba@2480
|
1024 |
const OrderMap& order_map, const OrderList& order_list) {
|
deba@2480
|
1025 |
int n = order_map[node];
|
deba@2480
|
1026 |
int rn = n + order_list.size();
|
deba@2480
|
1027 |
|
deba@2480
|
1028 |
node_data[n].next = node_data[n].prev = rn;
|
deba@2480
|
1029 |
node_data[rn].next = node_data[rn].prev = n;
|
deba@2480
|
1030 |
|
deba@2480
|
1031 |
node_data[n].visited = order_list.size();
|
deba@2480
|
1032 |
node_data[rn].visited = order_list.size();
|
deba@2480
|
1033 |
|
deba@2480
|
1034 |
node_data[n].inverted = false;
|
deba@2480
|
1035 |
node_data[rn].inverted = false;
|
deba@2480
|
1036 |
|
deba@2480
|
1037 |
Edge edge = pred_map[node];
|
deba@2480
|
1038 |
Edge rev = _ugraph.oppositeEdge(edge);
|
deba@2480
|
1039 |
|
deba@2480
|
1040 |
node_data[rn].first = edge;
|
deba@2480
|
1041 |
node_data[n].first = rev;
|
deba@2480
|
1042 |
|
deba@2480
|
1043 |
edge_lists[edge].prev = edge;
|
deba@2480
|
1044 |
edge_lists[edge].next = edge;
|
deba@2480
|
1045 |
|
deba@2480
|
1046 |
edge_lists[rev].prev = rev;
|
deba@2480
|
1047 |
edge_lists[rev].next = rev;
|
deba@2480
|
1048 |
|
deba@2480
|
1049 |
}
|
deba@2480
|
1050 |
|
deba@2480
|
1051 |
void mergeRemainingFaces(const Node& node, NodeData& node_data,
|
deba@2480
|
1052 |
OrderList& order_list, OrderMap& order_map,
|
deba@2480
|
1053 |
ChildLists& child_lists, EdgeLists& edge_lists) {
|
deba@2480
|
1054 |
while (child_lists[node].first != INVALID) {
|
deba@2480
|
1055 |
int dd = order_map[node];
|
deba@2480
|
1056 |
Node child = child_lists[node].first;
|
deba@2480
|
1057 |
int cd = order_map[child] + order_list.size();
|
deba@2480
|
1058 |
child_lists[node].first = child_lists[child].next;
|
deba@2480
|
1059 |
|
deba@2480
|
1060 |
Edge de = node_data[dd].first;
|
deba@2480
|
1061 |
Edge ce = node_data[cd].first;
|
deba@2480
|
1062 |
|
deba@2480
|
1063 |
if (de != INVALID) {
|
deba@2480
|
1064 |
Edge dne = edge_lists[de].next;
|
deba@2480
|
1065 |
Edge cne = edge_lists[ce].next;
|
deba@2480
|
1066 |
|
deba@2480
|
1067 |
edge_lists[de].next = cne;
|
deba@2480
|
1068 |
edge_lists[ce].next = dne;
|
deba@2480
|
1069 |
|
deba@2480
|
1070 |
edge_lists[dne].prev = ce;
|
deba@2480
|
1071 |
edge_lists[cne].prev = de;
|
deba@2480
|
1072 |
}
|
deba@2480
|
1073 |
|
deba@2480
|
1074 |
node_data[dd].first = ce;
|
deba@2480
|
1075 |
|
deba@2480
|
1076 |
}
|
deba@2480
|
1077 |
}
|
deba@2480
|
1078 |
|
deba@2480
|
1079 |
void storeEmbedding(const Node& node, NodeData& node_data,
|
deba@2480
|
1080 |
OrderMap& order_map, PredMap& pred_map,
|
deba@2480
|
1081 |
EdgeLists& edge_lists, FlipMap& flip_map) {
|
deba@2480
|
1082 |
|
deba@2480
|
1083 |
if (node_data[order_map[node]].first == INVALID) return;
|
deba@2480
|
1084 |
|
deba@2480
|
1085 |
if (pred_map[node] != INVALID) {
|
deba@2480
|
1086 |
Node source = _ugraph.source(pred_map[node]);
|
deba@2480
|
1087 |
flip_map[node] = flip_map[node] != flip_map[source];
|
deba@2480
|
1088 |
}
|
deba@2480
|
1089 |
|
deba@2480
|
1090 |
Edge first = node_data[order_map[node]].first;
|
deba@2480
|
1091 |
Edge prev = first;
|
deba@2480
|
1092 |
|
deba@2480
|
1093 |
Edge edge = flip_map[node] ?
|
deba@2480
|
1094 |
edge_lists[prev].prev : edge_lists[prev].next;
|
deba@2480
|
1095 |
|
deba@2480
|
1096 |
_embedding[prev] = edge;
|
deba@2480
|
1097 |
|
deba@2480
|
1098 |
while (edge != first) {
|
deba@2480
|
1099 |
Edge next = edge_lists[edge].prev == prev ?
|
deba@2480
|
1100 |
edge_lists[edge].next : edge_lists[edge].prev;
|
deba@2480
|
1101 |
prev = edge; edge = next;
|
deba@2480
|
1102 |
_embedding[prev] = edge;
|
deba@2480
|
1103 |
}
|
deba@2480
|
1104 |
}
|
deba@2480
|
1105 |
|
deba@2480
|
1106 |
|
deba@2480
|
1107 |
bool external(const Node& node, int rorder,
|
deba@2480
|
1108 |
ChildLists& child_lists, AncestorMap& ancestor_map,
|
deba@2480
|
1109 |
LowMap& low_map) {
|
deba@2480
|
1110 |
Node child = child_lists[node].first;
|
deba@2480
|
1111 |
|
deba@2480
|
1112 |
if (child != INVALID) {
|
deba@2480
|
1113 |
if (low_map[child] < rorder) return true;
|
deba@2480
|
1114 |
}
|
deba@2480
|
1115 |
|
deba@2480
|
1116 |
if (ancestor_map[node] < rorder) return true;
|
deba@2480
|
1117 |
|
deba@2480
|
1118 |
return false;
|
deba@2480
|
1119 |
}
|
deba@2480
|
1120 |
|
deba@2480
|
1121 |
bool pertinent(const Node& node, const EmbedEdge& embed_edge,
|
deba@2480
|
1122 |
const MergeRoots& merge_roots) {
|
deba@2480
|
1123 |
return !merge_roots[node].empty() || embed_edge[node] != INVALID;
|
deba@2480
|
1124 |
}
|
deba@2480
|
1125 |
|
deba@2480
|
1126 |
int lowPoint(const Node& node, OrderMap& order_map, ChildLists& child_lists,
|
deba@2480
|
1127 |
AncestorMap& ancestor_map, LowMap& low_map) {
|
deba@2480
|
1128 |
int low_point;
|
deba@2480
|
1129 |
|
deba@2480
|
1130 |
Node child = child_lists[node].first;
|
deba@2480
|
1131 |
|
deba@2480
|
1132 |
if (child != INVALID) {
|
deba@2480
|
1133 |
low_point = low_map[child];
|
deba@2480
|
1134 |
} else {
|
deba@2480
|
1135 |
low_point = order_map[node];
|
deba@2480
|
1136 |
}
|
deba@2480
|
1137 |
|
deba@2480
|
1138 |
if (low_point > ancestor_map[node]) {
|
deba@2480
|
1139 |
low_point = ancestor_map[node];
|
deba@2480
|
1140 |
}
|
deba@2480
|
1141 |
|
deba@2480
|
1142 |
return low_point;
|
deba@2480
|
1143 |
}
|
deba@2480
|
1144 |
|
deba@2480
|
1145 |
int findComponentRoot(Node root, Node node, ChildLists& child_lists,
|
deba@2480
|
1146 |
OrderMap& order_map, OrderList& order_list) {
|
deba@2480
|
1147 |
|
deba@2480
|
1148 |
int order = order_map[root];
|
deba@2480
|
1149 |
int norder = order_map[node];
|
deba@2480
|
1150 |
|
deba@2480
|
1151 |
Node child = child_lists[root].first;
|
deba@2480
|
1152 |
while (child != INVALID) {
|
deba@2480
|
1153 |
int corder = order_map[child];
|
deba@2480
|
1154 |
if (corder > order && corder < norder) {
|
deba@2480
|
1155 |
order = corder;
|
deba@2480
|
1156 |
}
|
deba@2480
|
1157 |
child = child_lists[child].next;
|
deba@2480
|
1158 |
}
|
deba@2480
|
1159 |
return order + order_list.size();
|
deba@2480
|
1160 |
}
|
deba@2480
|
1161 |
|
deba@2480
|
1162 |
Node findPertinent(Node node, OrderMap& order_map, NodeData& node_data,
|
deba@2480
|
1163 |
EmbedEdge& embed_edge, MergeRoots& merge_roots) {
|
deba@2480
|
1164 |
Node wnode =_ugraph.target(node_data[order_map[node]].first);
|
deba@2480
|
1165 |
while (!pertinent(wnode, embed_edge, merge_roots)) {
|
deba@2480
|
1166 |
wnode = _ugraph.target(node_data[order_map[wnode]].first);
|
deba@2480
|
1167 |
}
|
deba@2480
|
1168 |
return wnode;
|
deba@2480
|
1169 |
}
|
deba@2480
|
1170 |
|
deba@2480
|
1171 |
|
deba@2480
|
1172 |
Node findExternal(Node node, int rorder, OrderMap& order_map,
|
deba@2480
|
1173 |
ChildLists& child_lists, AncestorMap& ancestor_map,
|
deba@2480
|
1174 |
LowMap& low_map, NodeData& node_data) {
|
deba@2480
|
1175 |
Node wnode =_ugraph.target(node_data[order_map[node]].first);
|
deba@2480
|
1176 |
while (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
|
deba@2480
|
1177 |
wnode = _ugraph.target(node_data[order_map[wnode]].first);
|
deba@2480
|
1178 |
}
|
deba@2480
|
1179 |
return wnode;
|
deba@2480
|
1180 |
}
|
deba@2480
|
1181 |
|
deba@2480
|
1182 |
void markCommonPath(Node node, int rorder, Node& wnode, Node& znode,
|
deba@2480
|
1183 |
OrderList& order_list, OrderMap& order_map,
|
deba@2480
|
1184 |
NodeData& node_data, EdgeLists& edge_lists,
|
deba@2480
|
1185 |
EmbedEdge& embed_edge, MergeRoots& merge_roots,
|
deba@2480
|
1186 |
ChildLists& child_lists, AncestorMap& ancestor_map,
|
deba@2480
|
1187 |
LowMap& low_map) {
|
deba@2480
|
1188 |
|
deba@2480
|
1189 |
Node cnode = node;
|
deba@2480
|
1190 |
Node pred = INVALID;
|
deba@2480
|
1191 |
|
deba@2480
|
1192 |
while (true) {
|
deba@2480
|
1193 |
|
deba@2480
|
1194 |
bool pert = pertinent(cnode, embed_edge, merge_roots);
|
deba@2480
|
1195 |
bool ext = external(cnode, rorder, child_lists, ancestor_map, low_map);
|
deba@2480
|
1196 |
|
deba@2480
|
1197 |
if (pert && ext) {
|
deba@2480
|
1198 |
if (!merge_roots[cnode].empty()) {
|
deba@2480
|
1199 |
int cn = merge_roots[cnode].back();
|
deba@2480
|
1200 |
|
deba@2480
|
1201 |
if (low_map[order_list[cn - order_list.size()]] < rorder) {
|
deba@2480
|
1202 |
Edge edge = node_data[cn].first;
|
deba@2480
|
1203 |
_kuratowski.set(edge, true);
|
deba@2480
|
1204 |
|
deba@2480
|
1205 |
pred = cnode;
|
deba@2480
|
1206 |
cnode = _ugraph.target(edge);
|
deba@2480
|
1207 |
|
deba@2480
|
1208 |
continue;
|
deba@2480
|
1209 |
}
|
deba@2480
|
1210 |
}
|
deba@2480
|
1211 |
wnode = znode = cnode;
|
deba@2480
|
1212 |
return;
|
deba@2480
|
1213 |
|
deba@2480
|
1214 |
} else if (pert) {
|
deba@2480
|
1215 |
wnode = cnode;
|
deba@2480
|
1216 |
|
deba@2480
|
1217 |
while (!external(cnode, rorder, child_lists, ancestor_map, low_map)) {
|
deba@2480
|
1218 |
Edge edge = node_data[order_map[cnode]].first;
|
deba@2480
|
1219 |
|
deba@2480
|
1220 |
if (_ugraph.target(edge) == pred) {
|
deba@2480
|
1221 |
edge = edge_lists[edge].next;
|
deba@2480
|
1222 |
}
|
deba@2480
|
1223 |
_kuratowski.set(edge, true);
|
deba@2480
|
1224 |
|
deba@2480
|
1225 |
Node next = _ugraph.target(edge);
|
deba@2480
|
1226 |
pred = cnode; cnode = next;
|
deba@2480
|
1227 |
}
|
deba@2480
|
1228 |
|
deba@2480
|
1229 |
znode = cnode;
|
deba@2480
|
1230 |
return;
|
deba@2480
|
1231 |
|
deba@2480
|
1232 |
} else if (ext) {
|
deba@2480
|
1233 |
znode = cnode;
|
deba@2480
|
1234 |
|
deba@2480
|
1235 |
while (!pertinent(cnode, embed_edge, merge_roots)) {
|
deba@2480
|
1236 |
Edge edge = node_data[order_map[cnode]].first;
|
deba@2480
|
1237 |
|
deba@2480
|
1238 |
if (_ugraph.target(edge) == pred) {
|
deba@2480
|
1239 |
edge = edge_lists[edge].next;
|
deba@2480
|
1240 |
}
|
deba@2480
|
1241 |
_kuratowski.set(edge, true);
|
deba@2480
|
1242 |
|
deba@2480
|
1243 |
Node next = _ugraph.target(edge);
|
deba@2480
|
1244 |
pred = cnode; cnode = next;
|
deba@2480
|
1245 |
}
|
deba@2480
|
1246 |
|
deba@2480
|
1247 |
wnode = cnode;
|
deba@2480
|
1248 |
return;
|
deba@2480
|
1249 |
|
deba@2480
|
1250 |
} else {
|
deba@2480
|
1251 |
Edge edge = node_data[order_map[cnode]].first;
|
deba@2480
|
1252 |
|
deba@2480
|
1253 |
if (_ugraph.target(edge) == pred) {
|
deba@2480
|
1254 |
edge = edge_lists[edge].next;
|
deba@2480
|
1255 |
}
|
deba@2480
|
1256 |
_kuratowski.set(edge, true);
|
deba@2480
|
1257 |
|
deba@2480
|
1258 |
Node next = _ugraph.target(edge);
|
deba@2480
|
1259 |
pred = cnode; cnode = next;
|
deba@2480
|
1260 |
}
|
deba@2480
|
1261 |
|
deba@2480
|
1262 |
}
|
deba@2480
|
1263 |
|
deba@2480
|
1264 |
}
|
deba@2480
|
1265 |
|
deba@2480
|
1266 |
void orientComponent(Node root, int rn, OrderMap& order_map,
|
deba@2480
|
1267 |
PredMap& pred_map, NodeData& node_data,
|
deba@2480
|
1268 |
EdgeLists& edge_lists, FlipMap& flip_map,
|
deba@2480
|
1269 |
TypeMap& type_map) {
|
deba@2480
|
1270 |
node_data[order_map[root]].first = node_data[rn].first;
|
deba@2480
|
1271 |
type_map[root] = 1;
|
deba@2480
|
1272 |
|
deba@2480
|
1273 |
std::vector<Node> st, qu;
|
deba@2480
|
1274 |
|
deba@2480
|
1275 |
st.push_back(root);
|
deba@2480
|
1276 |
while (!st.empty()) {
|
deba@2480
|
1277 |
Node node = st.back();
|
deba@2480
|
1278 |
st.pop_back();
|
deba@2480
|
1279 |
qu.push_back(node);
|
deba@2480
|
1280 |
|
deba@2480
|
1281 |
Edge edge = node_data[order_map[node]].first;
|
deba@2480
|
1282 |
|
deba@2480
|
1283 |
if (type_map[_ugraph.target(edge)] == 0) {
|
deba@2480
|
1284 |
st.push_back(_ugraph.target(edge));
|
deba@2480
|
1285 |
type_map[_ugraph.target(edge)] = 1;
|
deba@2480
|
1286 |
}
|
deba@2480
|
1287 |
|
deba@2480
|
1288 |
Edge last = edge, pred = edge;
|
deba@2480
|
1289 |
edge = edge_lists[edge].next;
|
deba@2480
|
1290 |
while (edge != last) {
|
deba@2480
|
1291 |
|
deba@2480
|
1292 |
if (type_map[_ugraph.target(edge)] == 0) {
|
deba@2480
|
1293 |
st.push_back(_ugraph.target(edge));
|
deba@2480
|
1294 |
type_map[_ugraph.target(edge)] = 1;
|
deba@2480
|
1295 |
}
|
deba@2480
|
1296 |
|
deba@2480
|
1297 |
Edge next = edge_lists[edge].next != pred ?
|
deba@2480
|
1298 |
edge_lists[edge].next : edge_lists[edge].prev;
|
deba@2480
|
1299 |
pred = edge; edge = next;
|
deba@2480
|
1300 |
}
|
deba@2480
|
1301 |
|
deba@2480
|
1302 |
}
|
deba@2480
|
1303 |
|
deba@2480
|
1304 |
type_map[root] = 2;
|
deba@2480
|
1305 |
flip_map[root] = false;
|
deba@2480
|
1306 |
|
deba@2480
|
1307 |
for (int i = 1; i < int(qu.size()); ++i) {
|
deba@2480
|
1308 |
|
deba@2480
|
1309 |
Node node = qu[i];
|
deba@2480
|
1310 |
|
deba@2480
|
1311 |
while (type_map[node] != 2) {
|
deba@2480
|
1312 |
st.push_back(node);
|
deba@2480
|
1313 |
type_map[node] = 2;
|
deba@2480
|
1314 |
node = _ugraph.source(pred_map[node]);
|
deba@2480
|
1315 |
}
|
deba@2480
|
1316 |
|
deba@2480
|
1317 |
bool flip = flip_map[node];
|
deba@2480
|
1318 |
|
deba@2480
|
1319 |
while (!st.empty()) {
|
deba@2480
|
1320 |
node = st.back();
|
deba@2480
|
1321 |
st.pop_back();
|
deba@2480
|
1322 |
|
deba@2480
|
1323 |
flip_map[node] = flip != flip_map[node];
|
deba@2480
|
1324 |
flip = flip_map[node];
|
deba@2480
|
1325 |
|
deba@2480
|
1326 |
if (flip) {
|
deba@2480
|
1327 |
Edge edge = node_data[order_map[node]].first;
|
deba@2480
|
1328 |
std::swap(edge_lists[edge].prev, edge_lists[edge].next);
|
deba@2480
|
1329 |
edge = edge_lists[edge].prev;
|
deba@2480
|
1330 |
std::swap(edge_lists[edge].prev, edge_lists[edge].next);
|
deba@2480
|
1331 |
node_data[order_map[node]].first = edge;
|
deba@2480
|
1332 |
}
|
deba@2480
|
1333 |
}
|
deba@2480
|
1334 |
}
|
deba@2480
|
1335 |
|
deba@2480
|
1336 |
for (int i = 0; i < int(qu.size()); ++i) {
|
deba@2480
|
1337 |
|
deba@2480
|
1338 |
Edge edge = node_data[order_map[qu[i]]].first;
|
deba@2480
|
1339 |
Edge last = edge, pred = edge;
|
deba@2480
|
1340 |
|
deba@2480
|
1341 |
edge = edge_lists[edge].next;
|
deba@2480
|
1342 |
while (edge != last) {
|
deba@2480
|
1343 |
|
deba@2480
|
1344 |
if (edge_lists[edge].next == pred) {
|
deba@2480
|
1345 |
std::swap(edge_lists[edge].next, edge_lists[edge].prev);
|
deba@2480
|
1346 |
}
|
deba@2480
|
1347 |
pred = edge; edge = edge_lists[edge].next;
|
deba@2480
|
1348 |
}
|
deba@2480
|
1349 |
|
deba@2480
|
1350 |
}
|
deba@2480
|
1351 |
}
|
deba@2480
|
1352 |
|
deba@2480
|
1353 |
void setFaceFlags(Node root, Node wnode, Node ynode, Node xnode,
|
deba@2480
|
1354 |
OrderMap& order_map, NodeData& node_data,
|
deba@2480
|
1355 |
TypeMap& type_map) {
|
deba@2480
|
1356 |
Node node = _ugraph.target(node_data[order_map[root]].first);
|
deba@2480
|
1357 |
|
deba@2480
|
1358 |
while (node != ynode) {
|
deba@2480
|
1359 |
type_map[node] = HIGHY;
|
deba@2480
|
1360 |
node = _ugraph.target(node_data[order_map[node]].first);
|
deba@2480
|
1361 |
}
|
deba@2480
|
1362 |
|
deba@2480
|
1363 |
while (node != wnode) {
|
deba@2480
|
1364 |
type_map[node] = LOWY;
|
deba@2480
|
1365 |
node = _ugraph.target(node_data[order_map[node]].first);
|
deba@2480
|
1366 |
}
|
deba@2480
|
1367 |
|
deba@2480
|
1368 |
node = _ugraph.target(node_data[order_map[wnode]].first);
|
deba@2480
|
1369 |
|
deba@2480
|
1370 |
while (node != xnode) {
|
deba@2480
|
1371 |
type_map[node] = LOWX;
|
deba@2480
|
1372 |
node = _ugraph.target(node_data[order_map[node]].first);
|
deba@2480
|
1373 |
}
|
deba@2480
|
1374 |
type_map[node] = LOWX;
|
deba@2480
|
1375 |
|
deba@2480
|
1376 |
node = _ugraph.target(node_data[order_map[xnode]].first);
|
deba@2480
|
1377 |
while (node != root) {
|
deba@2480
|
1378 |
type_map[node] = HIGHX;
|
deba@2480
|
1379 |
node = _ugraph.target(node_data[order_map[node]].first);
|
deba@2480
|
1380 |
}
|
deba@2480
|
1381 |
|
deba@2480
|
1382 |
type_map[wnode] = PERTINENT;
|
deba@2480
|
1383 |
type_map[root] = ROOT;
|
deba@2480
|
1384 |
}
|
deba@2480
|
1385 |
|
deba@2480
|
1386 |
void findInternalPath(std::vector<Edge>& ipath,
|
deba@2480
|
1387 |
Node wnode, Node root, TypeMap& type_map,
|
deba@2480
|
1388 |
OrderMap& order_map, NodeData& node_data,
|
deba@2480
|
1389 |
EdgeLists& edge_lists) {
|
deba@2480
|
1390 |
std::vector<Edge> st;
|
deba@2480
|
1391 |
|
deba@2480
|
1392 |
Node node = wnode;
|
deba@2480
|
1393 |
|
deba@2480
|
1394 |
while (node != root) {
|
deba@2480
|
1395 |
Edge edge = edge_lists[node_data[order_map[node]].first].next;
|
deba@2480
|
1396 |
st.push_back(edge);
|
deba@2480
|
1397 |
node = _ugraph.target(edge);
|
deba@2480
|
1398 |
}
|
deba@2480
|
1399 |
|
deba@2480
|
1400 |
while (true) {
|
deba@2480
|
1401 |
Edge edge = st.back();
|
deba@2480
|
1402 |
if (type_map[_ugraph.target(edge)] == LOWX ||
|
deba@2480
|
1403 |
type_map[_ugraph.target(edge)] == HIGHX) {
|
deba@2480
|
1404 |
break;
|
deba@2480
|
1405 |
}
|
deba@2480
|
1406 |
if (type_map[_ugraph.target(edge)] == 2) {
|
deba@2480
|
1407 |
type_map[_ugraph.target(edge)] = 3;
|
deba@2480
|
1408 |
|
deba@2480
|
1409 |
edge = edge_lists[_ugraph.oppositeEdge(edge)].next;
|
deba@2480
|
1410 |
st.push_back(edge);
|
deba@2480
|
1411 |
} else {
|
deba@2480
|
1412 |
st.pop_back();
|
deba@2480
|
1413 |
edge = edge_lists[edge].next;
|
deba@2480
|
1414 |
|
deba@2480
|
1415 |
while (_ugraph.oppositeEdge(edge) == st.back()) {
|
deba@2480
|
1416 |
edge = st.back();
|
deba@2480
|
1417 |
st.pop_back();
|
deba@2480
|
1418 |
edge = edge_lists[edge].next;
|
deba@2480
|
1419 |
}
|
deba@2480
|
1420 |
st.push_back(edge);
|
deba@2480
|
1421 |
}
|
deba@2480
|
1422 |
}
|
deba@2480
|
1423 |
|
deba@2480
|
1424 |
for (int i = 0; i < int(st.size()); ++i) {
|
deba@2480
|
1425 |
if (type_map[_ugraph.target(st[i])] != LOWY &&
|
deba@2480
|
1426 |
type_map[_ugraph.target(st[i])] != HIGHY) {
|
deba@2480
|
1427 |
for (; i < int(st.size()); ++i) {
|
deba@2480
|
1428 |
ipath.push_back(st[i]);
|
deba@2480
|
1429 |
}
|
deba@2480
|
1430 |
}
|
deba@2480
|
1431 |
}
|
deba@2480
|
1432 |
}
|
deba@2480
|
1433 |
|
deba@2480
|
1434 |
void setInternalFlags(std::vector<Edge>& ipath, TypeMap& type_map) {
|
deba@2480
|
1435 |
for (int i = 1; i < int(ipath.size()); ++i) {
|
deba@2480
|
1436 |
type_map[_ugraph.source(ipath[i])] = INTERNAL;
|
deba@2480
|
1437 |
}
|
deba@2480
|
1438 |
}
|
deba@2480
|
1439 |
|
deba@2480
|
1440 |
void findPilePath(std::vector<Edge>& ppath,
|
deba@2480
|
1441 |
Node root, TypeMap& type_map, OrderMap& order_map,
|
deba@2480
|
1442 |
NodeData& node_data, EdgeLists& edge_lists) {
|
deba@2480
|
1443 |
std::vector<Edge> st;
|
deba@2480
|
1444 |
|
deba@2480
|
1445 |
st.push_back(_ugraph.oppositeEdge(node_data[order_map[root]].first));
|
deba@2480
|
1446 |
st.push_back(node_data[order_map[root]].first);
|
deba@2480
|
1447 |
|
deba@2480
|
1448 |
while (st.size() > 1) {
|
deba@2480
|
1449 |
Edge edge = st.back();
|
deba@2480
|
1450 |
if (type_map[_ugraph.target(edge)] == INTERNAL) {
|
deba@2480
|
1451 |
break;
|
deba@2480
|
1452 |
}
|
deba@2480
|
1453 |
if (type_map[_ugraph.target(edge)] == 3) {
|
deba@2480
|
1454 |
type_map[_ugraph.target(edge)] = 4;
|
deba@2480
|
1455 |
|
deba@2480
|
1456 |
edge = edge_lists[_ugraph.oppositeEdge(edge)].next;
|
deba@2480
|
1457 |
st.push_back(edge);
|
deba@2480
|
1458 |
} else {
|
deba@2480
|
1459 |
st.pop_back();
|
deba@2480
|
1460 |
edge = edge_lists[edge].next;
|
deba@2480
|
1461 |
|
deba@2480
|
1462 |
while (!st.empty() && _ugraph.oppositeEdge(edge) == st.back()) {
|
deba@2480
|
1463 |
edge = st.back();
|
deba@2480
|
1464 |
st.pop_back();
|
deba@2480
|
1465 |
edge = edge_lists[edge].next;
|
deba@2480
|
1466 |
}
|
deba@2480
|
1467 |
st.push_back(edge);
|
deba@2480
|
1468 |
}
|
deba@2480
|
1469 |
}
|
deba@2480
|
1470 |
|
deba@2480
|
1471 |
for (int i = 1; i < int(st.size()); ++i) {
|
deba@2480
|
1472 |
ppath.push_back(st[i]);
|
deba@2480
|
1473 |
}
|
deba@2480
|
1474 |
}
|
deba@2480
|
1475 |
|
deba@2480
|
1476 |
|
deba@2480
|
1477 |
int markExternalPath(Node node, OrderMap& order_map,
|
deba@2480
|
1478 |
ChildLists& child_lists, PredMap& pred_map,
|
deba@2480
|
1479 |
AncestorMap& ancestor_map, LowMap& low_map) {
|
deba@2480
|
1480 |
int lp = lowPoint(node, order_map, child_lists,
|
deba@2480
|
1481 |
ancestor_map, low_map);
|
deba@2480
|
1482 |
|
deba@2480
|
1483 |
if (ancestor_map[node] != lp) {
|
deba@2480
|
1484 |
node = child_lists[node].first;
|
deba@2480
|
1485 |
_kuratowski[pred_map[node]] = true;
|
deba@2480
|
1486 |
|
deba@2480
|
1487 |
while (ancestor_map[node] != lp) {
|
deba@2480
|
1488 |
for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
|
deba@2480
|
1489 |
Node tnode = _ugraph.target(e);
|
deba@2480
|
1490 |
if (order_map[tnode] > order_map[node] && low_map[tnode] == lp) {
|
deba@2480
|
1491 |
node = tnode;
|
deba@2480
|
1492 |
_kuratowski[e] = true;
|
deba@2480
|
1493 |
break;
|
deba@2480
|
1494 |
}
|
deba@2480
|
1495 |
}
|
deba@2480
|
1496 |
}
|
deba@2480
|
1497 |
}
|
deba@2480
|
1498 |
|
deba@2480
|
1499 |
for (OutEdgeIt e(_ugraph, node); e != INVALID; ++e) {
|
deba@2480
|
1500 |
if (order_map[_ugraph.target(e)] == lp) {
|
deba@2480
|
1501 |
_kuratowski[e] = true;
|
deba@2480
|
1502 |
break;
|
deba@2480
|
1503 |
}
|
deba@2480
|
1504 |
}
|
deba@2480
|
1505 |
|
deba@2480
|
1506 |
return lp;
|
deba@2480
|
1507 |
}
|
deba@2480
|
1508 |
|
deba@2480
|
1509 |
void markPertinentPath(Node node, OrderMap& order_map,
|
deba@2480
|
1510 |
NodeData& node_data, EdgeLists& edge_lists,
|
deba@2480
|
1511 |
EmbedEdge& embed_edge, MergeRoots& merge_roots) {
|
deba@2480
|
1512 |
while (embed_edge[node] == INVALID) {
|
deba@2480
|
1513 |
int n = merge_roots[node].front();
|
deba@2480
|
1514 |
Edge edge = node_data[n].first;
|
deba@2480
|
1515 |
|
deba@2480
|
1516 |
_kuratowski.set(edge, true);
|
deba@2480
|
1517 |
|
deba@2480
|
1518 |
Node pred = node;
|
deba@2480
|
1519 |
node = _ugraph.target(edge);
|
deba@2480
|
1520 |
while (!pertinent(node, embed_edge, merge_roots)) {
|
deba@2480
|
1521 |
edge = node_data[order_map[node]].first;
|
deba@2480
|
1522 |
if (_ugraph.target(edge) == pred) {
|
deba@2480
|
1523 |
edge = edge_lists[edge].next;
|
deba@2480
|
1524 |
}
|
deba@2480
|
1525 |
_kuratowski.set(edge, true);
|
deba@2480
|
1526 |
pred = node;
|
deba@2480
|
1527 |
node = _ugraph.target(edge);
|
deba@2480
|
1528 |
}
|
deba@2480
|
1529 |
}
|
deba@2480
|
1530 |
_kuratowski.set(embed_edge[node], true);
|
deba@2480
|
1531 |
}
|
deba@2480
|
1532 |
|
deba@2480
|
1533 |
void markPredPath(Node node, Node snode, PredMap& pred_map) {
|
deba@2480
|
1534 |
while (node != snode) {
|
deba@2480
|
1535 |
_kuratowski.set(pred_map[node], true);
|
deba@2480
|
1536 |
node = _ugraph.source(pred_map[node]);
|
deba@2480
|
1537 |
}
|
deba@2480
|
1538 |
}
|
deba@2480
|
1539 |
|
deba@2480
|
1540 |
void markFacePath(Node ynode, Node xnode,
|
deba@2480
|
1541 |
OrderMap& order_map, NodeData& node_data) {
|
deba@2480
|
1542 |
Edge edge = node_data[order_map[ynode]].first;
|
deba@2480
|
1543 |
Node node = _ugraph.target(edge);
|
deba@2480
|
1544 |
_kuratowski.set(edge, true);
|
deba@2480
|
1545 |
|
deba@2480
|
1546 |
while (node != xnode) {
|
deba@2480
|
1547 |
edge = node_data[order_map[node]].first;
|
deba@2480
|
1548 |
_kuratowski.set(edge, true);
|
deba@2480
|
1549 |
node = _ugraph.target(edge);
|
deba@2480
|
1550 |
}
|
deba@2480
|
1551 |
}
|
deba@2480
|
1552 |
|
deba@2480
|
1553 |
void markInternalPath(std::vector<Edge>& path) {
|
deba@2480
|
1554 |
for (int i = 0; i < int(path.size()); ++i) {
|
deba@2480
|
1555 |
_kuratowski.set(path[i], true);
|
deba@2480
|
1556 |
}
|
deba@2480
|
1557 |
}
|
deba@2480
|
1558 |
|
deba@2480
|
1559 |
void markPilePath(std::vector<Edge>& path) {
|
deba@2480
|
1560 |
for (int i = 0; i < int(path.size()); ++i) {
|
deba@2480
|
1561 |
_kuratowski.set(path[i], true);
|
deba@2480
|
1562 |
}
|
deba@2480
|
1563 |
}
|
deba@2480
|
1564 |
|
deba@2480
|
1565 |
void isolateKuratowski(Edge edge, NodeData& node_data,
|
deba@2480
|
1566 |
EdgeLists& edge_lists, FlipMap& flip_map,
|
deba@2480
|
1567 |
OrderMap& order_map, OrderList& order_list,
|
deba@2480
|
1568 |
PredMap& pred_map, ChildLists& child_lists,
|
deba@2480
|
1569 |
AncestorMap& ancestor_map, LowMap& low_map,
|
deba@2480
|
1570 |
EmbedEdge& embed_edge, MergeRoots& merge_roots) {
|
deba@2480
|
1571 |
|
deba@2480
|
1572 |
Node root = _ugraph.source(edge);
|
deba@2480
|
1573 |
Node enode = _ugraph.target(edge);
|
deba@2480
|
1574 |
|
deba@2480
|
1575 |
int rorder = order_map[root];
|
deba@2480
|
1576 |
|
deba@2480
|
1577 |
TypeMap type_map(_ugraph, 0);
|
deba@2480
|
1578 |
|
deba@2480
|
1579 |
int rn = findComponentRoot(root, enode, child_lists,
|
deba@2480
|
1580 |
order_map, order_list);
|
deba@2480
|
1581 |
|
deba@2480
|
1582 |
Node xnode = order_list[node_data[rn].next];
|
deba@2480
|
1583 |
Node ynode = order_list[node_data[rn].prev];
|
deba@2480
|
1584 |
|
deba@2480
|
1585 |
// Minor-A
|
deba@2480
|
1586 |
{
|
deba@2480
|
1587 |
while (!merge_roots[xnode].empty() || !merge_roots[ynode].empty()) {
|
deba@2480
|
1588 |
|
deba@2480
|
1589 |
if (!merge_roots[xnode].empty()) {
|
deba@2480
|
1590 |
root = xnode;
|
deba@2480
|
1591 |
rn = merge_roots[xnode].front();
|
deba@2480
|
1592 |
} else {
|
deba@2480
|
1593 |
root = ynode;
|
deba@2480
|
1594 |
rn = merge_roots[ynode].front();
|
deba@2480
|
1595 |
}
|
deba@2480
|
1596 |
|
deba@2480
|
1597 |
xnode = order_list[node_data[rn].next];
|
deba@2480
|
1598 |
ynode = order_list[node_data[rn].prev];
|
deba@2480
|
1599 |
}
|
deba@2480
|
1600 |
|
deba@2480
|
1601 |
if (root != _ugraph.source(edge)) {
|
deba@2480
|
1602 |
orientComponent(root, rn, order_map, pred_map,
|
deba@2480
|
1603 |
node_data, edge_lists, flip_map, type_map);
|
deba@2480
|
1604 |
markFacePath(root, root, order_map, node_data);
|
deba@2480
|
1605 |
int xlp = markExternalPath(xnode, order_map, child_lists,
|
deba@2480
|
1606 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1607 |
int ylp = markExternalPath(ynode, order_map, child_lists,
|
deba@2480
|
1608 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1609 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
|
deba@2480
|
1610 |
Node lwnode = findPertinent(ynode, order_map, node_data,
|
deba@2480
|
1611 |
embed_edge, merge_roots);
|
deba@2480
|
1612 |
|
deba@2480
|
1613 |
markPertinentPath(lwnode, order_map, node_data, edge_lists,
|
deba@2480
|
1614 |
embed_edge, merge_roots);
|
deba@2480
|
1615 |
|
deba@2480
|
1616 |
return;
|
deba@2480
|
1617 |
}
|
deba@2480
|
1618 |
}
|
deba@2480
|
1619 |
|
deba@2480
|
1620 |
orientComponent(root, rn, order_map, pred_map,
|
deba@2480
|
1621 |
node_data, edge_lists, flip_map, type_map);
|
deba@2480
|
1622 |
|
deba@2480
|
1623 |
Node wnode = findPertinent(ynode, order_map, node_data,
|
deba@2480
|
1624 |
embed_edge, merge_roots);
|
deba@2480
|
1625 |
setFaceFlags(root, wnode, ynode, xnode, order_map, node_data, type_map);
|
deba@2480
|
1626 |
|
deba@2480
|
1627 |
|
deba@2480
|
1628 |
//Minor-B
|
deba@2480
|
1629 |
if (!merge_roots[wnode].empty()) {
|
deba@2480
|
1630 |
int cn = merge_roots[wnode].back();
|
deba@2480
|
1631 |
Node rep = order_list[cn - order_list.size()];
|
deba@2480
|
1632 |
if (low_map[rep] < rorder) {
|
deba@2480
|
1633 |
markFacePath(root, root, order_map, node_data);
|
deba@2480
|
1634 |
int xlp = markExternalPath(xnode, order_map, child_lists,
|
deba@2480
|
1635 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1636 |
int ylp = markExternalPath(ynode, order_map, child_lists,
|
deba@2480
|
1637 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1638 |
|
deba@2480
|
1639 |
Node lwnode, lznode;
|
deba@2480
|
1640 |
markCommonPath(wnode, rorder, lwnode, lznode, order_list,
|
deba@2480
|
1641 |
order_map, node_data, edge_lists, embed_edge,
|
deba@2480
|
1642 |
merge_roots, child_lists, ancestor_map, low_map);
|
deba@2480
|
1643 |
|
deba@2480
|
1644 |
markPertinentPath(lwnode, order_map, node_data, edge_lists,
|
deba@2480
|
1645 |
embed_edge, merge_roots);
|
deba@2480
|
1646 |
int zlp = markExternalPath(lznode, order_map, child_lists,
|
deba@2480
|
1647 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1648 |
|
deba@2480
|
1649 |
int minlp = xlp < ylp ? xlp : ylp;
|
deba@2480
|
1650 |
if (zlp < minlp) minlp = zlp;
|
deba@2480
|
1651 |
|
deba@2480
|
1652 |
int maxlp = xlp > ylp ? xlp : ylp;
|
deba@2480
|
1653 |
if (zlp > maxlp) maxlp = zlp;
|
deba@2480
|
1654 |
|
deba@2480
|
1655 |
markPredPath(order_list[maxlp], order_list[minlp], pred_map);
|
deba@2480
|
1656 |
|
deba@2480
|
1657 |
return;
|
deba@2480
|
1658 |
}
|
deba@2480
|
1659 |
}
|
deba@2480
|
1660 |
|
deba@2480
|
1661 |
Node pxnode, pynode;
|
deba@2480
|
1662 |
std::vector<Edge> ipath;
|
deba@2480
|
1663 |
findInternalPath(ipath, wnode, root, type_map, order_map,
|
deba@2480
|
1664 |
node_data, edge_lists);
|
deba@2480
|
1665 |
setInternalFlags(ipath, type_map);
|
deba@2480
|
1666 |
pynode = _ugraph.source(ipath.front());
|
deba@2480
|
1667 |
pxnode = _ugraph.target(ipath.back());
|
deba@2480
|
1668 |
|
deba@2480
|
1669 |
wnode = findPertinent(pynode, order_map, node_data,
|
deba@2480
|
1670 |
embed_edge, merge_roots);
|
deba@2480
|
1671 |
|
deba@2480
|
1672 |
// Minor-C
|
deba@2480
|
1673 |
{
|
deba@2480
|
1674 |
if (type_map[_ugraph.source(ipath.front())] == HIGHY) {
|
deba@2480
|
1675 |
if (type_map[_ugraph.target(ipath.back())] == HIGHX) {
|
deba@2480
|
1676 |
markFacePath(xnode, pxnode, order_map, node_data);
|
deba@2480
|
1677 |
}
|
deba@2480
|
1678 |
markFacePath(root, xnode, order_map, node_data);
|
deba@2480
|
1679 |
markPertinentPath(wnode, order_map, node_data, edge_lists,
|
deba@2480
|
1680 |
embed_edge, merge_roots);
|
deba@2480
|
1681 |
markInternalPath(ipath);
|
deba@2480
|
1682 |
int xlp = markExternalPath(xnode, order_map, child_lists,
|
deba@2480
|
1683 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1684 |
int ylp = markExternalPath(ynode, order_map, child_lists,
|
deba@2480
|
1685 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1686 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
|
deba@2480
|
1687 |
return;
|
deba@2480
|
1688 |
}
|
deba@2480
|
1689 |
|
deba@2480
|
1690 |
if (type_map[_ugraph.target(ipath.back())] == HIGHX) {
|
deba@2480
|
1691 |
markFacePath(ynode, root, order_map, node_data);
|
deba@2480
|
1692 |
markPertinentPath(wnode, order_map, node_data, edge_lists,
|
deba@2480
|
1693 |
embed_edge, merge_roots);
|
deba@2480
|
1694 |
markInternalPath(ipath);
|
deba@2480
|
1695 |
int xlp = markExternalPath(xnode, order_map, child_lists,
|
deba@2480
|
1696 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1697 |
int ylp = markExternalPath(ynode, order_map, child_lists,
|
deba@2480
|
1698 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1699 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
|
deba@2480
|
1700 |
return;
|
deba@2480
|
1701 |
}
|
deba@2480
|
1702 |
}
|
deba@2480
|
1703 |
|
deba@2480
|
1704 |
std::vector<Edge> ppath;
|
deba@2480
|
1705 |
findPilePath(ppath, root, type_map, order_map, node_data, edge_lists);
|
deba@2480
|
1706 |
|
deba@2480
|
1707 |
// Minor-D
|
deba@2480
|
1708 |
if (!ppath.empty()) {
|
deba@2480
|
1709 |
markFacePath(ynode, xnode, order_map, node_data);
|
deba@2480
|
1710 |
markPertinentPath(wnode, order_map, node_data, edge_lists,
|
deba@2480
|
1711 |
embed_edge, merge_roots);
|
deba@2480
|
1712 |
markPilePath(ppath);
|
deba@2480
|
1713 |
markInternalPath(ipath);
|
deba@2480
|
1714 |
int xlp = markExternalPath(xnode, order_map, child_lists,
|
deba@2480
|
1715 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1716 |
int ylp = markExternalPath(ynode, order_map, child_lists,
|
deba@2480
|
1717 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1718 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
|
deba@2480
|
1719 |
return;
|
deba@2480
|
1720 |
}
|
deba@2480
|
1721 |
|
deba@2480
|
1722 |
// Minor-E*
|
deba@2480
|
1723 |
{
|
deba@2480
|
1724 |
|
deba@2480
|
1725 |
if (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
|
deba@2480
|
1726 |
Node znode = findExternal(pynode, rorder, order_map,
|
deba@2480
|
1727 |
child_lists, ancestor_map,
|
deba@2480
|
1728 |
low_map, node_data);
|
deba@2480
|
1729 |
|
deba@2480
|
1730 |
if (type_map[znode] == LOWY) {
|
deba@2480
|
1731 |
markFacePath(root, xnode, order_map, node_data);
|
deba@2480
|
1732 |
markPertinentPath(wnode, order_map, node_data, edge_lists,
|
deba@2480
|
1733 |
embed_edge, merge_roots);
|
deba@2480
|
1734 |
markInternalPath(ipath);
|
deba@2480
|
1735 |
int xlp = markExternalPath(xnode, order_map, child_lists,
|
deba@2480
|
1736 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1737 |
int zlp = markExternalPath(znode, order_map, child_lists,
|
deba@2480
|
1738 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1739 |
markPredPath(root, order_list[xlp < zlp ? xlp : zlp], pred_map);
|
deba@2480
|
1740 |
} else {
|
deba@2480
|
1741 |
markFacePath(ynode, root, order_map, node_data);
|
deba@2480
|
1742 |
markPertinentPath(wnode, order_map, node_data, edge_lists,
|
deba@2480
|
1743 |
embed_edge, merge_roots);
|
deba@2480
|
1744 |
markInternalPath(ipath);
|
deba@2480
|
1745 |
int ylp = markExternalPath(ynode, order_map, child_lists,
|
deba@2480
|
1746 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1747 |
int zlp = markExternalPath(znode, order_map, child_lists,
|
deba@2480
|
1748 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1749 |
markPredPath(root, order_list[ylp < zlp ? ylp : zlp], pred_map);
|
deba@2480
|
1750 |
}
|
deba@2480
|
1751 |
return;
|
deba@2480
|
1752 |
}
|
deba@2480
|
1753 |
|
deba@2480
|
1754 |
int xlp = markExternalPath(xnode, order_map, child_lists,
|
deba@2480
|
1755 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1756 |
int ylp = markExternalPath(ynode, order_map, child_lists,
|
deba@2480
|
1757 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1758 |
int wlp = markExternalPath(wnode, order_map, child_lists,
|
deba@2480
|
1759 |
pred_map, ancestor_map, low_map);
|
deba@2480
|
1760 |
|
deba@2480
|
1761 |
if (wlp > xlp && wlp > ylp) {
|
deba@2480
|
1762 |
markFacePath(root, root, order_map, node_data);
|
deba@2480
|
1763 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
|
deba@2480
|
1764 |
return;
|
deba@2480
|
1765 |
}
|
deba@2480
|
1766 |
|
deba@2480
|
1767 |
markInternalPath(ipath);
|
deba@2480
|
1768 |
markPertinentPath(wnode, order_map, node_data, edge_lists,
|
deba@2480
|
1769 |
embed_edge, merge_roots);
|
deba@2480
|
1770 |
|
deba@2480
|
1771 |
if (xlp > ylp && xlp > wlp) {
|
deba@2480
|
1772 |
markFacePath(root, pynode, order_map, node_data);
|
deba@2480
|
1773 |
markFacePath(wnode, xnode, order_map, node_data);
|
deba@2480
|
1774 |
markPredPath(root, order_list[ylp < wlp ? ylp : wlp], pred_map);
|
deba@2480
|
1775 |
return;
|
deba@2480
|
1776 |
}
|
deba@2480
|
1777 |
|
deba@2480
|
1778 |
if (ylp > xlp && ylp > wlp) {
|
deba@2480
|
1779 |
markFacePath(pxnode, root, order_map, node_data);
|
deba@2480
|
1780 |
markFacePath(ynode, wnode, order_map, node_data);
|
deba@2480
|
1781 |
markPredPath(root, order_list[xlp < wlp ? xlp : wlp], pred_map);
|
deba@2480
|
1782 |
return;
|
deba@2480
|
1783 |
}
|
deba@2480
|
1784 |
|
deba@2480
|
1785 |
if (pynode != ynode) {
|
deba@2480
|
1786 |
markFacePath(pxnode, wnode, order_map, node_data);
|
deba@2480
|
1787 |
|
deba@2480
|
1788 |
int minlp = xlp < ylp ? xlp : ylp;
|
deba@2480
|
1789 |
if (wlp < minlp) minlp = wlp;
|
deba@2480
|
1790 |
|
deba@2480
|
1791 |
int maxlp = xlp > ylp ? xlp : ylp;
|
deba@2480
|
1792 |
if (wlp > maxlp) maxlp = wlp;
|
deba@2480
|
1793 |
|
deba@2480
|
1794 |
markPredPath(order_list[maxlp], order_list[minlp], pred_map);
|
deba@2480
|
1795 |
return;
|
deba@2480
|
1796 |
}
|
deba@2480
|
1797 |
|
deba@2480
|
1798 |
if (pxnode != xnode) {
|
deba@2480
|
1799 |
markFacePath(wnode, pynode, order_map, node_data);
|
deba@2480
|
1800 |
|
deba@2480
|
1801 |
int minlp = xlp < ylp ? xlp : ylp;
|
deba@2480
|
1802 |
if (wlp < minlp) minlp = wlp;
|
deba@2480
|
1803 |
|
deba@2480
|
1804 |
int maxlp = xlp > ylp ? xlp : ylp;
|
deba@2480
|
1805 |
if (wlp > maxlp) maxlp = wlp;
|
deba@2480
|
1806 |
|
deba@2480
|
1807 |
markPredPath(order_list[maxlp], order_list[minlp], pred_map);
|
deba@2480
|
1808 |
return;
|
deba@2480
|
1809 |
}
|
deba@2480
|
1810 |
|
deba@2480
|
1811 |
markFacePath(root, root, order_map, node_data);
|
deba@2480
|
1812 |
int minlp = xlp < ylp ? xlp : ylp;
|
deba@2480
|
1813 |
if (wlp < minlp) minlp = wlp;
|
deba@2480
|
1814 |
markPredPath(root, order_list[minlp], pred_map);
|
deba@2480
|
1815 |
return;
|
deba@2480
|
1816 |
}
|
deba@2480
|
1817 |
|
deba@2480
|
1818 |
}
|
deba@2480
|
1819 |
|
deba@2480
|
1820 |
};
|
deba@2480
|
1821 |
|
deba@2499
|
1822 |
namespace _planarity_bits {
|
deba@2499
|
1823 |
|
deba@2499
|
1824 |
template <typename UGraph, typename EmbeddingMap>
|
deba@2499
|
1825 |
void makeConnected(UGraph& ugraph, EmbeddingMap& embedding) {
|
deba@2499
|
1826 |
DfsVisitor<UGraph> null_visitor;
|
deba@2499
|
1827 |
DfsVisit<UGraph, DfsVisitor<UGraph> > dfs(ugraph, null_visitor);
|
deba@2499
|
1828 |
dfs.init();
|
deba@2499
|
1829 |
|
deba@2499
|
1830 |
typename UGraph::Node u = INVALID;
|
deba@2499
|
1831 |
for (typename UGraph::NodeIt n(ugraph); n != INVALID; ++n) {
|
deba@2499
|
1832 |
if (!dfs.reached(n)) {
|
deba@2499
|
1833 |
dfs.addSource(n);
|
deba@2499
|
1834 |
dfs.start();
|
deba@2499
|
1835 |
if (u == INVALID) {
|
deba@2499
|
1836 |
u = n;
|
deba@2499
|
1837 |
} else {
|
deba@2499
|
1838 |
typename UGraph::Node v = n;
|
deba@2499
|
1839 |
|
deba@2499
|
1840 |
typename UGraph::Edge ue = typename UGraph::OutEdgeIt(ugraph, u);
|
deba@2499
|
1841 |
typename UGraph::Edge ve = typename UGraph::OutEdgeIt(ugraph, v);
|
deba@2499
|
1842 |
|
deba@2499
|
1843 |
typename UGraph::Edge e = ugraph.direct(ugraph.addEdge(u, v), true);
|
deba@2499
|
1844 |
|
deba@2499
|
1845 |
if (ue != INVALID) {
|
deba@2499
|
1846 |
embedding[e] = embedding[ue];
|
deba@2499
|
1847 |
embedding[ue] = e;
|
deba@2499
|
1848 |
} else {
|
deba@2499
|
1849 |
embedding[e] = e;
|
deba@2499
|
1850 |
}
|
deba@2499
|
1851 |
|
deba@2499
|
1852 |
if (ve != INVALID) {
|
deba@2499
|
1853 |
embedding[ugraph.oppositeEdge(e)] = embedding[ve];
|
deba@2499
|
1854 |
embedding[ve] = ugraph.oppositeEdge(e);
|
deba@2499
|
1855 |
} else {
|
deba@2499
|
1856 |
embedding[ugraph.oppositeEdge(e)] = ugraph.oppositeEdge(e);
|
deba@2499
|
1857 |
}
|
deba@2499
|
1858 |
}
|
deba@2499
|
1859 |
}
|
deba@2499
|
1860 |
}
|
deba@2499
|
1861 |
}
|
deba@2499
|
1862 |
|
deba@2499
|
1863 |
template <typename UGraph, typename EmbeddingMap>
|
deba@2499
|
1864 |
void makeBiNodeConnected(UGraph& ugraph, EmbeddingMap& embedding) {
|
deba@2499
|
1865 |
typename UGraph::template EdgeMap<bool> processed(ugraph);
|
deba@2499
|
1866 |
|
deba@2499
|
1867 |
std::vector<typename UGraph::Edge> edges;
|
deba@2499
|
1868 |
for (typename UGraph::EdgeIt e(ugraph); e != INVALID; ++e) {
|
deba@2499
|
1869 |
edges.push_back(e);
|
deba@2499
|
1870 |
}
|
deba@2499
|
1871 |
|
deba@2499
|
1872 |
IterableBoolMap<UGraph, typename UGraph::Node> visited(ugraph, false);
|
deba@2499
|
1873 |
|
deba@2499
|
1874 |
for (int i = 0; i < int(edges.size()); ++i) {
|
deba@2499
|
1875 |
typename UGraph::Edge pp = edges[i];
|
deba@2499
|
1876 |
if (processed[pp]) continue;
|
deba@2499
|
1877 |
|
deba@2499
|
1878 |
typename UGraph::Edge e = embedding[ugraph.oppositeEdge(pp)];
|
deba@2499
|
1879 |
processed[e] = true;
|
deba@2499
|
1880 |
visited.set(ugraph.source(e), true);
|
deba@2499
|
1881 |
|
deba@2499
|
1882 |
typename UGraph::Edge p = e, l = e;
|
deba@2499
|
1883 |
e = embedding[ugraph.oppositeEdge(e)];
|
deba@2499
|
1884 |
|
deba@2499
|
1885 |
while (e != l) {
|
deba@2499
|
1886 |
processed[e] = true;
|
deba@2499
|
1887 |
|
deba@2499
|
1888 |
if (visited[ugraph.source(e)]) {
|
deba@2499
|
1889 |
|
deba@2499
|
1890 |
typename UGraph::Edge n =
|
deba@2499
|
1891 |
ugraph.direct(ugraph.addEdge(ugraph.source(p),
|
deba@2499
|
1892 |
ugraph.target(e)), true);
|
deba@2499
|
1893 |
embedding[n] = p;
|
deba@2499
|
1894 |
embedding[ugraph.oppositeEdge(pp)] = n;
|
deba@2499
|
1895 |
|
deba@2499
|
1896 |
embedding[ugraph.oppositeEdge(n)] =
|
deba@2499
|
1897 |
embedding[ugraph.oppositeEdge(e)];
|
deba@2499
|
1898 |
embedding[ugraph.oppositeEdge(e)] =
|
deba@2499
|
1899 |
ugraph.oppositeEdge(n);
|
deba@2499
|
1900 |
|
deba@2499
|
1901 |
p = n;
|
deba@2499
|
1902 |
e = embedding[ugraph.oppositeEdge(n)];
|
deba@2499
|
1903 |
} else {
|
deba@2499
|
1904 |
visited.set(ugraph.source(e), true);
|
deba@2499
|
1905 |
pp = p;
|
deba@2499
|
1906 |
p = e;
|
deba@2499
|
1907 |
e = embedding[ugraph.oppositeEdge(e)];
|
deba@2499
|
1908 |
}
|
deba@2499
|
1909 |
}
|
deba@2499
|
1910 |
visited.setAll(false);
|
deba@2499
|
1911 |
}
|
deba@2499
|
1912 |
}
|
deba@2499
|
1913 |
|
deba@2499
|
1914 |
|
deba@2499
|
1915 |
template <typename UGraph, typename EmbeddingMap>
|
deba@2499
|
1916 |
void makeMaxPlanar(UGraph& ugraph, EmbeddingMap& embedding) {
|
deba@2499
|
1917 |
|
deba@2499
|
1918 |
typename UGraph::template NodeMap<int> degree(ugraph);
|
deba@2499
|
1919 |
|
deba@2499
|
1920 |
for (typename UGraph::NodeIt n(ugraph); n != INVALID; ++n) {
|
deba@2499
|
1921 |
degree[n] = countIncEdges(ugraph, n);
|
deba@2499
|
1922 |
}
|
deba@2499
|
1923 |
|
deba@2499
|
1924 |
typename UGraph::template EdgeMap<bool> processed(ugraph);
|
deba@2499
|
1925 |
IterableBoolMap<UGraph, typename UGraph::Node> visited(ugraph, false);
|
deba@2499
|
1926 |
|
deba@2499
|
1927 |
std::vector<typename UGraph::Edge> edges;
|
deba@2499
|
1928 |
for (typename UGraph::EdgeIt e(ugraph); e != INVALID; ++e) {
|
deba@2499
|
1929 |
edges.push_back(e);
|
deba@2499
|
1930 |
}
|
deba@2499
|
1931 |
|
deba@2499
|
1932 |
for (int i = 0; i < int(edges.size()); ++i) {
|
deba@2499
|
1933 |
typename UGraph::Edge e = edges[i];
|
deba@2499
|
1934 |
|
deba@2499
|
1935 |
if (processed[e]) continue;
|
deba@2499
|
1936 |
processed[e] = true;
|
deba@2499
|
1937 |
|
deba@2499
|
1938 |
typename UGraph::Edge mine = e;
|
deba@2499
|
1939 |
int mind = degree[ugraph.source(e)];
|
deba@2499
|
1940 |
|
deba@2499
|
1941 |
int face_size = 1;
|
deba@2499
|
1942 |
|
deba@2499
|
1943 |
typename UGraph::Edge l = e;
|
deba@2499
|
1944 |
e = embedding[ugraph.oppositeEdge(e)];
|
deba@2499
|
1945 |
while (l != e) {
|
deba@2499
|
1946 |
processed[e] = true;
|
deba@2499
|
1947 |
|
deba@2499
|
1948 |
++face_size;
|
deba@2499
|
1949 |
|
deba@2499
|
1950 |
if (degree[ugraph.source(e)] < mind) {
|
deba@2499
|
1951 |
mine = e;
|
deba@2499
|
1952 |
mind = degree[ugraph.source(e)];
|
deba@2499
|
1953 |
}
|
deba@2499
|
1954 |
|
deba@2499
|
1955 |
e = embedding[ugraph.oppositeEdge(e)];
|
deba@2499
|
1956 |
}
|
deba@2499
|
1957 |
|
deba@2499
|
1958 |
if (face_size < 4) {
|
deba@2499
|
1959 |
continue;
|
deba@2499
|
1960 |
}
|
deba@2499
|
1961 |
|
deba@2499
|
1962 |
typename UGraph::Node s = ugraph.source(mine);
|
deba@2499
|
1963 |
for (typename UGraph::OutEdgeIt e(ugraph, s); e != INVALID; ++e) {
|
deba@2499
|
1964 |
visited.set(ugraph.target(e), true);
|
deba@2499
|
1965 |
}
|
deba@2499
|
1966 |
|
deba@2499
|
1967 |
typename UGraph::Edge oppe = INVALID;
|
deba@2499
|
1968 |
|
deba@2499
|
1969 |
e = embedding[ugraph.oppositeEdge(mine)];
|
deba@2499
|
1970 |
e = embedding[ugraph.oppositeEdge(e)];
|
deba@2499
|
1971 |
while (ugraph.target(e) != s) {
|
deba@2499
|
1972 |
if (visited[ugraph.source(e)]) {
|
deba@2499
|
1973 |
oppe = e;
|
deba@2499
|
1974 |
break;
|
deba@2499
|
1975 |
}
|
deba@2499
|
1976 |
e = embedding[ugraph.oppositeEdge(e)];
|
deba@2499
|
1977 |
}
|
deba@2499
|
1978 |
visited.setAll(false);
|
deba@2499
|
1979 |
|
deba@2499
|
1980 |
if (oppe == INVALID) {
|
deba@2499
|
1981 |
|
deba@2499
|
1982 |
e = embedding[ugraph.oppositeEdge(mine)];
|
deba@2499
|
1983 |
typename UGraph::Edge pn = mine, p = e;
|
deba@2499
|
1984 |
|
deba@2499
|
1985 |
e = embedding[ugraph.oppositeEdge(e)];
|
deba@2499
|
1986 |
while (ugraph.target(e) != s) {
|
deba@2499
|
1987 |
typename UGraph::Edge n =
|
deba@2499
|
1988 |
ugraph.direct(ugraph.addEdge(s, ugraph.source(e)), true);
|
deba@2499
|
1989 |
|
deba@2499
|
1990 |
embedding[n] = pn;
|
deba@2499
|
1991 |
embedding[ugraph.oppositeEdge(n)] = e;
|
deba@2499
|
1992 |
embedding[ugraph.oppositeEdge(p)] = ugraph.oppositeEdge(n);
|
deba@2499
|
1993 |
|
deba@2499
|
1994 |
pn = n;
|
deba@2499
|
1995 |
|
deba@2499
|
1996 |
p = e;
|
deba@2499
|
1997 |
e = embedding[ugraph.oppositeEdge(e)];
|
deba@2499
|
1998 |
}
|
deba@2499
|
1999 |
|
deba@2499
|
2000 |
embedding[ugraph.oppositeEdge(e)] = pn;
|
deba@2499
|
2001 |
|
deba@2499
|
2002 |
} else {
|
deba@2499
|
2003 |
|
deba@2499
|
2004 |
mine = embedding[ugraph.oppositeEdge(mine)];
|
deba@2499
|
2005 |
s = ugraph.source(mine);
|
deba@2499
|
2006 |
oppe = embedding[ugraph.oppositeEdge(oppe)];
|
deba@2499
|
2007 |
typename UGraph::Node t = ugraph.source(oppe);
|
deba@2499
|
2008 |
|
deba@2499
|
2009 |
typename UGraph::Edge ce = ugraph.direct(ugraph.addEdge(s, t), true);
|
deba@2499
|
2010 |
embedding[ce] = mine;
|
deba@2499
|
2011 |
embedding[ugraph.oppositeEdge(ce)] = oppe;
|
deba@2499
|
2012 |
|
deba@2499
|
2013 |
typename UGraph::Edge pn = ce, p = oppe;
|
deba@2499
|
2014 |
e = embedding[ugraph.oppositeEdge(oppe)];
|
deba@2499
|
2015 |
while (ugraph.target(e) != s) {
|
deba@2499
|
2016 |
typename UGraph::Edge n =
|
deba@2499
|
2017 |
ugraph.direct(ugraph.addEdge(s, ugraph.source(e)), true);
|
deba@2499
|
2018 |
|
deba@2499
|
2019 |
embedding[n] = pn;
|
deba@2499
|
2020 |
embedding[ugraph.oppositeEdge(n)] = e;
|
deba@2499
|
2021 |
embedding[ugraph.oppositeEdge(p)] = ugraph.oppositeEdge(n);
|
deba@2499
|
2022 |
|
deba@2499
|
2023 |
pn = n;
|
deba@2499
|
2024 |
|
deba@2499
|
2025 |
p = e;
|
deba@2499
|
2026 |
e = embedding[ugraph.oppositeEdge(e)];
|
deba@2499
|
2027 |
|
deba@2499
|
2028 |
}
|
deba@2499
|
2029 |
embedding[ugraph.oppositeEdge(e)] = pn;
|
deba@2499
|
2030 |
|
deba@2499
|
2031 |
pn = ugraph.oppositeEdge(ce), p = mine;
|
deba@2499
|
2032 |
e = embedding[ugraph.oppositeEdge(mine)];
|
deba@2499
|
2033 |
while (ugraph.target(e) != t) {
|
deba@2499
|
2034 |
typename UGraph::Edge n =
|
deba@2499
|
2035 |
ugraph.direct(ugraph.addEdge(t, ugraph.source(e)), true);
|
deba@2499
|
2036 |
|
deba@2499
|
2037 |
embedding[n] = pn;
|
deba@2499
|
2038 |
embedding[ugraph.oppositeEdge(n)] = e;
|
deba@2499
|
2039 |
embedding[ugraph.oppositeEdge(p)] = ugraph.oppositeEdge(n);
|
deba@2499
|
2040 |
|
deba@2499
|
2041 |
pn = n;
|
deba@2499
|
2042 |
|
deba@2499
|
2043 |
p = e;
|
deba@2499
|
2044 |
e = embedding[ugraph.oppositeEdge(e)];
|
deba@2499
|
2045 |
|
deba@2499
|
2046 |
}
|
deba@2499
|
2047 |
embedding[ugraph.oppositeEdge(e)] = pn;
|
deba@2499
|
2048 |
}
|
deba@2499
|
2049 |
}
|
deba@2499
|
2050 |
}
|
deba@2499
|
2051 |
|
deba@2499
|
2052 |
}
|
deba@2499
|
2053 |
|
deba@2500
|
2054 |
/// \ingroup planar
|
deba@2500
|
2055 |
///
|
deba@2499
|
2056 |
/// \brief Schnyder's planar drawing algorithms
|
deba@2499
|
2057 |
///
|
deba@2499
|
2058 |
/// The planar drawing algorithm calculates location for each node
|
deba@2499
|
2059 |
/// in the plane, which coordinates satisfies that if each edge is
|
deba@2499
|
2060 |
/// represented with a straight line then the edges will not
|
deba@2499
|
2061 |
/// intersect each other.
|
deba@2499
|
2062 |
///
|
deba@2499
|
2063 |
/// Scnyder's algorithm embeds the graph on \c (n-2,n-2) size grid,
|
deba@2499
|
2064 |
/// ie. each node will be located in the \c [0,n-2]x[0,n-2] square.
|
deba@2499
|
2065 |
/// The time complexity of the algorithm is O(n).
|
deba@2499
|
2066 |
template <typename UGraph>
|
deba@2499
|
2067 |
class PlanarDrawing {
|
deba@2499
|
2068 |
public:
|
deba@2499
|
2069 |
|
deba@2499
|
2070 |
UGRAPH_TYPEDEFS(typename UGraph);
|
deba@2499
|
2071 |
|
deba@2499
|
2072 |
/// \brief The point type for store coordinates
|
deba@2499
|
2073 |
typedef dim2::Point<int> Point;
|
deba@2499
|
2074 |
/// \brief The map type for store coordinates
|
deba@2499
|
2075 |
typedef typename UGraph::template NodeMap<Point> PointMap;
|
deba@2499
|
2076 |
|
deba@2499
|
2077 |
|
deba@2499
|
2078 |
/// \brief Constructor
|
deba@2499
|
2079 |
///
|
deba@2499
|
2080 |
/// Constructor
|
deba@2499
|
2081 |
/// \pre The ugraph should be simple, ie. loop and parallel edge free.
|
deba@2499
|
2082 |
PlanarDrawing(const UGraph& ugraph)
|
deba@2499
|
2083 |
: _ugraph(ugraph), _point_map(ugraph) {}
|
deba@2499
|
2084 |
|
deba@2499
|
2085 |
private:
|
deba@2499
|
2086 |
|
deba@2499
|
2087 |
template <typename AuxUGraph, typename AuxEmbeddingMap>
|
deba@2499
|
2088 |
void drawing(const AuxUGraph& ugraph,
|
deba@2499
|
2089 |
const AuxEmbeddingMap& next,
|
deba@2499
|
2090 |
PointMap& point_map) {
|
deba@2499
|
2091 |
UGRAPH_TYPEDEFS(typename AuxUGraph);
|
deba@2499
|
2092 |
|
deba@2499
|
2093 |
typename AuxUGraph::template EdgeMap<Edge> prev(ugraph);
|
deba@2499
|
2094 |
|
deba@2499
|
2095 |
for (NodeIt n(ugraph); n != INVALID; ++n) {
|
deba@2499
|
2096 |
Edge e = OutEdgeIt(ugraph, n);
|
deba@2499
|
2097 |
|
deba@2499
|
2098 |
Edge p = e, l = e;
|
deba@2499
|
2099 |
|
deba@2499
|
2100 |
e = next[e];
|
deba@2499
|
2101 |
while (e != l) {
|
deba@2499
|
2102 |
prev[e] = p;
|
deba@2499
|
2103 |
p = e;
|
deba@2499
|
2104 |
e = next[e];
|
deba@2499
|
2105 |
}
|
deba@2499
|
2106 |
prev[e] = p;
|
deba@2499
|
2107 |
}
|
deba@2499
|
2108 |
|
deba@2499
|
2109 |
Node anode, bnode, cnode;
|
deba@2499
|
2110 |
|
deba@2499
|
2111 |
{
|
deba@2499
|
2112 |
Edge e = EdgeIt(ugraph);
|
deba@2499
|
2113 |
anode = ugraph.source(e);
|
deba@2499
|
2114 |
bnode = ugraph.target(e);
|
deba@2499
|
2115 |
cnode = ugraph.target(next[ugraph.oppositeEdge(e)]);
|
deba@2499
|
2116 |
}
|
deba@2499
|
2117 |
|
deba@2499
|
2118 |
IterableBoolMap<AuxUGraph, Node> proper(ugraph, false);
|
deba@2499
|
2119 |
typename AuxUGraph::template NodeMap<int> conn(ugraph, -1);
|
deba@2499
|
2120 |
|
deba@2499
|
2121 |
conn[anode] = conn[bnode] = -2;
|
deba@2499
|
2122 |
{
|
deba@2499
|
2123 |
for (OutEdgeIt e(ugraph, anode); e != INVALID; ++e) {
|
deba@2499
|
2124 |
Node m = ugraph.target(e);
|
deba@2499
|
2125 |
if (conn[m] == -1) {
|
deba@2499
|
2126 |
conn[m] = 1;
|
deba@2499
|
2127 |
}
|
deba@2499
|
2128 |
}
|
deba@2499
|
2129 |
conn[cnode] = 2;
|
deba@2499
|
2130 |
|
deba@2499
|
2131 |
for (OutEdgeIt e(ugraph, bnode); e != INVALID; ++e) {
|
deba@2499
|
2132 |
Node m = ugraph.target(e);
|
deba@2499
|
2133 |
if (conn[m] == -1) {
|
deba@2499
|
2134 |
conn[m] = 1;
|
deba@2499
|
2135 |
} else if (conn[m] != -2) {
|
deba@2499
|
2136 |
conn[m] += 1;
|
deba@2499
|
2137 |
Edge pe = ugraph.oppositeEdge(e);
|
deba@2499
|
2138 |
if (conn[ugraph.target(next[pe])] == -2) {
|
deba@2499
|
2139 |
conn[m] -= 1;
|
deba@2499
|
2140 |
}
|
deba@2499
|
2141 |
if (conn[ugraph.target(prev[pe])] == -2) {
|
deba@2499
|
2142 |
conn[m] -= 1;
|
deba@2499
|
2143 |
}
|
deba@2499
|
2144 |
|
deba@2499
|
2145 |
proper.set(m, conn[m] == 1);
|
deba@2499
|
2146 |
}
|
deba@2499
|
2147 |
}
|
deba@2499
|
2148 |
}
|
deba@2499
|
2149 |
|
deba@2499
|
2150 |
|
deba@2499
|
2151 |
typename AuxUGraph::template EdgeMap<int> angle(ugraph, -1);
|
deba@2499
|
2152 |
|
deba@2499
|
2153 |
while (proper.trueNum() != 0) {
|
deba@2499
|
2154 |
Node n = typename IterableBoolMap<AuxUGraph, Node>::TrueIt(proper);
|
deba@2499
|
2155 |
proper.set(n, false);
|
deba@2499
|
2156 |
conn[n] = -2;
|
deba@2499
|
2157 |
|
deba@2499
|
2158 |
for (OutEdgeIt e(ugraph, n); e != INVALID; ++e) {
|
deba@2499
|
2159 |
Node m = ugraph.target(e);
|
deba@2499
|
2160 |
if (conn[m] == -1) {
|
deba@2499
|
2161 |
conn[m] = 1;
|
deba@2499
|
2162 |
} else if (conn[m] != -2) {
|
deba@2499
|
2163 |
conn[m] += 1;
|
deba@2499
|
2164 |
Edge pe = ugraph.oppositeEdge(e);
|
deba@2499
|
2165 |
if (conn[ugraph.target(next[pe])] == -2) {
|
deba@2499
|
2166 |
conn[m] -= 1;
|
deba@2499
|
2167 |
}
|
deba@2499
|
2168 |
if (conn[ugraph.target(prev[pe])] == -2) {
|
deba@2499
|
2169 |
conn[m] -= 1;
|
deba@2499
|
2170 |
}
|
deba@2499
|
2171 |
|
deba@2499
|
2172 |
proper.set(m, conn[m] == 1);
|
deba@2499
|
2173 |
}
|
deba@2499
|
2174 |
}
|
deba@2499
|
2175 |
|
deba@2499
|
2176 |
{
|
deba@2499
|
2177 |
Edge e = OutEdgeIt(ugraph, n);
|
deba@2499
|
2178 |
Edge p = e, l = e;
|
deba@2499
|
2179 |
|
deba@2499
|
2180 |
e = next[e];
|
deba@2499
|
2181 |
while (e != l) {
|
deba@2499
|
2182 |
|
deba@2499
|
2183 |
if (conn[ugraph.target(e)] == -2 && conn[ugraph.target(p)] == -2) {
|
deba@2499
|
2184 |
Edge f = e;
|
deba@2499
|
2185 |
angle[f] = 0;
|
deba@2499
|
2186 |
f = next[ugraph.oppositeEdge(f)];
|
deba@2499
|
2187 |
angle[f] = 1;
|
deba@2499
|
2188 |
f = next[ugraph.oppositeEdge(f)];
|
deba@2499
|
2189 |
angle[f] = 2;
|
deba@2499
|
2190 |
}
|
deba@2499
|
2191 |
|
deba@2499
|
2192 |
p = e;
|
deba@2499
|
2193 |
e = next[e];
|
deba@2499
|
2194 |
}
|
deba@2499
|
2195 |
|
deba@2499
|
2196 |
if (conn[ugraph.target(e)] == -2 && conn[ugraph.target(p)] == -2) {
|
deba@2499
|
2197 |
Edge f = e;
|
deba@2499
|
2198 |
angle[f] = 0;
|
deba@2499
|
2199 |
f = next[ugraph.oppositeEdge(f)];
|
deba@2499
|
2200 |
angle[f] = 1;
|
deba@2499
|
2201 |
f = next[ugraph.oppositeEdge(f)];
|
deba@2499
|
2202 |
angle[f] = 2;
|
deba@2499
|
2203 |
}
|
deba@2499
|
2204 |
}
|
deba@2499
|
2205 |
}
|
deba@2499
|
2206 |
|
deba@2499
|
2207 |
typename AuxUGraph::template NodeMap<Node> apred(ugraph, INVALID);
|
deba@2499
|
2208 |
typename AuxUGraph::template NodeMap<Node> bpred(ugraph, INVALID);
|
deba@2499
|
2209 |
typename AuxUGraph::template NodeMap<Node> cpred(ugraph, INVALID);
|
deba@2499
|
2210 |
|
deba@2499
|
2211 |
typename AuxUGraph::template NodeMap<int> apredid(ugraph, -1);
|
deba@2499
|
2212 |
typename AuxUGraph::template NodeMap<int> bpredid(ugraph, -1);
|
deba@2499
|
2213 |
typename AuxUGraph::template NodeMap<int> cpredid(ugraph, -1);
|
deba@2499
|
2214 |
|
deba@2499
|
2215 |
for (EdgeIt e(ugraph); e != INVALID; ++e) {
|
deba@2499
|
2216 |
if (angle[e] == angle[next[e]]) {
|
deba@2499
|
2217 |
switch (angle[e]) {
|
deba@2499
|
2218 |
case 2:
|
deba@2499
|
2219 |
apred[ugraph.target(e)] = ugraph.source(e);
|
deba@2499
|
2220 |
apredid[ugraph.target(e)] = ugraph.id(ugraph.source(e));
|
deba@2499
|
2221 |
break;
|
deba@2499
|
2222 |
case 1:
|
deba@2499
|
2223 |
bpred[ugraph.target(e)] = ugraph.source(e);
|
deba@2499
|
2224 |
bpredid[ugraph.target(e)] = ugraph.id(ugraph.source(e));
|
deba@2499
|
2225 |
break;
|
deba@2499
|
2226 |
case 0:
|
deba@2499
|
2227 |
cpred[ugraph.target(e)] = ugraph.source(e);
|
deba@2499
|
2228 |
cpredid[ugraph.target(e)] = ugraph.id(ugraph.source(e));
|
deba@2499
|
2229 |
break;
|
deba@2499
|
2230 |
}
|
deba@2499
|
2231 |
}
|
deba@2499
|
2232 |
}
|
deba@2499
|
2233 |
|
deba@2499
|
2234 |
cpred[anode] = INVALID;
|
deba@2499
|
2235 |
cpred[bnode] = INVALID;
|
deba@2499
|
2236 |
|
deba@2499
|
2237 |
std::vector<Node> aorder, border, corder;
|
deba@2499
|
2238 |
|
deba@2499
|
2239 |
{
|
deba@2499
|
2240 |
typename AuxUGraph::template NodeMap<bool> processed(ugraph, false);
|
deba@2499
|
2241 |
std::vector<Node> st;
|
deba@2499
|
2242 |
for (NodeIt n(ugraph); n != INVALID; ++n) {
|
deba@2499
|
2243 |
if (!processed[n] && n != bnode && n != cnode) {
|
deba@2499
|
2244 |
st.push_back(n);
|
deba@2499
|
2245 |
processed[n] = true;
|
deba@2499
|
2246 |
Node m = apred[n];
|
deba@2499
|
2247 |
while (m != INVALID && !processed[m]) {
|
deba@2499
|
2248 |
st.push_back(m);
|
deba@2499
|
2249 |
processed[m] = true;
|
deba@2499
|
2250 |
m = apred[m];
|
deba@2499
|
2251 |
}
|
deba@2499
|
2252 |
while (!st.empty()) {
|
deba@2499
|
2253 |
aorder.push_back(st.back());
|
deba@2499
|
2254 |
st.pop_back();
|
deba@2499
|
2255 |
}
|
deba@2499
|
2256 |
}
|
deba@2499
|
2257 |
}
|
deba@2499
|
2258 |
}
|
deba@2499
|
2259 |
|
deba@2499
|
2260 |
{
|
deba@2499
|
2261 |
typename AuxUGraph::template NodeMap<bool> processed(ugraph, false);
|
deba@2499
|
2262 |
std::vector<Node> st;
|
deba@2499
|
2263 |
for (NodeIt n(ugraph); n != INVALID; ++n) {
|
deba@2499
|
2264 |
if (!processed[n] && n != cnode && n != anode) {
|
deba@2499
|
2265 |
st.push_back(n);
|
deba@2499
|
2266 |
processed[n] = true;
|
deba@2499
|
2267 |
Node m = bpred[n];
|
deba@2499
|
2268 |
while (m != INVALID && !processed[m]) {
|
deba@2499
|
2269 |
st.push_back(m);
|
deba@2499
|
2270 |
processed[m] = true;
|
deba@2499
|
2271 |
m = bpred[m];
|
deba@2499
|
2272 |
}
|
deba@2499
|
2273 |
while (!st.empty()) {
|
deba@2499
|
2274 |
border.push_back(st.back());
|
deba@2499
|
2275 |
st.pop_back();
|
deba@2499
|
2276 |
}
|
deba@2499
|
2277 |
}
|
deba@2499
|
2278 |
}
|
deba@2499
|
2279 |
}
|
deba@2499
|
2280 |
|
deba@2499
|
2281 |
{
|
deba@2499
|
2282 |
typename AuxUGraph::template NodeMap<bool> processed(ugraph, false);
|
deba@2499
|
2283 |
std::vector<Node> st;
|
deba@2499
|
2284 |
for (NodeIt n(ugraph); n != INVALID; ++n) {
|
deba@2499
|
2285 |
if (!processed[n] && n != anode && n != bnode) {
|
deba@2499
|
2286 |
st.push_back(n);
|
deba@2499
|
2287 |
processed[n] = true;
|
deba@2499
|
2288 |
Node m = cpred[n];
|
deba@2499
|
2289 |
while (m != INVALID && !processed[m]) {
|
deba@2499
|
2290 |
st.push_back(m);
|
deba@2499
|
2291 |
processed[m] = true;
|
deba@2499
|
2292 |
m = cpred[m];
|
deba@2499
|
2293 |
}
|
deba@2499
|
2294 |
while (!st.empty()) {
|
deba@2499
|
2295 |
corder.push_back(st.back());
|
deba@2499
|
2296 |
st.pop_back();
|
deba@2499
|
2297 |
}
|
deba@2499
|
2298 |
}
|
deba@2499
|
2299 |
}
|
deba@2499
|
2300 |
}
|
deba@2499
|
2301 |
|
deba@2499
|
2302 |
typename AuxUGraph::template NodeMap<int> atree(ugraph, 0);
|
deba@2499
|
2303 |
for (int i = aorder.size() - 1; i >= 0; --i) {
|
deba@2499
|
2304 |
Node n = aorder[i];
|
deba@2499
|
2305 |
atree[n] = 1;
|
deba@2499
|
2306 |
for (OutEdgeIt e(ugraph, n); e != INVALID; ++e) {
|
deba@2499
|
2307 |
if (apred[ugraph.target(e)] == n) {
|
deba@2499
|
2308 |
atree[n] += atree[ugraph.target(e)];
|
deba@2499
|
2309 |
}
|
deba@2499
|
2310 |
}
|
deba@2499
|
2311 |
}
|
deba@2499
|
2312 |
|
deba@2499
|
2313 |
typename AuxUGraph::template NodeMap<int> btree(ugraph, 0);
|
deba@2499
|
2314 |
for (int i = border.size() - 1; i >= 0; --i) {
|
deba@2499
|
2315 |
Node n = border[i];
|
deba@2499
|
2316 |
btree[n] = 1;
|
deba@2499
|
2317 |
for (OutEdgeIt e(ugraph, n); e != INVALID; ++e) {
|
deba@2499
|
2318 |
if (bpred[ugraph.target(e)] == n) {
|
deba@2499
|
2319 |
btree[n] += btree[ugraph.target(e)];
|
deba@2499
|
2320 |
}
|
deba@2499
|
2321 |
}
|
deba@2499
|
2322 |
}
|
deba@2499
|
2323 |
|
deba@2499
|
2324 |
typename AuxUGraph::template NodeMap<int> apath(ugraph, 0);
|
deba@2499
|
2325 |
apath[bnode] = apath[cnode] = 1;
|
deba@2499
|
2326 |
typename AuxUGraph::template NodeMap<int> apath_btree(ugraph, 0);
|
deba@2499
|
2327 |
apath_btree[bnode] = btree[bnode];
|
deba@2499
|
2328 |
for (int i = 1; i < int(aorder.size()); ++i) {
|
deba@2499
|
2329 |
Node n = aorder[i];
|
deba@2499
|
2330 |
apath[n] = apath[apred[n]] + 1;
|
deba@2499
|
2331 |
apath_btree[n] = btree[n] + apath_btree[apred[n]];
|
deba@2499
|
2332 |
}
|
deba@2499
|
2333 |
|
deba@2499
|
2334 |
typename AuxUGraph::template NodeMap<int> bpath_atree(ugraph, 0);
|
deba@2499
|
2335 |
bpath_atree[anode] = atree[anode];
|
deba@2499
|
2336 |
for (int i = 1; i < int(border.size()); ++i) {
|
deba@2499
|
2337 |
Node n = border[i];
|
deba@2499
|
2338 |
bpath_atree[n] = atree[n] + bpath_atree[bpred[n]];
|
deba@2499
|
2339 |
}
|
deba@2499
|
2340 |
|
deba@2499
|
2341 |
typename AuxUGraph::template NodeMap<int> cpath(ugraph, 0);
|
deba@2499
|
2342 |
cpath[anode] = cpath[bnode] = 1;
|
deba@2499
|
2343 |
typename AuxUGraph::template NodeMap<int> cpath_atree(ugraph, 0);
|
deba@2499
|
2344 |
cpath_atree[anode] = atree[anode];
|
deba@2499
|
2345 |
typename AuxUGraph::template NodeMap<int> cpath_btree(ugraph, 0);
|
deba@2499
|
2346 |
cpath_btree[bnode] = btree[bnode];
|
deba@2499
|
2347 |
for (int i = 1; i < int(corder.size()); ++i) {
|
deba@2499
|
2348 |
Node n = corder[i];
|
deba@2499
|
2349 |
cpath[n] = cpath[cpred[n]] + 1;
|
deba@2499
|
2350 |
cpath_atree[n] = atree[n] + cpath_atree[cpred[n]];
|
deba@2499
|
2351 |
cpath_btree[n] = btree[n] + cpath_btree[cpred[n]];
|
deba@2499
|
2352 |
}
|
deba@2499
|
2353 |
|
deba@2499
|
2354 |
typename AuxUGraph::template NodeMap<int> third(ugraph);
|
deba@2499
|
2355 |
for (NodeIt n(ugraph); n != INVALID; ++n) {
|
deba@2499
|
2356 |
point_map[n].x =
|
deba@2499
|
2357 |
bpath_atree[n] + cpath_atree[n] - atree[n] - cpath[n] + 1;
|
deba@2499
|
2358 |
point_map[n].y =
|
deba@2499
|
2359 |
cpath_btree[n] + apath_btree[n] - btree[n] - apath[n] + 1;
|
deba@2499
|
2360 |
}
|
deba@2499
|
2361 |
|
deba@2499
|
2362 |
}
|
deba@2499
|
2363 |
|
deba@2499
|
2364 |
public:
|
deba@2499
|
2365 |
|
deba@2499
|
2366 |
/// \brief Calculates the node locations
|
deba@2499
|
2367 |
///
|
deba@2499
|
2368 |
/// This function calculates the node locations.
|
deba@2499
|
2369 |
bool run() {
|
deba@2499
|
2370 |
PlanarEmbedding<UGraph> pe(_ugraph);
|
deba@2499
|
2371 |
if (!pe.run()) return false;
|
deba@2499
|
2372 |
|
deba@2499
|
2373 |
run(pe);
|
deba@2499
|
2374 |
return true;
|
deba@2499
|
2375 |
}
|
deba@2499
|
2376 |
|
deba@2499
|
2377 |
/// \brief Calculates the node locations according to a
|
deba@2499
|
2378 |
/// combinatorical embedding
|
deba@2499
|
2379 |
///
|
deba@2499
|
2380 |
/// This function calculates the node locations. The \c embedding
|
deba@2499
|
2381 |
/// parameter should contain a valid combinatorical embedding, ie.
|
deba@2499
|
2382 |
/// a valid cyclic order of the edges.
|
deba@2499
|
2383 |
template <typename EmbeddingMap>
|
deba@2499
|
2384 |
void run(const EmbeddingMap& embedding) {
|
deba@2499
|
2385 |
typedef SmartUEdgeSet<UGraph> AuxUGraph;
|
deba@2499
|
2386 |
|
deba@2499
|
2387 |
if (3 * countNodes(_ugraph) - 6 == countUEdges(_ugraph)) {
|
deba@2499
|
2388 |
drawing(_ugraph, embedding, _point_map);
|
deba@2499
|
2389 |
return;
|
deba@2499
|
2390 |
}
|
deba@2499
|
2391 |
|
deba@2499
|
2392 |
AuxUGraph aux_ugraph(_ugraph);
|
deba@2499
|
2393 |
typename AuxUGraph::template EdgeMap<typename AuxUGraph::Edge>
|
deba@2499
|
2394 |
aux_embedding(aux_ugraph);
|
deba@2499
|
2395 |
|
deba@2499
|
2396 |
{
|
deba@2499
|
2397 |
|
deba@2499
|
2398 |
typename UGraph::template UEdgeMap<typename AuxUGraph::UEdge>
|
deba@2499
|
2399 |
ref(_ugraph);
|
deba@2499
|
2400 |
|
deba@2499
|
2401 |
for (UEdgeIt e(_ugraph); e != INVALID; ++e) {
|
deba@2499
|
2402 |
ref[e] = aux_ugraph.addEdge(_ugraph.source(e), _ugraph.target(e));
|
deba@2499
|
2403 |
}
|
deba@2499
|
2404 |
|
deba@2499
|
2405 |
for (UEdgeIt e(_ugraph); e != INVALID; ++e) {
|
deba@2499
|
2406 |
Edge ee = embedding[_ugraph.direct(e, true)];
|
deba@2499
|
2407 |
aux_embedding[aux_ugraph.direct(ref[e], true)] =
|
deba@2499
|
2408 |
aux_ugraph.direct(ref[ee], _ugraph.direction(ee));
|
deba@2499
|
2409 |
ee = embedding[_ugraph.direct(e, false)];
|
deba@2499
|
2410 |
aux_embedding[aux_ugraph.direct(ref[e], false)] =
|
deba@2499
|
2411 |
aux_ugraph.direct(ref[ee], _ugraph.direction(ee));
|
deba@2499
|
2412 |
}
|
deba@2499
|
2413 |
}
|
deba@2499
|
2414 |
_planarity_bits::makeConnected(aux_ugraph, aux_embedding);
|
deba@2499
|
2415 |
_planarity_bits::makeBiNodeConnected(aux_ugraph, aux_embedding);
|
deba@2499
|
2416 |
_planarity_bits::makeMaxPlanar(aux_ugraph, aux_embedding);
|
deba@2499
|
2417 |
drawing(aux_ugraph, aux_embedding, _point_map);
|
deba@2499
|
2418 |
}
|
deba@2499
|
2419 |
|
deba@2499
|
2420 |
/// \brief The coordinate of the given node
|
deba@2499
|
2421 |
///
|
deba@2499
|
2422 |
/// The coordinate of the given node.
|
deba@2499
|
2423 |
Point operator[](const Node& node) {
|
deba@2499
|
2424 |
return _point_map[node];
|
deba@2499
|
2425 |
}
|
deba@2499
|
2426 |
|
deba@2499
|
2427 |
/// \brief Returns the grid embedding in a \e NodeMap.
|
deba@2499
|
2428 |
///
|
deba@2499
|
2429 |
/// Returns the grid embedding in a \e NodeMap of \c dim2::Point<int> .
|
deba@2499
|
2430 |
const PointMap& coords() const {
|
deba@2499
|
2431 |
return _point_map;
|
deba@2499
|
2432 |
}
|
deba@2499
|
2433 |
|
deba@2499
|
2434 |
private:
|
deba@2499
|
2435 |
|
deba@2499
|
2436 |
const UGraph& _ugraph;
|
deba@2499
|
2437 |
PointMap _point_map;
|
deba@2499
|
2438 |
|
deba@2499
|
2439 |
};
|
deba@2499
|
2440 |
|
deba@2480
|
2441 |
}
|
deba@2480
|
2442 |
|
deba@2480
|
2443 |
#endif
|