alpar@18
|
1 |
@node The Full Feature Graph Class
|
alpar@18
|
2 |
@section The Full Feature Graph Class
|
alpar@18
|
3 |
@cindex Full Feature Graph Class
|
alpar@18
|
4 |
|
alpar@18
|
5 |
This section describes what an imaginary full feature graph class knows.
|
alpar@18
|
6 |
The set of features provided by a real graph implementation is typically
|
alpar@18
|
7 |
a subset of the features below.
|
alpar@18
|
8 |
|
alpar@18
|
9 |
On the other hand, each graph algorithm requires the underlying graph
|
alpar@18
|
10 |
structure to provide a certain (typically small) set of features in order
|
alpar@18
|
11 |
to be able to run.
|
alpar@18
|
12 |
|
alpar@18
|
13 |
@subsection Declaration
|
alpar@18
|
14 |
|
alpar@18
|
15 |
@deftp {Class} {class Graph}
|
alpar@18
|
16 |
@code{Graph} is the imaginary @emph{full feature graph class}.
|
alpar@18
|
17 |
@code{G} denotes the instance of this class in the exaples below.
|
alpar@18
|
18 |
@c Each node and edge has a user defined data sturcure
|
alpar@18
|
19 |
@c @var{N} and @var{E} statically attached to it.
|
alpar@18
|
20 |
@end deftp
|
alpar@18
|
21 |
|
alpar@18
|
22 |
@subsection Types
|
alpar@18
|
23 |
|
alpar@18
|
24 |
@deftp {Type} Graph::NodeType
|
alpar@18
|
25 |
@deftpx {Type} Graph::EdgeType
|
alpar@18
|
26 |
The type of the data stored statically for each node and edge.
|
alpar@18
|
27 |
@end deftp
|
alpar@18
|
28 |
|
alpar@18
|
29 |
@anchor{Graph-NodeIterator}
|
alpar@70
|
30 |
@deftp {Type} Graph::NodeIt
|
alpar@18
|
31 |
@deftpx {Type} Graph::NodeIterator
|
alpar@18
|
32 |
These types points a node uniquely. The difference between the
|
alpar@70
|
33 |
@code{NodeIt} and the @code{NodeIterator} is that @code{NodeIt}
|
alpar@18
|
34 |
requires the graph structure itself for most of the operations.
|
alpar@18
|
35 |
For examples using iterators you can go through all nodes as follows.
|
alpar@18
|
36 |
@quotation
|
alpar@18
|
37 |
@verbatim
|
alpar@18
|
38 |
Graph G;
|
alpar@18
|
39 |
int nodenum=0;
|
alpar@70
|
40 |
for(Graph::NodeIterator n(G);n.valid();++n) ++nodenum;
|
alpar@18
|
41 |
@end verbatim
|
alpar@18
|
42 |
@end quotation
|
alpar@70
|
43 |
Using @code{NodeIt} the last line looks like this.
|
alpar@18
|
44 |
@quotation
|
alpar@18
|
45 |
@verbatim
|
alpar@70
|
46 |
for(Graph::NodeIt n(G);n.valid();n=G.next(n)) ++nodenum;
|
alpar@18
|
47 |
@end verbatim
|
alpar@18
|
48 |
@end quotation
|
alpar@18
|
49 |
or
|
alpar@18
|
50 |
@quotation
|
alpar@18
|
51 |
@verbatim
|
alpar@70
|
52 |
MyGraph::NodeIt n;
|
alpar@70
|
53 |
for(G.getFirst(n);G.valid(n);G.goNext(n)) ++nodenum;
|
alpar@18
|
54 |
@end verbatim
|
alpar@18
|
55 |
@end quotation
|
alpar@18
|
56 |
@end deftp
|
alpar@18
|
57 |
|
alpar@70
|
58 |
@deftp {Type} Graph::EdgeIt
|
alpar@70
|
59 |
@deftpx {Type} Graph::InEdgeIt
|
alpar@70
|
60 |
@deftpx {Type} Graph::OutEdgeIt
|
alpar@70
|
61 |
@deftpx {Type} Graph::BiEdgeIt
|
alpar@70
|
62 |
@deftpx {Type} Graph::SymEdgeIt
|
alpar@18
|
63 |
Each of these types points an edge uniquely. The difference between the
|
alpar@70
|
64 |
@code{EdgeIt} and the
|
alpar@18
|
65 |
@c @mref{Graph-NodeIterator,@code{EdgeIterator}}
|
alpar@18
|
66 |
@mref{Graph-NodeIterator , EdgeIterator}
|
alpar@18
|
67 |
series is that
|
alpar@70
|
68 |
@code{EdgeIt} requires the graph structure itself for most of the
|
alpar@18
|
69 |
operations.
|
alpar@18
|
70 |
@end deftp
|
alpar@18
|
71 |
|
alpar@18
|
72 |
@anchor{Graph-EdgeIterator}
|
alpar@18
|
73 |
@deftp {Type} Graph::EdgeIterator
|
alpar@18
|
74 |
@deftpx {Type} Graph::InEdgeIterator
|
alpar@18
|
75 |
@deftpx {Type} Graph::OutEdgeIterator
|
alpar@18
|
76 |
@deftpx {Type} Graph::BiEdgeIterator
|
alpar@18
|
77 |
@deftpx {Type} Graph::SymEdgeIterator
|
alpar@70
|
78 |
@deftpx {Type} Graph::EachEdgeIterator
|
alpar@18
|
79 |
Each of these types points an edge uniquely. The difference between the
|
alpar@70
|
80 |
@code{EdgeIt} and the @code{EdgeIterator} series is that
|
alpar@70
|
81 |
@code{EdgeIt} requires the graph structure itself for most of the
|
alpar@18
|
82 |
operations.
|
alpar@18
|
83 |
|
alpar@18
|
84 |
For the @code{EdgeIterator} types you can use operator @code{++}
|
alpar@18
|
85 |
(both the prefix and the posfix one) to obtain the next edge.
|
alpar@18
|
86 |
@end deftp
|
alpar@18
|
87 |
|
alpar@18
|
88 |
@deftp {Type} Graph::NodeMap
|
alpar@18
|
89 |
@deftpx {Type} Graph::EdgeMap
|
alpar@18
|
90 |
There are the default property maps for the edges and the nodes.
|
alpar@18
|
91 |
@end deftp
|
alpar@18
|
92 |
|
alpar@18
|
93 |
|
alpar@18
|
94 |
@subsection Member Functions
|
alpar@18
|
95 |
|
alpar@18
|
96 |
@subsubsection Constructors
|
alpar@18
|
97 |
|
alpar@18
|
98 |
|
alpar@18
|
99 |
@deftypefun { } Graph::Graph ()
|
alpar@18
|
100 |
The default constructor.
|
alpar@18
|
101 |
@end deftypefun
|
alpar@18
|
102 |
|
alpar@26
|
103 |
@c @deftypefun { } Graph::Graph (Graph@tie{}&)
|
alpar@26
|
104 |
@deftypefun { } Graph::Graph (Graph &)
|
alpar@18
|
105 |
The copy constructor. Not yet implemented.
|
alpar@18
|
106 |
@end deftypefun
|
alpar@18
|
107 |
|
alpar@18
|
108 |
@subsubsection Graph Maintenence Operations
|
alpar@18
|
109 |
|
alpar@70
|
110 |
@deftypefun NodeIterator Graph::addNode ()
|
alpar@18
|
111 |
Adds a new node to the graph and returns a @code{NodeIterator} pointing to it.
|
alpar@18
|
112 |
@end deftypefun
|
alpar@18
|
113 |
|
alpar@70
|
114 |
@deftypefun EdgeIterator Graph::addEdge (@w{const @mref{Graph-NodeIterator,NodeIterator} @var{from}}, @w{const @mref{Graph-NodeIterator,NodeIterator} @var{to}})
|
alpar@18
|
115 |
Adds a new edge with tail @var{from} and head @var{to} to the graph
|
alpar@18
|
116 |
and returns an @code{EdgeIterator} pointing to it.
|
alpar@18
|
117 |
@end deftypefun
|
alpar@18
|
118 |
|
alpar@70
|
119 |
@deftypefun void Graph::delete (@w{const @mref{Graph-NodeIterator,NodeIterator} @var{n}})
|
alpar@18
|
120 |
Deletes the node @var{n}. It also deletes the adjacent edges.
|
alpar@18
|
121 |
@end deftypefun
|
alpar@18
|
122 |
|
alpar@70
|
123 |
@deftypefun void Graph::delete (@w{const @mref{Graph-EdgeIterator,EdgeIterator} @var{e}})
|
alpar@18
|
124 |
Deletes the edge @var{n}.
|
alpar@18
|
125 |
@end deftypefun
|
alpar@18
|
126 |
|
alpar@70
|
127 |
@deftypefun void Graph::clean ()
|
alpar@18
|
128 |
Deletes all edges and nodes from the graph.
|
alpar@18
|
129 |
@end deftypefun
|
alpar@18
|
130 |
|
alpar@70
|
131 |
@deftypefun int Graph::nodeNum ()
|
alpar@18
|
132 |
Returns the number of the nodes in the graph.
|
alpar@18
|
133 |
@end deftypefun
|
alpar@18
|
134 |
|
alpar@70
|
135 |
@subsubsection NodeIt Operations
|
alpar@18
|
136 |
|
alpar@70
|
137 |
@deftypefun NodeIt Graph::getFirst (NodeIt &@var{n})
|
alpar@70
|
138 |
@deftypefunx NodeIt Graph::next (const NodeIt @var{n})
|
alpar@70
|
139 |
@deftypefunx {NodeIt &} Graph::goNext (NodeIt &@var{n})
|
alpar@18
|
140 |
The nodes in the graph forms a list. @code{GetFirst(n)} sets @var{n} to
|
alpar@70
|
141 |
be the first node. @code{next(n)} gives back the subsequent
|
alpar@18
|
142 |
node. @code{Next(n)} is equivalent to @code{n=Next(n)}, though it
|
alpar@18
|
143 |
might be faster. ??? What should be the return value ???
|
alpar@18
|
144 |
@end deftypefun
|
alpar@18
|
145 |
|
alpar@70
|
146 |
@deftypefun bool Graph::valid (NodeIt &@var{e})
|
alpar@70
|
147 |
@deftypefunx bool NodeIt::valid ()
|
alpar@70
|
148 |
These functions check if and NodeIt is valid or not.
|
alpar@18
|
149 |
??? Which one should be implemented ???
|
alpar@18
|
150 |
@end deftypefun
|
alpar@18
|
151 |
|
alpar@70
|
152 |
@subsubsection EdgeIt Operations
|
alpar@18
|
153 |
|
alpar@70
|
154 |
@deftypefun EachEdgeIt Graph::getFirst (const EachEdgeIt & @var{e})
|
alpar@70
|
155 |
@deftypefunx EachEdgeIt Graph::next (const EachEdgeIt @var{n})
|
alpar@70
|
156 |
@deftypefunx {EachEdgeIt &} Graph::goNext (EachEdgeIt &@var{n})
|
alpar@18
|
157 |
With these functions you can go though all the edges of the graph.
|
alpar@18
|
158 |
??? What should be the return value ???
|
alpar@18
|
159 |
@end deftypefun
|
alpar@18
|
160 |
|
alpar@70
|
161 |
@deftypefun InEdgeIt Graph::getFirst (const InEdgeIt & @var{e}, const NodeIt @var{n})
|
alpar@70
|
162 |
@deftypefunx OutEdgeIt Graph::getFirst (const OutEdgeIt & @var{e}, const NodeIt @var{n})
|
alpar@70
|
163 |
@deftypefunx SymEdgeIt Graph::getFirst (const SymEdgeIt & @var{e}, const NodeIt @var{n})
|
alpar@18
|
164 |
The edges leaving from, arriving at or adjacent with a node forms a
|
alpar@18
|
165 |
list. These functions give back the first elements of these
|
alpar@18
|
166 |
lists. The exact behavior depends on the type of @var{e}.
|
alpar@18
|
167 |
|
alpar@70
|
168 |
If @var{e} is an @code{InEdgeIt} or an @code{OutEdgeIt} then
|
alpar@70
|
169 |
@code{getFirst} sets @var{e} to be the first incoming or outgoing edge
|
alpar@18
|
170 |
of the node @var{n}, respectively.
|
alpar@18
|
171 |
|
alpar@70
|
172 |
If @var{e} is a @code{SymEdgeIt} then
|
alpar@70
|
173 |
@code{getFirst} sets @var{e} to be the first incoming if there exists one
|
alpar@18
|
174 |
otherwise the first outgoing edge.
|
alpar@18
|
175 |
|
alpar@18
|
176 |
If there are no such edges, @var{e} will be invalid.
|
alpar@18
|
177 |
|
alpar@18
|
178 |
@end deftypefun
|
alpar@18
|
179 |
|
alpar@70
|
180 |
@deftypefun InEdgeIt Graph::next (const InEdgeIt @var{e})
|
alpar@70
|
181 |
@deftypefunx OutEdgeIt Graph::next (const OutEdgeIt @var{e})
|
alpar@70
|
182 |
@deftypefunx SymEdgeIt Graph::next (const SymEdgeIt @var{e})
|
alpar@18
|
183 |
These functions give back the edge that follows @var{e}
|
alpar@18
|
184 |
@end deftypefun
|
alpar@18
|
185 |
|
alpar@70
|
186 |
@deftypefun {InEdgeIt &} Graph::goNext (InEdgeIt &@var{e})
|
alpar@70
|
187 |
@deftypefunx {OutEdgeIt &} Graph::goNext (OutEdgeIt &@var{e})
|
alpar@70
|
188 |
@deftypefunx {SymEdgeIt &} Graph::goNext (SymEdgeIt &@var{e})
|
alpar@70
|
189 |
@code{G.goNext(e)} is equivalent to @code{e=G.next(e)}, though it
|
alpar@18
|
190 |
might be faster.
|
alpar@18
|
191 |
??? What should be the return value ???
|
alpar@18
|
192 |
@end deftypefun
|
alpar@18
|
193 |
|
alpar@70
|
194 |
@deftypefun bool Graph::valid (EdgeIt &@var{e})
|
alpar@70
|
195 |
@deftypefunx bool EdgeIt::valid ()
|
alpar@70
|
196 |
These functions check if and EdgeIt is valid or not.
|
alpar@18
|
197 |
??? Which one should be implemented ???
|
alpar@18
|
198 |
@end deftypefun
|
alpar@18
|
199 |
|
alpar@70
|
200 |
@deftypefun NodeIt Graph::tail (const EdgeIt @var{e})
|
alpar@70
|
201 |
@deftypefunx NodeIt Graph::head (const EdgeIt @var{e})
|
alpar@70
|
202 |
@deftypefunx NodeIt Graph::aNode (const InEdgeIt @var{e})
|
alpar@70
|
203 |
@deftypefunx NodeIt Graph::aNode (const OutEdgeIt @var{e})
|
alpar@70
|
204 |
@deftypefunx NodeIt Graph::aNode (const SymEdgeIt @var{e})
|
alpar@70
|
205 |
@deftypefunx NodeIt Graph::bNode (const InEdgeIt @var{e})
|
alpar@70
|
206 |
@deftypefunx NodeIt Graph::bNode (const OutEdgeIt @var{e})
|
alpar@70
|
207 |
@deftypefunx NodeIt Graph::bNode (const SymEdgeIt @var{e})
|
alpar@18
|
208 |
There queries give back the two endpoints of the edge @var{e}. For a
|
alpar@70
|
209 |
directed edge @var{e}, @code{tail(e)} and @code{head(e)} is its tail and
|
alpar@18
|
210 |
its head, respectively. For an undirected @var{e}, they are two
|
alpar@18
|
211 |
endpoints, but you should not rely on which end is which.
|
alpar@18
|
212 |
|
alpar@70
|
213 |
@code{aNode(e)} is the node which @var{e} is bounded to, i.e. it is
|
alpar@70
|
214 |
equal to @code{tail(e)} if @var{e} is an @code{OutEdgeIt} and
|
alpar@70
|
215 |
@code{head(e)} if @var{e} is an @code{InEdgeIt}. If @var{e} is a
|
alpar@70
|
216 |
@code{SymEdgeIt} and it or its first preceding edge was created by
|
alpar@70
|
217 |
@code{getFirst(e,n)}, then @code{aNode(e)} is equal to @var{n}.
|
alpar@18
|
218 |
|
alpar@70
|
219 |
@code{bNode(e)} is the other end of the edge.
|
alpar@18
|
220 |
|
alpar@70
|
221 |
???It is implemented in an other way now. (Member function <-> Graph global)???
|
alpar@18
|
222 |
@end deftypefun
|
alpar@18
|
223 |
|
alpar@18
|
224 |
|
alpar@18
|
225 |
|
alpar@18
|
226 |
@c @deftypevar int from
|
alpar@18
|
227 |
@c the tail of the created edge.
|
alpar@18
|
228 |
@c @end deftypevar
|