doc/graphs.dox
author deba
Thu, 22 Mar 2007 15:40:50 +0000
changeset 2413 21eb3ccdc3df
parent 2260 4274224f8a7d
child 2476 059dcdda37c5
permissions -rw-r--r--
Right dimacs format for min cost flows
Bug fixes in tolerance and min_mean_cycle
alpar@2391
     1
/* -*- C++ -*-
alpar@2391
     2
 *
alpar@2391
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@2391
     4
 *
alpar@2391
     5
 * Copyright (C) 2003-2007
alpar@2391
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@2391
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@2391
     8
 *
alpar@2391
     9
 * Permission to use, modify and distribute this software is granted
alpar@2391
    10
 * provided that this copyright notice appears in all copies. For
alpar@2391
    11
 * precise terms see the accompanying LICENSE file.
alpar@2391
    12
 *
alpar@2391
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@2391
    14
 * express or implied, and with no claim as to its suitability for any
alpar@2391
    15
 * purpose.
alpar@2391
    16
 *
alpar@2391
    17
 */
alpar@2391
    18
ladanyi@666
    19
/*!
ladanyi@666
    20
ladanyi@1638
    21
\page graphs Graphs
ladanyi@666
    22
deba@2111
    23
\todo Write a new Graphs page. I think it should be contain the Graph,
deba@2111
    24
UGraph and BpUGraph concept. It should be describe the iterators and
deba@2111
    25
the basic functions and the differences of the implementations.
deba@2111
    26
alpar@921
    27
The primary data structures of LEMON are the graph classes. They all
alpar@756
    28
provide a node list - edge list interface, i.e. they have
alpar@756
    29
functionalities to list the nodes and the edges of the graph as well
deba@2116
    30
as  incoming and outgoing edges of a given node. 
alpar@756
    31
alpar@2260
    32
Each graph should meet the \ref lemon::concepts::Graph "Graph" concept.
deba@2116
    33
This concept does not make it possible to change the graph (i.e. it is
deba@2116
    34
not possible to add or delete edges or nodes). Most of the graph
deba@2116
    35
algorithms will run on these graphs.
alpar@756
    36
alpar@756
    37
deba@2116
    38
In case of graphs meeting the full feature
alpar@2260
    39
\ref lemon::concepts::ErasableGraph "ErasableGraph"
deba@2116
    40
concept
deba@2116
    41
you can also erase individual edges and nodes in arbitrary order.
deba@2116
    42
deba@2116
    43
The implemented graph structures are the following.
alpar@921
    44
\li \ref lemon::ListGraph "ListGraph" is the most versatile graph class. It meets
alpar@2260
    45
the \ref lemon::concepts::ErasableGraph "ErasableGraph" concept
athos@1168
    46
and it also has some convenient extra features.
alpar@921
    47
\li \ref lemon::SmartGraph "SmartGraph" is a more memory
alpar@921
    48
efficient version of \ref lemon::ListGraph "ListGraph". The
athos@1168
    49
price of this is that it only meets the
alpar@2260
    50
\ref lemon::concepts::ExtendableGraph "ExtendableGraph" concept,
alpar@756
    51
so you cannot delete individual edges or nodes.
alpar@921
    52
\li \ref lemon::FullGraph "FullGraph"
alpar@1200
    53
implements a complete graph. It is a
alpar@2260
    54
\ref lemon::concepts::Graph "Graph", so you cannot
alpar@756
    55
change the number of nodes once it is constructed. It is extremely memory
alpar@756
    56
efficient: it uses constant amount of memory independently from the number of
alpar@1043
    57
the nodes of the graph. Of course, the size of the \ref maps-page "NodeMap"'s and
alpar@1043
    58
\ref maps-page "EdgeMap"'s will depend on the number of nodes.
alpar@756
    59
alpar@921
    60
\li \ref lemon::NodeSet "NodeSet" implements a graph with no edges. This class
alpar@921
    61
can be used as a base class of \ref lemon::EdgeSet "EdgeSet".
alpar@921
    62
\li \ref lemon::EdgeSet "EdgeSet" can be used to create a new graph on
alpar@873
    63
the node set of another graph. The base graph can be an arbitrary graph and it
alpar@921
    64
is possible to attach several \ref lemon::EdgeSet "EdgeSet"'s to a base graph.
alpar@756
    65
alpar@756
    66
\todo Don't we need SmartNodeSet and SmartEdgeSet?
alpar@756
    67
\todo Some cross-refs are wrong.
alpar@756
    68
athos@1168
    69
The graph structures themselves can not store data attached
alpar@756
    70
to the edges and nodes. However they all provide
alpar@1043
    71
\ref maps-page "map classes"
alpar@756
    72
to dynamically attach data the to graph components.
alpar@756
    73
alpar@921
    74
The following program demonstrates the basic features of LEMON's graph
ladanyi@666
    75
structures.
ladanyi@666
    76
ladanyi@666
    77
\code
ladanyi@666
    78
#include <iostream>
alpar@921
    79
#include <lemon/list_graph.h>
ladanyi@666
    80
alpar@921
    81
using namespace lemon;
ladanyi@666
    82
ladanyi@666
    83
int main()
ladanyi@666
    84
{
ladanyi@666
    85
  typedef ListGraph Graph;
ladanyi@666
    86
\endcode
ladanyi@666
    87
alpar@921
    88
ListGraph is one of LEMON's graph classes. It is based on linked lists,
ladanyi@666
    89
therefore iterating throuh its edges and nodes is fast.
ladanyi@666
    90
ladanyi@666
    91
\code
ladanyi@666
    92
  typedef Graph::Edge Edge;
ladanyi@666
    93
  typedef Graph::InEdgeIt InEdgeIt;
ladanyi@666
    94
  typedef Graph::OutEdgeIt OutEdgeIt;
ladanyi@666
    95
  typedef Graph::EdgeIt EdgeIt;
ladanyi@666
    96
  typedef Graph::Node Node;
ladanyi@666
    97
  typedef Graph::NodeIt NodeIt;
ladanyi@666
    98
ladanyi@666
    99
  Graph g;
ladanyi@666
   100
  
ladanyi@666
   101
  for (int i = 0; i < 3; i++)
ladanyi@666
   102
    g.addNode();
ladanyi@666
   103
  
ladanyi@875
   104
  for (NodeIt i(g); i!=INVALID; ++i)
ladanyi@875
   105
    for (NodeIt j(g); j!=INVALID; ++j)
ladanyi@666
   106
      if (i != j) g.addEdge(i, j);
ladanyi@666
   107
\endcode
ladanyi@666
   108
athos@1168
   109
After some convenient typedefs we create a graph and add three nodes to it.
athos@1168
   110
Then we add edges to it to form a complete graph.
ladanyi@666
   111
ladanyi@666
   112
\code
ladanyi@666
   113
  std::cout << "Nodes:";
ladanyi@875
   114
  for (NodeIt i(g); i!=INVALID; ++i)
ladanyi@666
   115
    std::cout << " " << g.id(i);
ladanyi@666
   116
  std::cout << std::endl;
ladanyi@666
   117
\endcode
ladanyi@666
   118
ladanyi@666
   119
Here we iterate through all nodes of the graph. We use a constructor of the
ladanyi@875
   120
node iterator to initialize it to the first node. The operator++ is used to
ladanyi@875
   121
step to the next node. Using operator++ on the iterator pointing to the last
ladanyi@875
   122
node invalidates the iterator i.e. sets its value to
alpar@921
   123
\ref lemon::INVALID "INVALID". This is what we exploit in the stop condition.
ladanyi@666
   124
ladanyi@875
   125
The previous code fragment prints out the following:
ladanyi@666
   126
ladanyi@666
   127
\code
ladanyi@666
   128
Nodes: 2 1 0
ladanyi@666
   129
\endcode
ladanyi@666
   130
ladanyi@666
   131
\code
ladanyi@666
   132
  std::cout << "Edges:";
ladanyi@875
   133
  for (EdgeIt i(g); i!=INVALID; ++i)
alpar@986
   134
    std::cout << " (" << g.id(g.source(i)) << "," << g.id(g.target(i)) << ")";
ladanyi@666
   135
  std::cout << std::endl;
ladanyi@666
   136
\endcode
ladanyi@666
   137
ladanyi@666
   138
\code
ladanyi@666
   139
Edges: (0,2) (1,2) (0,1) (2,1) (1,0) (2,0)
ladanyi@666
   140
\endcode
ladanyi@666
   141
athos@1168
   142
We can also iterate through all edges of the graph very similarly. The 
athos@1168
   143
\c target and
athos@1168
   144
\c source member functions can be used to access the endpoints of an edge.
ladanyi@666
   145
ladanyi@666
   146
\code
ladanyi@666
   147
  NodeIt first_node(g);
ladanyi@666
   148
ladanyi@666
   149
  std::cout << "Out-edges of node " << g.id(first_node) << ":";
ladanyi@875
   150
  for (OutEdgeIt i(g, first_node); i!=INVALID; ++i)
alpar@986
   151
    std::cout << " (" << g.id(g.source(i)) << "," << g.id(g.target(i)) << ")"; 
ladanyi@666
   152
  std::cout << std::endl;
ladanyi@666
   153
ladanyi@666
   154
  std::cout << "In-edges of node " << g.id(first_node) << ":";
ladanyi@875
   155
  for (InEdgeIt i(g, first_node); i!=INVALID; ++i)
alpar@986
   156
    std::cout << " (" << g.id(g.source(i)) << "," << g.id(g.target(i)) << ")"; 
ladanyi@666
   157
  std::cout << std::endl;
ladanyi@666
   158
\endcode
ladanyi@666
   159
ladanyi@666
   160
\code
ladanyi@666
   161
Out-edges of node 2: (2,0) (2,1)
ladanyi@666
   162
In-edges of node 2: (0,2) (1,2)
ladanyi@666
   163
\endcode
ladanyi@666
   164
ladanyi@666
   165
We can also iterate through the in and out-edges of a node. In the above
ladanyi@666
   166
example we print out the in and out-edges of the first node of the graph.
ladanyi@666
   167
ladanyi@666
   168
\code
ladanyi@666
   169
  Graph::EdgeMap<int> m(g);
ladanyi@666
   170
ladanyi@875
   171
  for (EdgeIt e(g); e!=INVALID; ++e)
ladanyi@666
   172
    m.set(e, 10 - g.id(e));
ladanyi@666
   173
  
ladanyi@666
   174
  std::cout << "Id Edge  Value" << std::endl;
ladanyi@875
   175
  for (EdgeIt e(g); e!=INVALID; ++e)
alpar@986
   176
    std::cout << g.id(e) << "  (" << g.id(g.source(e)) << "," << g.id(g.target(e))
ladanyi@666
   177
      << ") " << m[e] << std::endl;
ladanyi@666
   178
\endcode
ladanyi@666
   179
ladanyi@666
   180
\code
ladanyi@666
   181
Id Edge  Value
ladanyi@666
   182
4  (0,2) 6
ladanyi@666
   183
2  (1,2) 8
ladanyi@666
   184
5  (0,1) 5
ladanyi@666
   185
0  (2,1) 10
ladanyi@666
   186
3  (1,0) 7
ladanyi@666
   187
1  (2,0) 9
ladanyi@666
   188
\endcode
ladanyi@666
   189
alpar@873
   190
As we mentioned above, graphs are not containers rather
alpar@921
   191
incidence structures which are iterable in many ways. LEMON introduces
ladanyi@666
   192
concepts that allow us to attach containers to graphs. These containers are
ladanyi@666
   193
called maps.
ladanyi@666
   194
athos@1168
   195
In the example above we create an EdgeMap which assigns an integer value to all
ladanyi@666
   196
edges of the graph. We use the set member function of the map to write values
ladanyi@666
   197
into the map and the operator[] to retrieve them.
ladanyi@666
   198
ladanyi@666
   199
Here we used the maps provided by the ListGraph class, but you can also write
alpar@1043
   200
your own maps. You can read more about using maps \ref maps-page "here".
ladanyi@666
   201
ladanyi@666
   202
*/