lemon/xy.h
author alpar
Mon, 04 Jul 2005 16:27:54 +0000
changeset 1536 308150155bb5
parent 1426 91eb70983697
child 1588 b79bcba43661
permissions -rw-r--r--
Kill several doxygen warnings
alpar@906
     1
/* -*- C++ -*-
ladanyi@1435
     2
 * lemon/xy.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@1164
     4
 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     5
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@921
    17
#ifndef LEMON_XY_H
alpar@921
    18
#define LEMON_XY_H
athos@201
    19
athos@201
    20
#include <iostream>
deba@1420
    21
#include <lemon/utility.h>
athos@201
    22
klao@491
    23
///\ingroup misc
alpar@249
    24
///\file
alpar@249
    25
///\brief A simple two dimensional vector and a bounding box implementation 
alpar@249
    26
///
alpar@921
    27
/// The class \ref lemon::xy "xy" implements
alpar@249
    28
///a two dimensional vector with the usual
alpar@249
    29
/// operations.
alpar@249
    30
///
alpar@921
    31
/// The class \ref lemon::BoundingBox "BoundingBox" can be used to determine
ladanyi@1426
    32
/// the rectangular bounding box of a set of \ref lemon::xy "xy"'s.
alpar@458
    33
///
alpar@458
    34
///\author Attila Bernath
alpar@249
    35
alpar@249
    36
alpar@921
    37
namespace lemon {
alpar@431
    38
alpar@431
    39
  /// \addtogroup misc
alpar@431
    40
  /// @{
alpar@431
    41
alpar@1257
    42
  /// A simple two dimensional vector (plainvector) implementation
alpar@242
    43
alpar@1257
    44
  /// A simple two dimensional vector (plainvector) implementation
alpar@458
    45
  ///with the usual vector
alpar@458
    46
  /// operators.
alpar@458
    47
  ///
alpar@458
    48
  ///\author Attila Bernath
athos@207
    49
  template<typename T>
athos@207
    50
    class xy {
athos@201
    51
athos@207
    52
    public:
athos@240
    53
alpar@987
    54
      typedef T Value;
alpar@964
    55
athos@240
    56
      T x,y;     
athos@207
    57
      
alpar@1257
    58
      ///Default constructor
alpar@1257
    59
      xy() {}
athos@201
    60
athos@240
    61
      ///Constructing the instance from coordinates
athos@514
    62
      xy(T a, T b) : x(a), y(b) { }
athos@201
    63
athos@201
    64
alpar@1049
    65
      ///Conversion constructor
alpar@1049
    66
      template<class TT> xy(const xy<TT> &p) : x(p.x), y(p.y) {}
alpar@1049
    67
athos@207
    68
      ///Gives back the square of the norm of the vector
alpar@1257
    69
      T normSquare() const {
ladanyi@1426
    70
        return x*x+y*y;
alpar@1391
    71
      }
athos@201
    72
  
athos@207
    73
      ///Increments the left hand side by u
alpar@1257
    74
      xy<T>& operator +=(const xy<T>& u) {
ladanyi@1426
    75
        x += u.x;
ladanyi@1426
    76
        y += u.y;
ladanyi@1426
    77
        return *this;
alpar@1391
    78
      }
athos@201
    79
  
athos@207
    80
      ///Decrements the left hand side by u
alpar@1257
    81
      xy<T>& operator -=(const xy<T>& u) {
ladanyi@1426
    82
        x -= u.x;
ladanyi@1426
    83
        y -= u.y;
ladanyi@1426
    84
        return *this;
alpar@1391
    85
      }
athos@201
    86
athos@207
    87
      ///Multiplying the left hand side with a scalar
alpar@1257
    88
      xy<T>& operator *=(const T &u) {
ladanyi@1426
    89
        x *= u;
ladanyi@1426
    90
        y *= u;
ladanyi@1426
    91
        return *this;
alpar@1391
    92
      }
athos@207
    93
athos@207
    94
      ///Dividing the left hand side by a scalar
alpar@1257
    95
      xy<T>& operator /=(const T &u) {
ladanyi@1426
    96
        x /= u;
ladanyi@1426
    97
        y /= u;
ladanyi@1426
    98
        return *this;
alpar@1391
    99
      }
athos@201
   100
  
athos@207
   101
      ///Returns the scalar product of two vectors
alpar@1257
   102
      T operator *(const xy<T>& u) const {
ladanyi@1426
   103
        return x*u.x+y*u.y;
alpar@1391
   104
      }
athos@201
   105
  
athos@207
   106
      ///Returns the sum of two vectors
athos@207
   107
      xy<T> operator+(const xy<T> &u) const {
ladanyi@1426
   108
        xy<T> b=*this;
ladanyi@1426
   109
        return b+=u;
alpar@1391
   110
      }
athos@201
   111
alpar@1049
   112
      ///Returns the neg of the vectors
alpar@1049
   113
      xy<T> operator-() const {
ladanyi@1426
   114
        xy<T> b=*this;
ladanyi@1426
   115
        b.x=-b.x; b.y=-b.y;
ladanyi@1426
   116
        return b;
alpar@1391
   117
      }
alpar@1049
   118
athos@207
   119
      ///Returns the difference of two vectors
athos@207
   120
      xy<T> operator-(const xy<T> &u) const {
ladanyi@1426
   121
        xy<T> b=*this;
ladanyi@1426
   122
        return b-=u;
alpar@1391
   123
      }
athos@201
   124
athos@207
   125
      ///Returns a vector multiplied by a scalar
athos@207
   126
      xy<T> operator*(const T &u) const {
ladanyi@1426
   127
        xy<T> b=*this;
ladanyi@1426
   128
        return b*=u;
alpar@1391
   129
      }
athos@201
   130
athos@207
   131
      ///Returns a vector divided by a scalar
athos@207
   132
      xy<T> operator/(const T &u) const {
ladanyi@1426
   133
        xy<T> b=*this;
ladanyi@1426
   134
        return b/=u;
alpar@1391
   135
      }
athos@201
   136
athos@207
   137
      ///Testing equality
alpar@1257
   138
      bool operator==(const xy<T> &u) const {
ladanyi@1426
   139
        return (x==u.x) && (y==u.y);
alpar@1391
   140
      }
athos@201
   141
athos@207
   142
      ///Testing inequality
alpar@1257
   143
      bool operator!=(xy u) const {
ladanyi@1426
   144
        return  (x!=u.x) || (y!=u.y);
alpar@1391
   145
      }
athos@201
   146
athos@207
   147
    };
athos@201
   148
alpar@1071
   149
  ///Returns a vector multiplied by a scalar
alpar@1083
   150
alpar@1083
   151
  ///Returns a vector multiplied by a scalar
alpar@1083
   152
  ///\relates xy
alpar@1071
   153
  template<typename T> xy<T> operator*(const T &u,const xy<T> &x) {
alpar@1071
   154
    return x*u;
alpar@1391
   155
  }
alpar@1071
   156
alpar@814
   157
  ///Read a plainvector from a stream
alpar@814
   158
alpar@967
   159
  ///Read a plainvector from a stream
alpar@814
   160
  ///\relates xy
alpar@814
   161
  ///
athos@207
   162
  template<typename T>
deba@1392
   163
  inline std::istream& operator>>(std::istream &is, xy<T> &z) {
deba@1392
   164
    char c;
deba@1392
   165
    if (is >> c) {
deba@1392
   166
      if (c != '(') is.putback(c);
deba@1392
   167
    } else {
deba@1392
   168
      is.clear();
deba@1392
   169
    }
deba@1392
   170
    if (!(is >> z.x)) return is;
deba@1392
   171
    if (is >> c) {
deba@1392
   172
      if (c != ',') is.putback(c);
deba@1392
   173
    } else {
deba@1392
   174
      is.clear();
deba@1392
   175
    }
deba@1392
   176
    if (!(is >> z.y)) return is;
deba@1392
   177
    if (is >> c) {
deba@1392
   178
      if (c != ')') is.putback(c);
deba@1392
   179
    } else {
deba@1392
   180
      is.clear();
deba@1392
   181
    }
athos@207
   182
    return is;
athos@207
   183
  }
athos@201
   184
alpar@814
   185
  ///Write a plainvector to a stream
alpar@814
   186
alpar@967
   187
  ///Write a plainvector to a stream
alpar@814
   188
  ///\relates xy
alpar@814
   189
  ///
athos@207
   190
  template<typename T>
deba@1392
   191
  inline std::ostream& operator<<(std::ostream &os, const xy<T>& z)
athos@207
   192
  {
athos@240
   193
    os << "(" << z.x << ", " << z.y << ")";
athos@207
   194
    return os;
athos@207
   195
  }
athos@207
   196
alpar@1202
   197
  ///Rotate by 90 degrees
alpar@1202
   198
alpar@1202
   199
  ///Returns its parameter rotated by 90 degrees in positive direction.
alpar@1202
   200
  ///\relates xy
alpar@1202
   201
  ///
alpar@1202
   202
  template<typename T>
alpar@1202
   203
  inline xy<T> rot90(const xy<T> &z)
alpar@1202
   204
  {
alpar@1202
   205
    return xy<T>(-z.y,z.x);
alpar@1202
   206
  }
alpar@1202
   207
alpar@1202
   208
  ///Rotate by 270 degrees
alpar@1202
   209
alpar@1202
   210
  ///Returns its parameter rotated by 90 degrees in negative direction.
alpar@1202
   211
  ///\relates xy
alpar@1202
   212
  ///
alpar@1202
   213
  template<typename T>
alpar@1202
   214
  inline xy<T> rot270(const xy<T> &z)
alpar@1202
   215
  {
alpar@1202
   216
    return xy<T>(z.y,-z.x);
alpar@1202
   217
  }
alpar@1202
   218
alpar@1202
   219
  
athos@244
   220
alpar@458
   221
  /// A class to calculate or store the bounding box of plainvectors.
alpar@458
   222
alpar@458
   223
  /// A class to calculate or store the bounding box of plainvectors.
alpar@458
   224
  ///
alpar@458
   225
  ///\author Attila Bernath
athos@244
   226
  template<typename T>
athos@244
   227
    class BoundingBox {
athos@244
   228
      xy<T> bottom_left, top_right;
athos@244
   229
      bool _empty;
athos@244
   230
    public:
athos@244
   231
      
ladanyi@1426
   232
      ///Default constructor: creates an empty bounding box
athos@244
   233
      BoundingBox() { _empty = true; }
athos@244
   234
athos@244
   235
      ///Constructing the instance from one point
athos@244
   236
      BoundingBox(xy<T> a) { bottom_left=top_right=a; _empty = false; }
athos@244
   237
ladanyi@1426
   238
      ///Were any points added?
athos@244
   239
      bool empty() const {
ladanyi@1426
   240
        return _empty;
athos@244
   241
      }
athos@244
   242
alpar@1391
   243
      ///Makes the BoundingBox empty
alpar@1391
   244
      void clear() {
ladanyi@1426
   245
        _empty=1;
alpar@1391
   246
      }
alpar@1391
   247
athos@244
   248
      ///Gives back the bottom left corner (if the bounding box is empty, then the return value is not defined) 
athos@244
   249
      xy<T> bottomLeft() const {
ladanyi@1426
   250
        return bottom_left;
alpar@1391
   251
      }
athos@244
   252
athos@244
   253
      ///Gives back the top right corner (if the bounding box is empty, then the return value is not defined) 
athos@244
   254
      xy<T> topRight() const {
ladanyi@1426
   255
        return top_right;
alpar@1391
   256
      }
athos@244
   257
alpar@1045
   258
      ///Gives back the bottom right corner (if the bounding box is empty, then the return value is not defined) 
alpar@1045
   259
      xy<T> bottomRight() const {
ladanyi@1426
   260
        return xy<T>(top_right.x,bottom_left.y);
alpar@1391
   261
      }
alpar@1045
   262
alpar@1045
   263
      ///Gives back the top left corner (if the bounding box is empty, then the return value is not defined) 
alpar@1045
   264
      xy<T> topLeft() const {
ladanyi@1426
   265
        return xy<T>(bottom_left.x,top_right.y);
alpar@1391
   266
      }
alpar@1045
   267
alpar@1045
   268
      ///Gives back the bottom of the box (if the bounding box is empty, then the return value is not defined) 
alpar@1045
   269
      T bottom() const {
ladanyi@1426
   270
        return bottom_left.y;
alpar@1391
   271
      }
alpar@1045
   272
alpar@1045
   273
      ///Gives back the top of the box (if the bounding box is empty, then the return value is not defined) 
alpar@1045
   274
      T top() const {
ladanyi@1426
   275
        return top_right.y;
alpar@1391
   276
      }
alpar@1045
   277
alpar@1045
   278
      ///Gives back the left side of the box (if the bounding box is empty, then the return value is not defined) 
alpar@1045
   279
      T left() const {
ladanyi@1426
   280
        return bottom_left.x;
alpar@1391
   281
      }
alpar@1045
   282
alpar@1045
   283
      ///Gives back the right side of the box (if the bounding box is empty, then the return value is not defined) 
alpar@1045
   284
      T right() const {
ladanyi@1426
   285
        return top_right.x;
alpar@1391
   286
      }
alpar@1045
   287
alpar@1102
   288
      ///Gives back the height of the box (if the bounding box is empty, then the return value is not defined) 
alpar@1102
   289
      T height() const {
ladanyi@1426
   290
        return top_right.y-bottom_left.y;
alpar@1391
   291
      }
alpar@1102
   292
alpar@1102
   293
      ///Gives back the width of the box (if the bounding box is empty, then the return value is not defined) 
alpar@1102
   294
      T width() const {
ladanyi@1426
   295
        return top_right.x-bottom_left.x;
alpar@1391
   296
      }
alpar@1102
   297
athos@244
   298
      ///Checks whether a point is inside a bounding box
athos@244
   299
      bool inside(const xy<T>& u){
ladanyi@1426
   300
        if (_empty)
ladanyi@1426
   301
          return false;
ladanyi@1426
   302
        else{
ladanyi@1426
   303
          return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 &&
ladanyi@1426
   304
              (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 );
ladanyi@1426
   305
        }
athos@244
   306
      }
athos@244
   307
  
athos@244
   308
      ///Increments a bounding box with a point
athos@244
   309
      BoundingBox& operator +=(const xy<T>& u){
ladanyi@1426
   310
        if (_empty){
ladanyi@1426
   311
          bottom_left=top_right=u;
ladanyi@1426
   312
          _empty = false;
ladanyi@1426
   313
        }
ladanyi@1426
   314
        else{
ladanyi@1426
   315
          if (bottom_left.x > u.x) bottom_left.x = u.x;
ladanyi@1426
   316
          if (bottom_left.y > u.y) bottom_left.y = u.y;
ladanyi@1426
   317
          if (top_right.x < u.x) top_right.x = u.x;
ladanyi@1426
   318
          if (top_right.y < u.y) top_right.y = u.y;
ladanyi@1426
   319
        }
ladanyi@1426
   320
        return *this;
alpar@1391
   321
      }
athos@244
   322
  
athos@244
   323
      ///Sums a bounding box and a point
athos@244
   324
      BoundingBox operator +(const xy<T>& u){
ladanyi@1426
   325
        BoundingBox b = *this;
ladanyi@1426
   326
        return b += u;
alpar@1391
   327
      }
athos@244
   328
athos@244
   329
      ///Increments a bounding box with an other bounding box
athos@244
   330
      BoundingBox& operator +=(const BoundingBox &u){
ladanyi@1426
   331
        if ( !u.empty() ){
ladanyi@1426
   332
          *this += u.bottomLeft();
ladanyi@1426
   333
          *this += u.topRight();
ladanyi@1426
   334
        }
ladanyi@1426
   335
        return *this;
alpar@1391
   336
      }
athos@244
   337
  
athos@244
   338
      ///Sums two bounding boxes
athos@244
   339
      BoundingBox operator +(const BoundingBox& u){
ladanyi@1426
   340
        BoundingBox b = *this;
ladanyi@1426
   341
        return b += u;
alpar@1391
   342
      }
athos@244
   343
athos@244
   344
    };//class Boundingbox
athos@244
   345
athos@244
   346
alpar@1317
   347
  ///Map of x-coordinates of an xy<>-map
alpar@1317
   348
alpar@1317
   349
  ///\ingroup maps
alpar@1317
   350
  ///
alpar@1317
   351
  template<class M>
alpar@1317
   352
  class XMap 
alpar@1317
   353
  {
deba@1420
   354
    typename SmartReference<M>::Type _map;
alpar@1317
   355
  public:
deba@1420
   356
    typedef True NeedCopy;
deba@1420
   357
alpar@1317
   358
    typedef typename M::Value::Value Value;
alpar@1317
   359
    typedef typename M::Key Key;
alpar@1317
   360
    ///\e
deba@1420
   361
    XMap(typename SmartParameter<M>::Type map) : _map(map) {}
alpar@1317
   362
    Value operator[](Key k) const {return _map[k].x;}
alpar@1352
   363
    void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));}
alpar@1317
   364
  };
alpar@1317
   365
    
alpar@1317
   366
  ///Returns an \ref XMap class
alpar@1317
   367
alpar@1317
   368
  ///This function just returns an \ref XMap class.
alpar@1317
   369
  ///
alpar@1317
   370
  ///\ingroup maps
alpar@1317
   371
  ///\relates XMap
alpar@1317
   372
  template<class M> 
alpar@1317
   373
  inline XMap<M> xMap(M &m) 
alpar@1317
   374
  {
alpar@1317
   375
    return XMap<M>(m);
alpar@1317
   376
  }
alpar@1317
   377
deba@1420
   378
  template<class M> 
deba@1420
   379
  inline XMap<M> xMap(const M &m) 
deba@1420
   380
  {
deba@1420
   381
    return XMap<M>(m);
deba@1420
   382
  }
deba@1420
   383
alpar@1317
   384
  ///Constant (read only) version of \ref XMap
alpar@1317
   385
alpar@1317
   386
  ///\ingroup maps
alpar@1317
   387
  ///
alpar@1317
   388
  template<class M>
alpar@1317
   389
  class ConstXMap 
alpar@1317
   390
  {
deba@1420
   391
    typename SmartConstReference<M>::Type _map;
alpar@1317
   392
  public:
deba@1420
   393
    typedef True NeedCopy;
deba@1420
   394
alpar@1317
   395
    typedef typename M::Value::Value Value;
alpar@1317
   396
    typedef typename M::Key Key;
alpar@1317
   397
    ///\e
alpar@1317
   398
    ConstXMap(const M &map) : _map(map) {}
alpar@1317
   399
    Value operator[](Key k) const {return _map[k].x;}
alpar@1317
   400
  };
alpar@1317
   401
    
alpar@1317
   402
  ///Returns a \ref ConstXMap class
alpar@1317
   403
alpar@1317
   404
  ///This function just returns an \ref ConstXMap class.
alpar@1317
   405
  ///
alpar@1317
   406
  ///\ingroup maps
alpar@1317
   407
  ///\relates ConstXMap
alpar@1317
   408
  template<class M> 
alpar@1317
   409
  inline ConstXMap<M> xMap(const M &m) 
alpar@1317
   410
  {
alpar@1317
   411
    return ConstXMap<M>(m);
alpar@1317
   412
  }
alpar@1317
   413
alpar@1317
   414
  ///Map of y-coordinates of an xy<>-map
alpar@1317
   415
    
alpar@1317
   416
  ///\ingroup maps
alpar@1317
   417
  ///
alpar@1317
   418
  template<class M>
alpar@1317
   419
  class YMap 
alpar@1317
   420
  {
deba@1420
   421
    typename SmartReference<M>::Type _map;
alpar@1317
   422
  public:
deba@1420
   423
    typedef True NeedCopy;
deba@1420
   424
alpar@1317
   425
    typedef typename M::Value::Value Value;
alpar@1317
   426
    typedef typename M::Key Key;
alpar@1317
   427
    ///\e
deba@1420
   428
    YMap(typename SmartParameter<M>::Type map) : _map(map) {}
alpar@1317
   429
    Value operator[](Key k) const {return _map[k].y;}
alpar@1352
   430
    void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));}
alpar@1317
   431
  };
alpar@1317
   432
alpar@1317
   433
  ///Returns an \ref YMap class
alpar@1317
   434
alpar@1317
   435
  ///This function just returns an \ref YMap class.
alpar@1317
   436
  ///
alpar@1317
   437
  ///\ingroup maps
alpar@1317
   438
  ///\relates YMap
alpar@1317
   439
  template<class M> 
alpar@1317
   440
  inline YMap<M> yMap(M &m) 
alpar@1317
   441
  {
alpar@1317
   442
    return YMap<M>(m);
alpar@1317
   443
  }
alpar@1317
   444
deba@1420
   445
  template<class M> 
deba@1420
   446
  inline YMap<M> yMap(const M &m) 
deba@1420
   447
  {
deba@1420
   448
    return YMap<M>(m);
deba@1420
   449
  }
deba@1420
   450
alpar@1317
   451
  ///Constant (read only) version of \ref YMap
alpar@1317
   452
alpar@1317
   453
  ///\ingroup maps
alpar@1317
   454
  ///
alpar@1317
   455
  template<class M>
alpar@1317
   456
  class ConstYMap 
alpar@1317
   457
  {
deba@1420
   458
    typename SmartConstReference<M>::Type _map;
alpar@1317
   459
  public:
deba@1420
   460
    typedef True NeedCopy;
deba@1420
   461
alpar@1317
   462
    typedef typename M::Value::Value Value;
alpar@1317
   463
    typedef typename M::Key Key;
alpar@1317
   464
    ///\e
alpar@1317
   465
    ConstYMap(const M &map) : _map(map) {}
alpar@1317
   466
    Value operator[](Key k) const {return _map[k].y;}
alpar@1317
   467
  };
alpar@1317
   468
    
alpar@1317
   469
  ///Returns a \ref ConstYMap class
alpar@1317
   470
alpar@1317
   471
  ///This function just returns an \ref ConstYMap class.
alpar@1317
   472
  ///
alpar@1317
   473
  ///\ingroup maps
alpar@1317
   474
  ///\relates ConstYMap
alpar@1317
   475
  template<class M> 
alpar@1317
   476
  inline ConstYMap<M> yMap(const M &m) 
alpar@1317
   477
  {
alpar@1317
   478
    return ConstYMap<M>(m);
alpar@1317
   479
  }
alpar@1317
   480
alpar@1317
   481
alpar@1352
   482
  ///Map of the \ref xy::normSquare() "normSquare()" of an \ref xy "xy"-map
alpar@1352
   483
alpar@1352
   484
  ///Map of the \ref xy::normSquare() "normSquare()" of an \ref xy "xy"-map
alpar@1352
   485
  ///\ingroup maps
alpar@1352
   486
  ///
alpar@1352
   487
  template<class M>
alpar@1352
   488
  class NormSquareMap 
alpar@1352
   489
  {
deba@1420
   490
    typename SmartConstReference<M>::Type _map;
alpar@1352
   491
  public:
deba@1420
   492
    typedef True NeedCopy;
deba@1420
   493
alpar@1352
   494
    typedef typename M::Value::Value Value;
alpar@1352
   495
    typedef typename M::Key Key;
alpar@1352
   496
    ///\e
alpar@1352
   497
    NormSquareMap(const M &map) : _map(map) {}
alpar@1352
   498
    Value operator[](Key k) const {return _map[k].normSquare();}
alpar@1352
   499
  };
alpar@1352
   500
    
alpar@1352
   501
  ///Returns a \ref NormSquareMap class
alpar@1352
   502
alpar@1352
   503
  ///This function just returns an \ref NormSquareMap class.
alpar@1352
   504
  ///
alpar@1352
   505
  ///\ingroup maps
alpar@1352
   506
  ///\relates NormSquareMap
alpar@1352
   507
  template<class M> 
alpar@1352
   508
  inline NormSquareMap<M> normSquareMap(const M &m) 
alpar@1352
   509
  {
alpar@1352
   510
    return NormSquareMap<M>(m);
alpar@1352
   511
  }
alpar@1352
   512
alpar@431
   513
  /// @}
athos@244
   514
athos@244
   515
alpar@921
   516
} //namespace lemon
athos@201
   517
alpar@921
   518
#endif //LEMON_XY_H