deba@2276
|
1 |
/* -*- C++ -*-
|
deba@2276
|
2 |
*
|
deba@2276
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
deba@2276
|
4 |
*
|
deba@2276
|
5 |
* Copyright (C) 2003-2006
|
deba@2276
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@2276
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@2276
|
8 |
*
|
deba@2276
|
9 |
* Permission to use, modify and distribute this software is granted
|
deba@2276
|
10 |
* provided that this copyright notice appears in all copies. For
|
deba@2276
|
11 |
* precise terms see the accompanying LICENSE file.
|
deba@2276
|
12 |
*
|
deba@2276
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@2276
|
14 |
* express or implied, and with no claim as to its suitability for any
|
deba@2276
|
15 |
* purpose.
|
deba@2276
|
16 |
*
|
deba@2276
|
17 |
*/
|
deba@2276
|
18 |
|
deba@2276
|
19 |
#ifndef LEMON_MIN_COST_FLOW_H
|
deba@2276
|
20 |
#define LEMON_MIN_COST_FLOW_H
|
deba@2276
|
21 |
|
deba@2276
|
22 |
///\ingroup flowalgs
|
deba@2276
|
23 |
///
|
deba@2276
|
24 |
///\file \brief An algorithm for finding a flow of value \c k (for
|
deba@2276
|
25 |
///small values of \c k) having minimal total cost
|
deba@2276
|
26 |
|
deba@2276
|
27 |
|
deba@2276
|
28 |
#include <lemon/dijkstra.h>
|
deba@2276
|
29 |
#include <lemon/graph_adaptor.h>
|
deba@2276
|
30 |
#include <lemon/maps.h>
|
deba@2276
|
31 |
#include <vector>
|
deba@2276
|
32 |
|
deba@2276
|
33 |
namespace lemon {
|
deba@2276
|
34 |
|
deba@2276
|
35 |
/// \addtogroup flowalgs
|
deba@2276
|
36 |
/// @{
|
deba@2276
|
37 |
|
deba@2276
|
38 |
/// \brief Implementation of an algorithm for finding a flow of
|
deba@2276
|
39 |
/// value \c k (for small values of \c k) having minimal total cost
|
deba@2276
|
40 |
/// between two nodes
|
deba@2276
|
41 |
///
|
deba@2276
|
42 |
///
|
deba@2276
|
43 |
/// The \ref lemon::SspMinCostFlow "Successive Shortest Path Minimum
|
deba@2276
|
44 |
/// Cost Flow" implements an algorithm for finding a flow of value
|
deba@2276
|
45 |
/// \c k having minimal total cost from a given source node to a
|
deba@2276
|
46 |
/// given target node in a directed graph with a cost function on
|
deba@2276
|
47 |
/// the edges. To this end, the edge-capacities and edge-costs have
|
deba@2276
|
48 |
/// to be nonnegative. The edge-capacities should be integers, but
|
deba@2276
|
49 |
/// the edge-costs can be integers, reals or of other comparable
|
deba@2276
|
50 |
/// numeric type. This algorithm is intended to be used only for
|
deba@2276
|
51 |
/// small values of \c k, since it is only polynomial in k, not in
|
deba@2276
|
52 |
/// the length of k (which is log k): in order to find the minimum
|
deba@2276
|
53 |
/// cost flow of value \c k it finds the minimum cost flow of value
|
deba@2276
|
54 |
/// \c i for every \c i between 0 and \c k.
|
deba@2276
|
55 |
///
|
deba@2276
|
56 |
///\param Graph The directed graph type the algorithm runs on.
|
deba@2276
|
57 |
///\param LengthMap The type of the length map.
|
deba@2276
|
58 |
///\param CapacityMap The capacity map type.
|
deba@2276
|
59 |
///
|
deba@2276
|
60 |
///\author Attila Bernath
|
deba@2276
|
61 |
template <typename Graph, typename LengthMap, typename CapacityMap>
|
deba@2276
|
62 |
class SspMinCostFlow {
|
deba@2276
|
63 |
|
deba@2276
|
64 |
typedef typename LengthMap::Value Length;
|
deba@2276
|
65 |
|
deba@2276
|
66 |
//Warning: this should be integer type
|
deba@2276
|
67 |
typedef typename CapacityMap::Value Capacity;
|
deba@2276
|
68 |
|
deba@2276
|
69 |
typedef typename Graph::Node Node;
|
deba@2276
|
70 |
typedef typename Graph::NodeIt NodeIt;
|
deba@2276
|
71 |
typedef typename Graph::Edge Edge;
|
deba@2276
|
72 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
deba@2276
|
73 |
typedef typename Graph::template EdgeMap<int> EdgeIntMap;
|
deba@2276
|
74 |
|
deba@2276
|
75 |
typedef ResGraphAdaptor<const Graph,int,CapacityMap,EdgeIntMap> ResGW;
|
deba@2276
|
76 |
typedef typename ResGW::Edge ResGraphEdge;
|
deba@2276
|
77 |
|
deba@2276
|
78 |
protected:
|
deba@2276
|
79 |
|
deba@2276
|
80 |
const Graph& g;
|
deba@2276
|
81 |
const LengthMap& length;
|
deba@2276
|
82 |
const CapacityMap& capacity;
|
deba@2276
|
83 |
|
deba@2276
|
84 |
EdgeIntMap flow;
|
deba@2276
|
85 |
typedef typename Graph::template NodeMap<Length> PotentialMap;
|
deba@2276
|
86 |
PotentialMap potential;
|
deba@2276
|
87 |
|
deba@2276
|
88 |
Node s;
|
deba@2276
|
89 |
Node t;
|
deba@2276
|
90 |
|
deba@2276
|
91 |
Length total_length;
|
deba@2276
|
92 |
|
deba@2276
|
93 |
class ModLengthMap {
|
deba@2276
|
94 |
typedef typename Graph::template NodeMap<Length> NodeMap;
|
deba@2276
|
95 |
const ResGW& g;
|
deba@2276
|
96 |
const LengthMap &length;
|
deba@2276
|
97 |
const NodeMap &pot;
|
deba@2276
|
98 |
public :
|
deba@2276
|
99 |
typedef typename LengthMap::Key Key;
|
deba@2276
|
100 |
typedef typename LengthMap::Value Value;
|
deba@2276
|
101 |
|
deba@2276
|
102 |
ModLengthMap(const ResGW& _g,
|
deba@2276
|
103 |
const LengthMap &_length, const NodeMap &_pot) :
|
deba@2276
|
104 |
g(_g), /*rev(_rev),*/ length(_length), pot(_pot) { }
|
deba@2276
|
105 |
|
deba@2276
|
106 |
Value operator[](typename ResGW::Edge e) const {
|
deba@2276
|
107 |
if (g.forward(e))
|
deba@2276
|
108 |
return length[e]-(pot[g.target(e)]-pot[g.source(e)]);
|
deba@2276
|
109 |
else
|
deba@2276
|
110 |
return -length[e]-(pot[g.target(e)]-pot[g.source(e)]);
|
deba@2276
|
111 |
}
|
deba@2276
|
112 |
|
deba@2276
|
113 |
}; //ModLengthMap
|
deba@2276
|
114 |
|
deba@2276
|
115 |
ResGW res_graph;
|
deba@2276
|
116 |
ModLengthMap mod_length;
|
deba@2276
|
117 |
Dijkstra<ResGW, ModLengthMap> dijkstra;
|
deba@2276
|
118 |
|
deba@2276
|
119 |
public :
|
deba@2276
|
120 |
|
deba@2276
|
121 |
/// \brief The constructor of the class.
|
deba@2276
|
122 |
///
|
deba@2276
|
123 |
/// \param _g The directed graph the algorithm runs on.
|
deba@2276
|
124 |
/// \param _length The length (cost) of the edges.
|
deba@2276
|
125 |
/// \param _cap The capacity of the edges.
|
deba@2276
|
126 |
/// \param _s Source node.
|
deba@2276
|
127 |
/// \param _t Target node.
|
deba@2276
|
128 |
SspMinCostFlow(Graph& _g, LengthMap& _length, CapacityMap& _cap,
|
deba@2276
|
129 |
Node _s, Node _t) :
|
deba@2276
|
130 |
g(_g), length(_length), capacity(_cap), flow(_g), potential(_g),
|
deba@2276
|
131 |
s(_s), t(_t),
|
deba@2276
|
132 |
res_graph(g, capacity, flow),
|
deba@2276
|
133 |
mod_length(res_graph, length, potential),
|
deba@2276
|
134 |
dijkstra(res_graph, mod_length) {
|
deba@2276
|
135 |
reset();
|
deba@2276
|
136 |
}
|
deba@2276
|
137 |
|
deba@2276
|
138 |
/// \brief Tries to augment the flow between s and t by 1. The
|
deba@2276
|
139 |
/// return value shows if the augmentation is successful.
|
deba@2276
|
140 |
bool augment() {
|
deba@2276
|
141 |
dijkstra.run(s);
|
deba@2276
|
142 |
if (!dijkstra.reached(t)) {
|
deba@2276
|
143 |
|
deba@2276
|
144 |
//Unsuccessful augmentation.
|
deba@2276
|
145 |
return false;
|
deba@2276
|
146 |
} else {
|
deba@2276
|
147 |
|
deba@2276
|
148 |
//We have to change the potential
|
deba@2276
|
149 |
for(typename ResGW::NodeIt n(res_graph); n!=INVALID; ++n)
|
deba@2276
|
150 |
potential.set(n, potential[n]+dijkstra.distMap()[n]);
|
deba@2276
|
151 |
|
deba@2276
|
152 |
//Augmenting on the shortest path
|
deba@2276
|
153 |
Node n=t;
|
deba@2276
|
154 |
ResGraphEdge e;
|
deba@2276
|
155 |
while (n!=s){
|
deba@2276
|
156 |
e = dijkstra.predEdge(n);
|
deba@2276
|
157 |
n = dijkstra.predNode(n);
|
deba@2276
|
158 |
res_graph.augment(e,1);
|
deba@2276
|
159 |
//Let's update the total length
|
deba@2276
|
160 |
if (res_graph.forward(e))
|
deba@2276
|
161 |
total_length += length[e];
|
deba@2276
|
162 |
else
|
deba@2276
|
163 |
total_length -= length[e];
|
deba@2276
|
164 |
}
|
deba@2276
|
165 |
|
deba@2276
|
166 |
return true;
|
deba@2276
|
167 |
}
|
deba@2276
|
168 |
}
|
deba@2276
|
169 |
|
deba@2276
|
170 |
/// \brief Runs the algorithm.
|
deba@2276
|
171 |
///
|
deba@2276
|
172 |
/// Runs the algorithm.
|
deba@2276
|
173 |
/// Returns k if there is a flow of value at least k from s to t.
|
deba@2276
|
174 |
/// Otherwise it returns the maximum value of a flow from s to t.
|
deba@2276
|
175 |
///
|
deba@2276
|
176 |
/// \param k The value of the flow we are looking for.
|
deba@2276
|
177 |
///
|
deba@2276
|
178 |
/// \todo May be it does make sense to be able to start with a
|
deba@2276
|
179 |
/// nonzero feasible primal-dual solution pair as well.
|
deba@2276
|
180 |
///
|
deba@2276
|
181 |
/// \todo If the actual flow value is bigger than k, then
|
deba@2276
|
182 |
/// everything is cleared and the algorithm starts from zero
|
deba@2276
|
183 |
/// flow. Is it a good approach?
|
deba@2276
|
184 |
int run(int k) {
|
deba@2276
|
185 |
if (flowValue()>k) reset();
|
deba@2276
|
186 |
while (flowValue()<k && augment()) { }
|
deba@2276
|
187 |
return flowValue();
|
deba@2276
|
188 |
}
|
deba@2276
|
189 |
|
deba@2276
|
190 |
/// \brief The class is reset to zero flow and potential. The
|
deba@2276
|
191 |
/// class is reset to zero flow and potential.
|
deba@2276
|
192 |
void reset() {
|
deba@2276
|
193 |
total_length=0;
|
deba@2276
|
194 |
for (typename Graph::EdgeIt e(g); e!=INVALID; ++e) flow.set(e, 0);
|
deba@2276
|
195 |
for (typename Graph::NodeIt n(g); n!=INVALID; ++n) potential.set(n, 0);
|
deba@2276
|
196 |
}
|
deba@2276
|
197 |
|
deba@2276
|
198 |
/// \brief Returns the value of the actual flow.
|
deba@2276
|
199 |
int flowValue() const {
|
deba@2276
|
200 |
int i=0;
|
deba@2276
|
201 |
for (typename Graph::OutEdgeIt e(g, s); e!=INVALID; ++e) i+=flow[e];
|
deba@2276
|
202 |
for (typename Graph::InEdgeIt e(g, s); e!=INVALID; ++e) i-=flow[e];
|
deba@2276
|
203 |
return i;
|
deba@2276
|
204 |
}
|
deba@2276
|
205 |
|
deba@2276
|
206 |
/// \brief Total cost of the found flow.
|
deba@2276
|
207 |
///
|
deba@2276
|
208 |
/// This function gives back the total cost of the found flow.
|
deba@2276
|
209 |
Length totalLength(){
|
deba@2276
|
210 |
return total_length;
|
deba@2276
|
211 |
}
|
deba@2276
|
212 |
|
deba@2276
|
213 |
/// \brief Returns a const reference to the EdgeMap \c flow.
|
deba@2276
|
214 |
///
|
deba@2276
|
215 |
/// Returns a const reference to the EdgeMap \c flow.
|
deba@2276
|
216 |
const EdgeIntMap &getFlow() const { return flow;}
|
deba@2276
|
217 |
|
deba@2276
|
218 |
/// \brief Returns a const reference to the NodeMap \c potential
|
deba@2276
|
219 |
/// (the dual solution).
|
deba@2276
|
220 |
///
|
deba@2276
|
221 |
/// Returns a const reference to the NodeMap \c potential (the
|
deba@2276
|
222 |
/// dual solution).
|
deba@2276
|
223 |
const PotentialMap &getPotential() const { return potential;}
|
deba@2276
|
224 |
|
deba@2276
|
225 |
/// \brief Checking the complementary slackness optimality criteria.
|
deba@2276
|
226 |
///
|
deba@2276
|
227 |
/// This function checks, whether the given flow and potential
|
deba@2276
|
228 |
/// satisfy the complementary slackness conditions (i.e. these are optimal).
|
deba@2276
|
229 |
/// This function only checks optimality, doesn't bother with feasibility.
|
deba@2276
|
230 |
/// For testing purpose.
|
deba@2276
|
231 |
bool checkComplementarySlackness(){
|
deba@2276
|
232 |
Length mod_pot;
|
deba@2276
|
233 |
Length fl_e;
|
deba@2276
|
234 |
for(typename Graph::EdgeIt e(g); e!=INVALID; ++e) {
|
deba@2276
|
235 |
//C^{\Pi}_{i,j}
|
deba@2276
|
236 |
mod_pot = length[e]-potential[g.target(e)]+potential[g.source(e)];
|
deba@2276
|
237 |
fl_e = flow[e];
|
deba@2276
|
238 |
if (0<fl_e && fl_e<capacity[e]) {
|
deba@2276
|
239 |
/// \todo better comparison is needed for real types, moreover,
|
deba@2276
|
240 |
/// this comparison here is superfluous.
|
deba@2276
|
241 |
if (mod_pot != 0)
|
deba@2276
|
242 |
return false;
|
deba@2276
|
243 |
}
|
deba@2276
|
244 |
else {
|
deba@2276
|
245 |
if (mod_pot > 0 && fl_e != 0)
|
deba@2276
|
246 |
return false;
|
deba@2276
|
247 |
if (mod_pot < 0 && fl_e != capacity[e])
|
deba@2276
|
248 |
return false;
|
deba@2276
|
249 |
}
|
deba@2276
|
250 |
}
|
deba@2276
|
251 |
return true;
|
deba@2276
|
252 |
}
|
deba@2276
|
253 |
|
deba@2276
|
254 |
}; //class SspMinCostFlow
|
deba@2276
|
255 |
|
deba@2276
|
256 |
///@}
|
deba@2276
|
257 |
|
deba@2276
|
258 |
} //namespace lemon
|
deba@2276
|
259 |
|
deba@2276
|
260 |
#endif //LEMON_MIN_COST_FLOW_H
|