src/hugo/kruskal.h
author marci
Mon, 20 Sep 2004 17:53:33 +0000
changeset 890 3a48bc350e0f
parent 881 a9f19f38970b
child 906 17f31d280385
permissions -rw-r--r--
Specialized ConstMap for defining constant maps at compile time, by klao.
Time comparision of the generic and specialized maps.
alpar@810
     1
// -*- c++ -*- //
alpar@810
     2
#ifndef HUGO_KRUSKAL_H
alpar@810
     3
#define HUGO_KRUSKAL_H
alpar@810
     4
alpar@810
     5
#include <algorithm>
alpar@810
     6
#include <hugo/unionfind.h>
alpar@810
     7
alpar@810
     8
/**
alpar@810
     9
@defgroup spantree Minimum Cost Spanning Tree Algorithms
alpar@810
    10
@ingroup galgs
alpar@810
    11
\brief This group containes the algorithms for finding a minimum cost spanning
alpar@810
    12
tree in a graph
alpar@810
    13
alpar@810
    14
This group containes the algorithms for finding a minimum cost spanning
alpar@810
    15
tree in a graph
alpar@810
    16
*/
alpar@810
    17
alpar@810
    18
///\ingroup spantree
alpar@810
    19
///\file
alpar@810
    20
///\brief Kruskal's algorithm to compute a minimum cost tree
alpar@810
    21
///
alpar@810
    22
///Kruskal's algorithm to compute a minimum cost tree.
alpar@810
    23
alpar@810
    24
namespace hugo {
alpar@810
    25
alpar@810
    26
  /// \addtogroup spantree
alpar@810
    27
  /// @{
alpar@810
    28
alpar@810
    29
  /// Kruskal's algorithm to find a minimum cost tree of a graph.
alpar@810
    30
alpar@810
    31
  /// This function runs Kruskal's algorithm to find a minimum cost tree.
alpar@810
    32
  /// \param G The graph the algorithm runs on. The algorithm considers the
alpar@810
    33
  /// graph to be undirected, the direction of the edges are not used.
alpar@810
    34
  ///
alpar@810
    35
  /// \param in This object is used to describe the edge costs. It must
alpar@810
    36
  /// be an STL compatible 'Forward Container'
alpar@824
    37
  /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
alpar@810
    38
  /// where X is the type of the costs. It must contain every edge in
alpar@810
    39
  /// cost-ascending order.
alpar@810
    40
  ///\par
alpar@810
    41
  /// For the sake of simplicity, there is a helper class KruskalMapInput,
alpar@810
    42
  /// which converts a
alpar@810
    43
  /// simple edge map to an input of this form. Alternatively, you can use
alpar@810
    44
  /// the function \ref kruskalEdgeMap to compute the minimum cost tree if
alpar@810
    45
  /// the edge costs are given by an edge map.
alpar@810
    46
  ///
alpar@810
    47
  /// \retval out This must be a writable \c bool edge map.
alpar@810
    48
  /// After running the algorithm
alpar@810
    49
  /// this will contain the found minimum cost spanning tree: the value of an
alpar@810
    50
  /// edge will be set to \c true if it belongs to the tree, otherwise it will
alpar@810
    51
  /// be set to \c false. The value of each edge will be set exactly once.
alpar@810
    52
  ///
alpar@810
    53
  /// \return The cost of the found tree.
alpar@810
    54
alpar@824
    55
  template <class GR, class IN, class OUT>
alpar@824
    56
  typename IN::value_type::second_type
alpar@824
    57
  kruskal(GR const& G, IN const& in, 
alpar@824
    58
		 OUT& out)
alpar@810
    59
  {
alpar@824
    60
    typedef typename IN::value_type::second_type EdgeCost;
alpar@824
    61
    typedef typename GR::template NodeMap<int> NodeIntMap;
alpar@824
    62
    typedef typename GR::Node Node;
alpar@810
    63
alpar@810
    64
    NodeIntMap comp(G, -1);
alpar@810
    65
    UnionFind<Node,NodeIntMap> uf(comp); 
alpar@810
    66
      
alpar@810
    67
    EdgeCost tot_cost = 0;
alpar@824
    68
    for (typename IN::const_iterator p = in.begin(); 
alpar@810
    69
	 p!=in.end(); ++p ) {
alpar@810
    70
      if ( uf.join(G.head((*p).first),
alpar@810
    71
		   G.tail((*p).first)) ) {
alpar@810
    72
	out.set((*p).first, true);
alpar@810
    73
	tot_cost += (*p).second;
alpar@810
    74
      }
alpar@810
    75
      else {
alpar@810
    76
	out.set((*p).first, false);
alpar@810
    77
      }
alpar@810
    78
    }
alpar@810
    79
    return tot_cost;
alpar@810
    80
  }
alpar@810
    81
alpar@810
    82
  /* A work-around for running Kruskal with const-reference bool maps... */
alpar@810
    83
klao@885
    84
  /// Helper class for calling kruskal with "constant" output map.
klao@885
    85
klao@885
    86
  /// Helper class for calling kruskal with output maps constructed
klao@885
    87
  /// on-the-fly.
alpar@810
    88
  ///
klao@885
    89
  /// A typical examle is the following call:
klao@885
    90
  /// <tt>kruskal(G, some_input, makeSequenceOutput(iterator))</tt>.
klao@885
    91
  /// Here, the third argument is a temporary object (which wraps around an
klao@885
    92
  /// iterator with a writable bool map interface), and thus by rules of C++
klao@885
    93
  /// is a \c const object. To enable call like this exist this class and
klao@885
    94
  /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
klao@885
    95
  /// third argument.
alpar@824
    96
  template<class Map>
alpar@810
    97
  class NonConstMapWr {
alpar@810
    98
    const Map &m;
alpar@810
    99
  public:
alpar@810
   100
    typedef typename Map::ValueType ValueType;
alpar@810
   101
alpar@810
   102
    NonConstMapWr(const Map &_m) : m(_m) {}
alpar@810
   103
alpar@824
   104
    template<class KeyType>
alpar@810
   105
    void set(KeyType const& k, ValueType const &v) const { m.set(k,v); }
alpar@810
   106
  };
alpar@810
   107
alpar@824
   108
  template <class GR, class IN, class OUT>
alpar@810
   109
  inline
klao@885
   110
  typename IN::value_type::second_type
klao@885
   111
  kruskal(GR const& G, IN const& edges, OUT const& out_map)
alpar@810
   112
  {
alpar@824
   113
    NonConstMapWr<OUT> map_wr(out_map);
alpar@810
   114
    return kruskal(G, edges, map_wr);
alpar@810
   115
  }  
alpar@810
   116
alpar@810
   117
  /* ** ** Input-objects ** ** */
alpar@810
   118
alpar@810
   119
  /// Kruskal input source.
alpar@810
   120
alpar@810
   121
  /// Kruskal input source.
alpar@810
   122
  ///
alpar@810
   123
  /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead.
alpar@810
   124
  ///
alpar@810
   125
  /// \sa makeKruskalMapInput()
alpar@810
   126
  ///
alpar@824
   127
  ///\param GR The type of the graph the algorithm runs on.
alpar@810
   128
  ///\param Map An edge map containing the cost of the edges.
alpar@810
   129
  ///\par
alpar@810
   130
  ///The cost type can be any type satisfying
alpar@810
   131
  ///the STL 'LessThan comparable'
alpar@810
   132
  ///concept if it also has an operator+() implemented. (It is necessary for
alpar@810
   133
  ///computing the total cost of the tree).
alpar@810
   134
  ///
alpar@824
   135
  template<class GR, class Map>
alpar@810
   136
  class KruskalMapInput
alpar@824
   137
    : public std::vector< std::pair<typename GR::Edge,
alpar@810
   138
				    typename Map::ValueType> > {
alpar@810
   139
    
alpar@810
   140
  public:
alpar@824
   141
    typedef std::vector< std::pair<typename GR::Edge,
alpar@810
   142
				   typename Map::ValueType> > Parent;
alpar@810
   143
    typedef typename Parent::value_type value_type;
alpar@810
   144
alpar@810
   145
  private:
alpar@810
   146
    class comparePair {
alpar@810
   147
    public:
alpar@810
   148
      bool operator()(const value_type& a,
alpar@810
   149
		      const value_type& b) {
alpar@810
   150
	return a.second < b.second;
alpar@810
   151
      }
alpar@810
   152
    };
alpar@810
   153
alpar@810
   154
  public:
alpar@810
   155
alpar@810
   156
    void sort() {
alpar@810
   157
      std::sort(this->begin(), this->end(), comparePair());
alpar@810
   158
    }
alpar@810
   159
alpar@824
   160
    KruskalMapInput(GR const& G, Map const& m) {
alpar@824
   161
      typedef typename GR::EdgeIt EdgeIt;
alpar@810
   162
      
klao@885
   163
      for(EdgeIt e(G);e!=INVALID;++e) push_back(value_type(e, m[e]));
alpar@810
   164
      sort();
alpar@810
   165
    }
alpar@810
   166
  };
alpar@810
   167
alpar@810
   168
  /// Creates a KruskalMapInput object for \ref kruskal()
alpar@810
   169
alpar@810
   170
  /// It makes is easier to use 
alpar@810
   171
  /// \ref KruskalMapInput by making it unnecessary 
alpar@810
   172
  /// to explicitly give the type of the parameters.
alpar@810
   173
  ///
alpar@810
   174
  /// In most cases you possibly
alpar@810
   175
  /// want to use the function kruskalEdgeMap() instead.
alpar@810
   176
  ///
alpar@810
   177
  ///\param G The type of the graph the algorithm runs on.
alpar@810
   178
  ///\param m An edge map containing the cost of the edges.
alpar@810
   179
  ///\par
alpar@810
   180
  ///The cost type can be any type satisfying the
alpar@810
   181
  ///STL 'LessThan Comparable'
alpar@810
   182
  ///concept if it also has an operator+() implemented. (It is necessary for
alpar@810
   183
  ///computing the total cost of the tree).
alpar@810
   184
  ///
alpar@810
   185
  ///\return An appropriate input source for \ref kruskal().
alpar@810
   186
  ///
alpar@824
   187
  template<class GR, class Map>
alpar@810
   188
  inline
alpar@824
   189
  KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &G,const Map &m)
alpar@810
   190
  {
alpar@824
   191
    return KruskalMapInput<GR,Map>(G,m);
alpar@810
   192
  }
alpar@810
   193
  
alpar@810
   194
  
klao@885
   195
klao@885
   196
  /* ** ** Output-objects: simple writable bool maps ** ** */
alpar@810
   197
  
klao@885
   198
klao@885
   199
alpar@810
   200
  /// A writable bool-map that makes a sequence of "true" keys
alpar@810
   201
alpar@810
   202
  /// A writable bool-map that creates a sequence out of keys that receives
alpar@810
   203
  /// the value "true".
klao@885
   204
  ///
klao@885
   205
  /// \sa makeKruskalSequenceOutput()
klao@885
   206
  ///
klao@885
   207
  /// Very often, when looking for a min cost spanning tree, we want as
klao@885
   208
  /// output a container containing the edges of the found tree. For this
klao@885
   209
  /// purpose exist this class that wraps around an STL iterator with a
klao@885
   210
  /// writable bool map interface. When a key gets value "true" this key
klao@885
   211
  /// is added to sequence pointed by the iterator.
klao@885
   212
  ///
klao@885
   213
  /// A typical usage:
klao@885
   214
  /// \code
klao@885
   215
  /// std::vector<Graph::Edge> v;
klao@885
   216
  /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
klao@885
   217
  /// \endcode
klao@885
   218
  /// 
klao@885
   219
  /// For the most common case, when the input is given by a simple edge
klao@885
   220
  /// map and the output is a sequence of the tree edges, a special
klao@885
   221
  /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
klao@885
   222
  ///
alpar@810
   223
  /// \warning Not a regular property map, as it doesn't know its KeyType
klao@885
   224
alpar@824
   225
  template<class Iterator>
klao@885
   226
  class KruskalSequenceOutput {
alpar@810
   227
    mutable Iterator it;
alpar@810
   228
alpar@810
   229
  public:
alpar@810
   230
    typedef bool ValueType;
alpar@810
   231
klao@885
   232
    KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
alpar@810
   233
alpar@810
   234
    template<typename KeyType>
alpar@810
   235
    void set(KeyType const& k, bool v) const { if(v) {*it=k; ++it;} }
alpar@810
   236
  };
alpar@810
   237
alpar@824
   238
  template<class Iterator>
alpar@810
   239
  inline
klao@885
   240
  KruskalSequenceOutput<Iterator>
klao@885
   241
  makeKruskalSequenceOutput(Iterator it) {
klao@885
   242
    return KruskalSequenceOutput<Iterator>(it);
alpar@810
   243
  }
alpar@810
   244
klao@885
   245
klao@885
   246
alpar@810
   247
  /* ** ** Wrapper funtions ** ** */
alpar@810
   248
alpar@810
   249
klao@885
   250
alpar@810
   251
  /// \brief Wrapper function to kruskal().
alpar@810
   252
  /// Input is from an edge map, output is a plain bool map.
alpar@810
   253
  ///
alpar@810
   254
  /// Wrapper function to kruskal().
alpar@810
   255
  /// Input is from an edge map, output is a plain bool map.
alpar@810
   256
  ///
alpar@810
   257
  ///\param G The type of the graph the algorithm runs on.
alpar@810
   258
  ///\param in An edge map containing the cost of the edges.
alpar@810
   259
  ///\par
alpar@810
   260
  ///The cost type can be any type satisfying the
alpar@810
   261
  ///STL 'LessThan Comparable'
alpar@810
   262
  ///concept if it also has an operator+() implemented. (It is necessary for
alpar@810
   263
  ///computing the total cost of the tree).
alpar@810
   264
  ///
alpar@810
   265
  /// \retval out This must be a writable \c bool edge map.
alpar@810
   266
  /// After running the algorithm
alpar@810
   267
  /// this will contain the found minimum cost spanning tree: the value of an
alpar@810
   268
  /// edge will be set to \c true if it belongs to the tree, otherwise it will
alpar@810
   269
  /// be set to \c false. The value of each edge will be set exactly once.
alpar@810
   270
  ///
alpar@810
   271
  /// \return The cost of the found tree.
alpar@810
   272
alpar@824
   273
  template <class GR, class IN, class RET>
alpar@810
   274
  inline
alpar@824
   275
  typename IN::ValueType
alpar@824
   276
  kruskalEdgeMap(GR const& G,
alpar@824
   277
		 IN const& in,
alpar@824
   278
		 RET &out) {
alpar@810
   279
    return kruskal(G,
alpar@824
   280
		   KruskalMapInput<GR,IN>(G,in),
alpar@810
   281
		   out);
alpar@810
   282
  }
alpar@810
   283
alpar@810
   284
  /// \brief Wrapper function to kruskal().
alpar@810
   285
  /// Input is from an edge map, output is an STL Sequence.
alpar@810
   286
  ///
alpar@810
   287
  /// Wrapper function to kruskal().
alpar@810
   288
  /// Input is from an edge map, output is an STL Sequence.
alpar@810
   289
  ///
alpar@810
   290
  ///\param G The type of the graph the algorithm runs on.
alpar@810
   291
  ///\param in An edge map containing the cost of the edges.
alpar@810
   292
  ///\par
alpar@810
   293
  ///The cost type can be any type satisfying the
alpar@810
   294
  ///STL 'LessThan Comparable'
alpar@810
   295
  ///concept if it also has an operator+() implemented. (It is necessary for
alpar@810
   296
  ///computing the total cost of the tree).
alpar@810
   297
  ///
alpar@810
   298
  /// \retval out This must be an iteraror of an STL Container with
alpar@824
   299
  /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
alpar@810
   300
  /// The algorithm copies the elements of the found tree into this sequence.
alpar@810
   301
  /// For example, if we know that the spanning tree of the graph \c G has
alpar@810
   302
  /// say 53 edges then
alpar@824
   303
  /// we can put its edges into a STL vector \c tree with a code like this.
alpar@810
   304
  /// \code
alpar@810
   305
  /// std::vector<Edge> tree(53);
alpar@810
   306
  /// kruskalEdgeMap_IteratorOut(G,cost,tree.begin());
alpar@810
   307
  /// \endcode
alpar@810
   308
  /// Or if we don't know in advance the size of the tree, we can write this.
alpar@810
   309
  /// \code
alpar@810
   310
  /// std::vector<Edge> tree;
alpar@810
   311
  /// kruskalEdgeMap_IteratorOut(G,cost,std::back_inserter(tree));
alpar@810
   312
  /// \endcode
alpar@810
   313
  ///
alpar@810
   314
  /// \return The cost of the found tree.
alpar@810
   315
  ///
alpar@810
   316
  /// \bug its name does not follow the coding style.
klao@885
   317
alpar@824
   318
  template <class GR, class IN, class RET>
alpar@810
   319
  inline
alpar@824
   320
  typename IN::ValueType
alpar@824
   321
  kruskalEdgeMap_IteratorOut(const GR& G,
alpar@824
   322
			     const IN& in,
alpar@824
   323
			     RET out)
alpar@810
   324
  {
klao@885
   325
    KruskalSequenceOutput<RET> _out(out);
klao@885
   326
    return kruskal(G, KruskalMapInput<GR,IN>(G, in), _out);
alpar@810
   327
  }
alpar@810
   328
alpar@810
   329
  /// @}
alpar@810
   330
alpar@810
   331
} //namespace hugo
alpar@810
   332
alpar@810
   333
#endif //HUGO_KRUSKAL_H