deba@2038
|
1 |
/* -*- C++ -*-
|
deba@2038
|
2 |
*
|
deba@2038
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
deba@2038
|
4 |
*
|
alpar@2553
|
5 |
* Copyright (C) 2003-2008
|
deba@2038
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@2038
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@2038
|
8 |
*
|
deba@2038
|
9 |
* Permission to use, modify and distribute this software is granted
|
deba@2038
|
10 |
* provided that this copyright notice appears in all copies. For
|
deba@2038
|
11 |
* precise terms see the accompanying LICENSE file.
|
deba@2038
|
12 |
*
|
deba@2038
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@2038
|
14 |
* express or implied, and with no claim as to its suitability for any
|
deba@2038
|
15 |
* purpose.
|
deba@2038
|
16 |
*
|
deba@2038
|
17 |
*/
|
deba@2038
|
18 |
|
deba@2038
|
19 |
#ifndef LEMON_BUCKET_HEAP_H
|
deba@2038
|
20 |
#define LEMON_BUCKET_HEAP_H
|
deba@2038
|
21 |
|
deba@2038
|
22 |
///\ingroup auxdat
|
deba@2038
|
23 |
///\file
|
deba@2038
|
24 |
///\brief Bucket Heap implementation.
|
deba@2038
|
25 |
|
deba@2038
|
26 |
#include <vector>
|
deba@2038
|
27 |
#include <utility>
|
deba@2038
|
28 |
#include <functional>
|
deba@2038
|
29 |
|
deba@2038
|
30 |
namespace lemon {
|
deba@2038
|
31 |
|
deba@2038
|
32 |
/// \ingroup auxdat
|
deba@2089
|
33 |
///
|
deba@2038
|
34 |
/// \brief A Bucket Heap implementation.
|
deba@2038
|
35 |
///
|
deba@2038
|
36 |
/// This class implements the \e bucket \e heap data structure. A \e heap
|
deba@2038
|
37 |
/// is a data structure for storing items with specified values called \e
|
deba@2038
|
38 |
/// priorities in such a way that finding the item with minimum priority is
|
deba@2038
|
39 |
/// efficient. The bucket heap is very simple implementation, it can store
|
deba@2042
|
40 |
/// only integer priorities and it stores for each priority in the
|
deba@2042
|
41 |
/// \f$ [0..C) \f$ range a list of items. So it should be used only when
|
deba@2042
|
42 |
/// the priorities are small. It is not intended to use as dijkstra heap.
|
deba@2038
|
43 |
///
|
deba@2038
|
44 |
/// \param _ItemIntMap A read and writable Item int map, used internally
|
deba@2038
|
45 |
/// to handle the cross references.
|
deba@2038
|
46 |
/// \param minimize If the given parameter is true then the heap gives back
|
deba@2038
|
47 |
/// the lowest priority.
|
mqrelly@2263
|
48 |
template <typename _ItemIntMap, bool minimize = true >
|
deba@2038
|
49 |
class BucketHeap {
|
deba@2038
|
50 |
|
deba@2038
|
51 |
public:
|
deba@2547
|
52 |
/// \e
|
mqrelly@2263
|
53 |
typedef typename _ItemIntMap::Key Item;
|
deba@2547
|
54 |
/// \e
|
deba@2038
|
55 |
typedef int Prio;
|
deba@2547
|
56 |
/// \e
|
deba@2038
|
57 |
typedef std::pair<Item, Prio> Pair;
|
deba@2547
|
58 |
/// \e
|
deba@2038
|
59 |
typedef _ItemIntMap ItemIntMap;
|
deba@2038
|
60 |
|
deba@2038
|
61 |
/// \brief Type to represent the items states.
|
deba@2038
|
62 |
///
|
deba@2038
|
63 |
/// Each Item element have a state associated to it. It may be "in heap",
|
deba@2038
|
64 |
/// "pre heap" or "post heap". The latter two are indifferent from the
|
deba@2038
|
65 |
/// heap's point of view, but may be useful to the user.
|
deba@2038
|
66 |
///
|
deba@2038
|
67 |
/// The ItemIntMap \e should be initialized in such way that it maps
|
deba@2038
|
68 |
/// PRE_HEAP (-1) to any element to be put in the heap...
|
deba@2547
|
69 |
enum State {
|
deba@2038
|
70 |
IN_HEAP = 0,
|
deba@2038
|
71 |
PRE_HEAP = -1,
|
deba@2038
|
72 |
POST_HEAP = -2
|
deba@2038
|
73 |
};
|
deba@2038
|
74 |
|
deba@2038
|
75 |
public:
|
deba@2038
|
76 |
/// \brief The constructor.
|
deba@2038
|
77 |
///
|
deba@2038
|
78 |
/// The constructor.
|
deba@2038
|
79 |
/// \param _index should be given to the constructor, since it is used
|
deba@2038
|
80 |
/// internally to handle the cross references. The value of the map
|
deba@2038
|
81 |
/// should be PRE_HEAP (-1) for each element.
|
deba@2038
|
82 |
explicit BucketHeap(ItemIntMap &_index) : index(_index), minimal(0) {}
|
deba@2038
|
83 |
|
deba@2038
|
84 |
/// The number of items stored in the heap.
|
deba@2038
|
85 |
///
|
deba@2038
|
86 |
/// \brief Returns the number of items stored in the heap.
|
deba@2038
|
87 |
int size() const { return data.size(); }
|
deba@2038
|
88 |
|
deba@2038
|
89 |
/// \brief Checks if the heap stores no items.
|
deba@2038
|
90 |
///
|
deba@2038
|
91 |
/// Returns \c true if and only if the heap stores no items.
|
deba@2038
|
92 |
bool empty() const { return data.empty(); }
|
deba@2038
|
93 |
|
deba@2038
|
94 |
/// \brief Make empty this heap.
|
deba@2038
|
95 |
///
|
deba@2050
|
96 |
/// Make empty this heap. It does not change the cross reference
|
deba@2050
|
97 |
/// map. If you want to reuse a heap what is not surely empty you
|
deba@2050
|
98 |
/// should first clear the heap and after that you should set the
|
deba@2050
|
99 |
/// cross reference map for each item to \c PRE_HEAP.
|
deba@2038
|
100 |
void clear() {
|
deba@2038
|
101 |
data.clear(); first.clear(); minimal = 0;
|
deba@2038
|
102 |
}
|
deba@2038
|
103 |
|
deba@2038
|
104 |
private:
|
deba@2038
|
105 |
|
deba@2038
|
106 |
void relocate_last(int idx) {
|
deba@2386
|
107 |
if (idx + 1 < int(data.size())) {
|
deba@2038
|
108 |
data[idx] = data.back();
|
deba@2038
|
109 |
if (data[idx].prev != -1) {
|
deba@2038
|
110 |
data[data[idx].prev].next = idx;
|
deba@2038
|
111 |
} else {
|
deba@2038
|
112 |
first[data[idx].value] = idx;
|
deba@2038
|
113 |
}
|
deba@2038
|
114 |
if (data[idx].next != -1) {
|
deba@2038
|
115 |
data[data[idx].next].prev = idx;
|
deba@2038
|
116 |
}
|
deba@2038
|
117 |
index[data[idx].item] = idx;
|
deba@2038
|
118 |
}
|
deba@2038
|
119 |
data.pop_back();
|
deba@2038
|
120 |
}
|
deba@2038
|
121 |
|
deba@2038
|
122 |
void unlace(int idx) {
|
deba@2038
|
123 |
if (data[idx].prev != -1) {
|
deba@2038
|
124 |
data[data[idx].prev].next = data[idx].next;
|
deba@2038
|
125 |
} else {
|
deba@2038
|
126 |
first[data[idx].value] = data[idx].next;
|
deba@2038
|
127 |
}
|
deba@2038
|
128 |
if (data[idx].next != -1) {
|
deba@2038
|
129 |
data[data[idx].next].prev = data[idx].prev;
|
deba@2038
|
130 |
}
|
deba@2038
|
131 |
}
|
deba@2038
|
132 |
|
deba@2038
|
133 |
void lace(int idx) {
|
deba@2386
|
134 |
if (int(first.size()) <= data[idx].value) {
|
deba@2038
|
135 |
first.resize(data[idx].value + 1, -1);
|
deba@2038
|
136 |
}
|
deba@2038
|
137 |
data[idx].next = first[data[idx].value];
|
deba@2038
|
138 |
if (data[idx].next != -1) {
|
deba@2038
|
139 |
data[data[idx].next].prev = idx;
|
deba@2038
|
140 |
}
|
deba@2038
|
141 |
first[data[idx].value] = idx;
|
deba@2038
|
142 |
data[idx].prev = -1;
|
deba@2038
|
143 |
}
|
deba@2038
|
144 |
|
deba@2038
|
145 |
public:
|
deba@2038
|
146 |
/// \brief Insert a pair of item and priority into the heap.
|
deba@2038
|
147 |
///
|
deba@2038
|
148 |
/// Adds \c p.first to the heap with priority \c p.second.
|
deba@2038
|
149 |
/// \param p The pair to insert.
|
deba@2038
|
150 |
void push(const Pair& p) {
|
deba@2038
|
151 |
push(p.first, p.second);
|
deba@2038
|
152 |
}
|
deba@2038
|
153 |
|
deba@2038
|
154 |
/// \brief Insert an item into the heap with the given priority.
|
deba@2038
|
155 |
///
|
deba@2038
|
156 |
/// Adds \c i to the heap with priority \c p.
|
deba@2038
|
157 |
/// \param i The item to insert.
|
deba@2038
|
158 |
/// \param p The priority of the item.
|
deba@2038
|
159 |
void push(const Item &i, const Prio &p) {
|
deba@2038
|
160 |
int idx = data.size();
|
deba@2038
|
161 |
index[i] = idx;
|
deba@2038
|
162 |
data.push_back(BucketItem(i, p));
|
deba@2038
|
163 |
lace(idx);
|
deba@2038
|
164 |
if (p < minimal) {
|
deba@2038
|
165 |
minimal = p;
|
deba@2038
|
166 |
}
|
deba@2038
|
167 |
}
|
deba@2038
|
168 |
|
deba@2038
|
169 |
/// \brief Returns the item with minimum priority.
|
deba@2038
|
170 |
///
|
deba@2038
|
171 |
/// This method returns the item with minimum priority.
|
deba@2038
|
172 |
/// \pre The heap must be nonempty.
|
deba@2038
|
173 |
Item top() const {
|
deba@2038
|
174 |
while (first[minimal] == -1) {
|
deba@2038
|
175 |
++minimal;
|
deba@2038
|
176 |
}
|
deba@2038
|
177 |
return data[first[minimal]].item;
|
deba@2038
|
178 |
}
|
deba@2038
|
179 |
|
deba@2038
|
180 |
/// \brief Returns the minimum priority.
|
deba@2038
|
181 |
///
|
deba@2038
|
182 |
/// It returns the minimum priority.
|
deba@2038
|
183 |
/// \pre The heap must be nonempty.
|
deba@2038
|
184 |
Prio prio() const {
|
deba@2038
|
185 |
while (first[minimal] == -1) {
|
deba@2038
|
186 |
++minimal;
|
deba@2038
|
187 |
}
|
deba@2038
|
188 |
return minimal;
|
deba@2038
|
189 |
}
|
deba@2038
|
190 |
|
deba@2038
|
191 |
/// \brief Deletes the item with minimum priority.
|
deba@2038
|
192 |
///
|
deba@2038
|
193 |
/// This method deletes the item with minimum priority from the heap.
|
deba@2038
|
194 |
/// \pre The heap must be non-empty.
|
deba@2038
|
195 |
void pop() {
|
deba@2038
|
196 |
while (first[minimal] == -1) {
|
deba@2038
|
197 |
++minimal;
|
deba@2038
|
198 |
}
|
deba@2038
|
199 |
int idx = first[minimal];
|
deba@2038
|
200 |
index[data[idx].item] = -2;
|
deba@2038
|
201 |
unlace(idx);
|
deba@2038
|
202 |
relocate_last(idx);
|
deba@2038
|
203 |
}
|
deba@2038
|
204 |
|
deba@2038
|
205 |
/// \brief Deletes \c i from the heap.
|
deba@2038
|
206 |
///
|
deba@2038
|
207 |
/// This method deletes item \c i from the heap, if \c i was
|
deba@2038
|
208 |
/// already stored in the heap.
|
deba@2038
|
209 |
/// \param i The item to erase.
|
deba@2038
|
210 |
void erase(const Item &i) {
|
deba@2038
|
211 |
int idx = index[i];
|
deba@2038
|
212 |
index[data[idx].item] = -2;
|
deba@2038
|
213 |
unlace(idx);
|
deba@2038
|
214 |
relocate_last(idx);
|
deba@2038
|
215 |
}
|
deba@2038
|
216 |
|
deba@2038
|
217 |
|
deba@2038
|
218 |
/// \brief Returns the priority of \c i.
|
deba@2038
|
219 |
///
|
deba@2038
|
220 |
/// This function returns the priority of item \c i.
|
deba@2038
|
221 |
/// \pre \c i must be in the heap.
|
deba@2038
|
222 |
/// \param i The item.
|
deba@2038
|
223 |
Prio operator[](const Item &i) const {
|
deba@2038
|
224 |
int idx = index[i];
|
deba@2038
|
225 |
return data[idx].value;
|
deba@2038
|
226 |
}
|
deba@2038
|
227 |
|
deba@2038
|
228 |
/// \brief \c i gets to the heap with priority \c p independently
|
deba@2038
|
229 |
/// if \c i was already there.
|
deba@2038
|
230 |
///
|
deba@2038
|
231 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored
|
deba@2038
|
232 |
/// in the heap and sets the priority of \c i to \c p otherwise.
|
deba@2038
|
233 |
/// \param i The item.
|
deba@2038
|
234 |
/// \param p The priority.
|
deba@2038
|
235 |
void set(const Item &i, const Prio &p) {
|
deba@2038
|
236 |
int idx = index[i];
|
deba@2038
|
237 |
if (idx < 0) {
|
deba@2038
|
238 |
push(i,p);
|
deba@2038
|
239 |
} else if (p > data[idx].value) {
|
deba@2038
|
240 |
increase(i, p);
|
deba@2038
|
241 |
} else {
|
deba@2038
|
242 |
decrease(i, p);
|
deba@2038
|
243 |
}
|
deba@2038
|
244 |
}
|
deba@2038
|
245 |
|
deba@2038
|
246 |
/// \brief Decreases the priority of \c i to \c p.
|
deba@2089
|
247 |
///
|
deba@2038
|
248 |
/// This method decreases the priority of item \c i to \c p.
|
deba@2038
|
249 |
/// \pre \c i must be stored in the heap with priority at least \c
|
deba@2038
|
250 |
/// p relative to \c Compare.
|
deba@2038
|
251 |
/// \param i The item.
|
deba@2038
|
252 |
/// \param p The priority.
|
deba@2038
|
253 |
void decrease(const Item &i, const Prio &p) {
|
deba@2038
|
254 |
int idx = index[i];
|
deba@2038
|
255 |
unlace(idx);
|
deba@2038
|
256 |
data[idx].value = p;
|
deba@2038
|
257 |
if (p < minimal) {
|
deba@2038
|
258 |
minimal = p;
|
deba@2038
|
259 |
}
|
deba@2038
|
260 |
lace(idx);
|
deba@2038
|
261 |
}
|
deba@2038
|
262 |
|
deba@2038
|
263 |
/// \brief Increases the priority of \c i to \c p.
|
deba@2038
|
264 |
///
|
deba@2038
|
265 |
/// This method sets the priority of item \c i to \c p.
|
deba@2038
|
266 |
/// \pre \c i must be stored in the heap with priority at most \c
|
deba@2038
|
267 |
/// p relative to \c Compare.
|
deba@2038
|
268 |
/// \param i The item.
|
deba@2038
|
269 |
/// \param p The priority.
|
deba@2038
|
270 |
void increase(const Item &i, const Prio &p) {
|
deba@2038
|
271 |
int idx = index[i];
|
deba@2038
|
272 |
unlace(idx);
|
deba@2038
|
273 |
data[idx].value = p;
|
deba@2038
|
274 |
lace(idx);
|
deba@2038
|
275 |
}
|
deba@2038
|
276 |
|
deba@2038
|
277 |
/// \brief Returns if \c item is in, has already been in, or has
|
deba@2038
|
278 |
/// never been in the heap.
|
deba@2038
|
279 |
///
|
deba@2038
|
280 |
/// This method returns PRE_HEAP if \c item has never been in the
|
deba@2038
|
281 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
|
deba@2038
|
282 |
/// otherwise. In the latter case it is possible that \c item will
|
deba@2038
|
283 |
/// get back to the heap again.
|
deba@2038
|
284 |
/// \param i The item.
|
deba@2547
|
285 |
State state(const Item &i) const {
|
deba@2038
|
286 |
int idx = index[i];
|
deba@2038
|
287 |
if (idx >= 0) idx = 0;
|
deba@2547
|
288 |
return State(idx);
|
deba@2038
|
289 |
}
|
deba@2038
|
290 |
|
deba@2038
|
291 |
/// \brief Sets the state of the \c item in the heap.
|
deba@2038
|
292 |
///
|
deba@2038
|
293 |
/// Sets the state of the \c item in the heap. It can be used to
|
deba@2038
|
294 |
/// manually clear the heap when it is important to achive the
|
deba@2038
|
295 |
/// better time complexity.
|
deba@2038
|
296 |
/// \param i The item.
|
deba@2038
|
297 |
/// \param st The state. It should not be \c IN_HEAP.
|
deba@2547
|
298 |
void state(const Item& i, State st) {
|
deba@2038
|
299 |
switch (st) {
|
deba@2038
|
300 |
case POST_HEAP:
|
deba@2038
|
301 |
case PRE_HEAP:
|
deba@2038
|
302 |
if (state(i) == IN_HEAP) {
|
deba@2038
|
303 |
erase(i);
|
deba@2038
|
304 |
}
|
deba@2038
|
305 |
index[i] = st;
|
deba@2038
|
306 |
break;
|
deba@2038
|
307 |
case IN_HEAP:
|
deba@2038
|
308 |
break;
|
deba@2038
|
309 |
}
|
deba@2038
|
310 |
}
|
deba@2038
|
311 |
|
deba@2038
|
312 |
private:
|
deba@2038
|
313 |
|
deba@2038
|
314 |
struct BucketItem {
|
deba@2038
|
315 |
BucketItem(const Item& _item, int _value)
|
deba@2038
|
316 |
: item(_item), value(_value) {}
|
deba@2038
|
317 |
|
deba@2038
|
318 |
Item item;
|
deba@2038
|
319 |
int value;
|
deba@2038
|
320 |
|
deba@2038
|
321 |
int prev, next;
|
deba@2038
|
322 |
};
|
deba@2038
|
323 |
|
deba@2038
|
324 |
ItemIntMap& index;
|
deba@2038
|
325 |
std::vector<int> first;
|
deba@2038
|
326 |
std::vector<BucketItem> data;
|
deba@2038
|
327 |
mutable int minimal;
|
deba@2038
|
328 |
|
deba@2038
|
329 |
}; // class BucketHeap
|
deba@2038
|
330 |
|
deba@2038
|
331 |
|
mqrelly@2263
|
332 |
template <typename _ItemIntMap>
|
mqrelly@2263
|
333 |
class BucketHeap<_ItemIntMap, false> {
|
deba@2038
|
334 |
|
deba@2038
|
335 |
public:
|
mqrelly@2263
|
336 |
typedef typename _ItemIntMap::Key Item;
|
deba@2038
|
337 |
typedef int Prio;
|
deba@2038
|
338 |
typedef std::pair<Item, Prio> Pair;
|
deba@2038
|
339 |
typedef _ItemIntMap ItemIntMap;
|
deba@2038
|
340 |
|
deba@2547
|
341 |
enum State {
|
deba@2038
|
342 |
IN_HEAP = 0,
|
deba@2038
|
343 |
PRE_HEAP = -1,
|
deba@2038
|
344 |
POST_HEAP = -2
|
deba@2038
|
345 |
};
|
deba@2038
|
346 |
|
deba@2038
|
347 |
public:
|
deba@2038
|
348 |
|
deba@2038
|
349 |
explicit BucketHeap(ItemIntMap &_index) : index(_index), maximal(-1) {}
|
deba@2038
|
350 |
|
deba@2038
|
351 |
int size() const { return data.size(); }
|
deba@2038
|
352 |
bool empty() const { return data.empty(); }
|
deba@2038
|
353 |
|
deba@2038
|
354 |
void clear() {
|
deba@2038
|
355 |
data.clear(); first.clear(); maximal = -1;
|
deba@2038
|
356 |
}
|
deba@2038
|
357 |
|
deba@2038
|
358 |
private:
|
deba@2038
|
359 |
|
deba@2038
|
360 |
void relocate_last(int idx) {
|
deba@2386
|
361 |
if (idx + 1 != int(data.size())) {
|
deba@2038
|
362 |
data[idx] = data.back();
|
deba@2038
|
363 |
if (data[idx].prev != -1) {
|
deba@2038
|
364 |
data[data[idx].prev].next = idx;
|
deba@2038
|
365 |
} else {
|
deba@2038
|
366 |
first[data[idx].value] = idx;
|
deba@2038
|
367 |
}
|
deba@2038
|
368 |
if (data[idx].next != -1) {
|
deba@2038
|
369 |
data[data[idx].next].prev = idx;
|
deba@2038
|
370 |
}
|
deba@2038
|
371 |
index[data[idx].item] = idx;
|
deba@2038
|
372 |
}
|
deba@2038
|
373 |
data.pop_back();
|
deba@2038
|
374 |
}
|
deba@2038
|
375 |
|
deba@2038
|
376 |
void unlace(int idx) {
|
deba@2038
|
377 |
if (data[idx].prev != -1) {
|
deba@2038
|
378 |
data[data[idx].prev].next = data[idx].next;
|
deba@2038
|
379 |
} else {
|
deba@2038
|
380 |
first[data[idx].value] = data[idx].next;
|
deba@2038
|
381 |
}
|
deba@2038
|
382 |
if (data[idx].next != -1) {
|
deba@2038
|
383 |
data[data[idx].next].prev = data[idx].prev;
|
deba@2038
|
384 |
}
|
deba@2038
|
385 |
}
|
deba@2038
|
386 |
|
deba@2038
|
387 |
void lace(int idx) {
|
deba@2386
|
388 |
if (int(first.size()) <= data[idx].value) {
|
deba@2038
|
389 |
first.resize(data[idx].value + 1, -1);
|
deba@2038
|
390 |
}
|
deba@2038
|
391 |
data[idx].next = first[data[idx].value];
|
deba@2038
|
392 |
if (data[idx].next != -1) {
|
deba@2038
|
393 |
data[data[idx].next].prev = idx;
|
deba@2038
|
394 |
}
|
deba@2038
|
395 |
first[data[idx].value] = idx;
|
deba@2038
|
396 |
data[idx].prev = -1;
|
deba@2038
|
397 |
}
|
deba@2038
|
398 |
|
deba@2038
|
399 |
public:
|
deba@2038
|
400 |
|
deba@2038
|
401 |
void push(const Pair& p) {
|
deba@2038
|
402 |
push(p.first, p.second);
|
deba@2038
|
403 |
}
|
deba@2038
|
404 |
|
deba@2038
|
405 |
void push(const Item &i, const Prio &p) {
|
deba@2038
|
406 |
int idx = data.size();
|
deba@2038
|
407 |
index[i] = idx;
|
deba@2038
|
408 |
data.push_back(BucketItem(i, p));
|
deba@2038
|
409 |
lace(idx);
|
deba@2038
|
410 |
if (data[idx].value > maximal) {
|
deba@2038
|
411 |
maximal = data[idx].value;
|
deba@2038
|
412 |
}
|
deba@2038
|
413 |
}
|
deba@2038
|
414 |
|
deba@2038
|
415 |
Item top() const {
|
deba@2038
|
416 |
while (first[maximal] == -1) {
|
deba@2038
|
417 |
--maximal;
|
deba@2038
|
418 |
}
|
deba@2038
|
419 |
return data[first[maximal]].item;
|
deba@2038
|
420 |
}
|
deba@2038
|
421 |
|
deba@2038
|
422 |
Prio prio() const {
|
deba@2038
|
423 |
while (first[maximal] == -1) {
|
deba@2038
|
424 |
--maximal;
|
deba@2038
|
425 |
}
|
deba@2038
|
426 |
return maximal;
|
deba@2038
|
427 |
}
|
deba@2038
|
428 |
|
deba@2038
|
429 |
void pop() {
|
deba@2038
|
430 |
while (first[maximal] == -1) {
|
deba@2038
|
431 |
--maximal;
|
deba@2038
|
432 |
}
|
deba@2038
|
433 |
int idx = first[maximal];
|
deba@2038
|
434 |
index[data[idx].item] = -2;
|
deba@2038
|
435 |
unlace(idx);
|
deba@2038
|
436 |
relocate_last(idx);
|
deba@2038
|
437 |
}
|
deba@2038
|
438 |
|
deba@2038
|
439 |
void erase(const Item &i) {
|
deba@2038
|
440 |
int idx = index[i];
|
deba@2038
|
441 |
index[data[idx].item] = -2;
|
deba@2038
|
442 |
unlace(idx);
|
deba@2038
|
443 |
relocate_last(idx);
|
deba@2038
|
444 |
}
|
deba@2038
|
445 |
|
deba@2038
|
446 |
Prio operator[](const Item &i) const {
|
deba@2038
|
447 |
int idx = index[i];
|
deba@2038
|
448 |
return data[idx].value;
|
deba@2038
|
449 |
}
|
deba@2038
|
450 |
|
deba@2038
|
451 |
void set(const Item &i, const Prio &p) {
|
deba@2038
|
452 |
int idx = index[i];
|
deba@2038
|
453 |
if (idx < 0) {
|
deba@2038
|
454 |
push(i,p);
|
deba@2038
|
455 |
} else if (p > data[idx].value) {
|
deba@2038
|
456 |
decrease(i, p);
|
deba@2038
|
457 |
} else {
|
deba@2038
|
458 |
increase(i, p);
|
deba@2038
|
459 |
}
|
deba@2038
|
460 |
}
|
deba@2038
|
461 |
|
deba@2038
|
462 |
void decrease(const Item &i, const Prio &p) {
|
deba@2038
|
463 |
int idx = index[i];
|
deba@2038
|
464 |
unlace(idx);
|
deba@2038
|
465 |
data[idx].value = p;
|
deba@2038
|
466 |
if (p > maximal) {
|
deba@2038
|
467 |
maximal = p;
|
deba@2038
|
468 |
}
|
deba@2038
|
469 |
lace(idx);
|
deba@2038
|
470 |
}
|
deba@2038
|
471 |
|
deba@2038
|
472 |
void increase(const Item &i, const Prio &p) {
|
deba@2038
|
473 |
int idx = index[i];
|
deba@2038
|
474 |
unlace(idx);
|
deba@2038
|
475 |
data[idx].value = p;
|
deba@2038
|
476 |
lace(idx);
|
deba@2038
|
477 |
}
|
deba@2038
|
478 |
|
deba@2547
|
479 |
State state(const Item &i) const {
|
deba@2038
|
480 |
int idx = index[i];
|
deba@2038
|
481 |
if (idx >= 0) idx = 0;
|
deba@2547
|
482 |
return State(idx);
|
deba@2038
|
483 |
}
|
deba@2038
|
484 |
|
deba@2547
|
485 |
void state(const Item& i, State st) {
|
deba@2038
|
486 |
switch (st) {
|
deba@2038
|
487 |
case POST_HEAP:
|
deba@2038
|
488 |
case PRE_HEAP:
|
deba@2038
|
489 |
if (state(i) == IN_HEAP) {
|
deba@2038
|
490 |
erase(i);
|
deba@2038
|
491 |
}
|
deba@2038
|
492 |
index[i] = st;
|
deba@2038
|
493 |
break;
|
deba@2038
|
494 |
case IN_HEAP:
|
deba@2038
|
495 |
break;
|
deba@2038
|
496 |
}
|
deba@2038
|
497 |
}
|
deba@2038
|
498 |
|
deba@2038
|
499 |
private:
|
deba@2038
|
500 |
|
deba@2038
|
501 |
struct BucketItem {
|
deba@2038
|
502 |
BucketItem(const Item& _item, int _value)
|
deba@2038
|
503 |
: item(_item), value(_value) {}
|
deba@2038
|
504 |
|
deba@2038
|
505 |
Item item;
|
deba@2038
|
506 |
int value;
|
deba@2038
|
507 |
|
deba@2038
|
508 |
int prev, next;
|
deba@2038
|
509 |
};
|
deba@2038
|
510 |
|
deba@2038
|
511 |
ItemIntMap& index;
|
deba@2038
|
512 |
std::vector<int> first;
|
deba@2038
|
513 |
std::vector<BucketItem> data;
|
deba@2038
|
514 |
mutable int maximal;
|
deba@2038
|
515 |
|
deba@2038
|
516 |
}; // class BucketHeap
|
deba@2038
|
517 |
|
deba@2089
|
518 |
/// \ingroup auxdat
|
deba@2089
|
519 |
///
|
deba@2089
|
520 |
/// \brief A Simplified Bucket Heap implementation.
|
deba@2089
|
521 |
///
|
deba@2089
|
522 |
/// This class implements a simplified \e bucket \e heap data
|
deba@2089
|
523 |
/// structure. It does not provide some functionality but it faster
|
deba@2089
|
524 |
/// and simplier data structure than the BucketHeap. The main
|
deba@2089
|
525 |
/// difference is that the BucketHeap stores for every key a double
|
deba@2089
|
526 |
/// linked list while this class stores just simple lists. In the
|
deba@2089
|
527 |
/// other way it does not supports erasing each elements just the
|
deba@2089
|
528 |
/// minimal and it does not supports key increasing, decreasing.
|
deba@2089
|
529 |
///
|
deba@2089
|
530 |
/// \param _ItemIntMap A read and writable Item int map, used internally
|
deba@2089
|
531 |
/// to handle the cross references.
|
deba@2089
|
532 |
/// \param minimize If the given parameter is true then the heap gives back
|
deba@2089
|
533 |
/// the lowest priority.
|
deba@2089
|
534 |
///
|
deba@2089
|
535 |
/// \sa BucketHeap
|
mqrelly@2263
|
536 |
template <typename _ItemIntMap, bool minimize = true >
|
deba@2089
|
537 |
class SimpleBucketHeap {
|
deba@2089
|
538 |
|
deba@2089
|
539 |
public:
|
mqrelly@2263
|
540 |
typedef typename _ItemIntMap::Key Item;
|
deba@2089
|
541 |
typedef int Prio;
|
deba@2089
|
542 |
typedef std::pair<Item, Prio> Pair;
|
deba@2089
|
543 |
typedef _ItemIntMap ItemIntMap;
|
deba@2089
|
544 |
|
deba@2089
|
545 |
/// \brief Type to represent the items states.
|
deba@2089
|
546 |
///
|
deba@2089
|
547 |
/// Each Item element have a state associated to it. It may be "in heap",
|
deba@2089
|
548 |
/// "pre heap" or "post heap". The latter two are indifferent from the
|
deba@2089
|
549 |
/// heap's point of view, but may be useful to the user.
|
deba@2089
|
550 |
///
|
deba@2089
|
551 |
/// The ItemIntMap \e should be initialized in such way that it maps
|
deba@2089
|
552 |
/// PRE_HEAP (-1) to any element to be put in the heap...
|
deba@2547
|
553 |
enum State {
|
deba@2089
|
554 |
IN_HEAP = 0,
|
deba@2089
|
555 |
PRE_HEAP = -1,
|
deba@2089
|
556 |
POST_HEAP = -2
|
deba@2089
|
557 |
};
|
deba@2089
|
558 |
|
deba@2089
|
559 |
public:
|
deba@2089
|
560 |
|
deba@2089
|
561 |
/// \brief The constructor.
|
deba@2089
|
562 |
///
|
deba@2089
|
563 |
/// The constructor.
|
deba@2089
|
564 |
/// \param _index should be given to the constructor, since it is used
|
deba@2089
|
565 |
/// internally to handle the cross references. The value of the map
|
deba@2089
|
566 |
/// should be PRE_HEAP (-1) for each element.
|
deba@2089
|
567 |
explicit SimpleBucketHeap(ItemIntMap &_index)
|
deba@2089
|
568 |
: index(_index), free(-1), num(0), minimal(0) {}
|
deba@2089
|
569 |
|
deba@2089
|
570 |
/// \brief Returns the number of items stored in the heap.
|
deba@2089
|
571 |
///
|
deba@2089
|
572 |
/// The number of items stored in the heap.
|
deba@2089
|
573 |
int size() const { return num; }
|
deba@2089
|
574 |
|
deba@2089
|
575 |
/// \brief Checks if the heap stores no items.
|
deba@2089
|
576 |
///
|
deba@2089
|
577 |
/// Returns \c true if and only if the heap stores no items.
|
deba@2089
|
578 |
bool empty() const { return num == 0; }
|
deba@2089
|
579 |
|
deba@2089
|
580 |
/// \brief Make empty this heap.
|
deba@2089
|
581 |
///
|
deba@2089
|
582 |
/// Make empty this heap. It does not change the cross reference
|
deba@2089
|
583 |
/// map. If you want to reuse a heap what is not surely empty you
|
deba@2089
|
584 |
/// should first clear the heap and after that you should set the
|
deba@2089
|
585 |
/// cross reference map for each item to \c PRE_HEAP.
|
deba@2089
|
586 |
void clear() {
|
deba@2089
|
587 |
data.clear(); first.clear(); free = -1; num = 0; minimal = 0;
|
deba@2089
|
588 |
}
|
deba@2089
|
589 |
|
deba@2089
|
590 |
/// \brief Insert a pair of item and priority into the heap.
|
deba@2089
|
591 |
///
|
deba@2089
|
592 |
/// Adds \c p.first to the heap with priority \c p.second.
|
deba@2089
|
593 |
/// \param p The pair to insert.
|
deba@2089
|
594 |
void push(const Pair& p) {
|
deba@2089
|
595 |
push(p.first, p.second);
|
deba@2089
|
596 |
}
|
deba@2089
|
597 |
|
deba@2089
|
598 |
/// \brief Insert an item into the heap with the given priority.
|
deba@2089
|
599 |
///
|
deba@2089
|
600 |
/// Adds \c i to the heap with priority \c p.
|
deba@2089
|
601 |
/// \param i The item to insert.
|
deba@2089
|
602 |
/// \param p The priority of the item.
|
deba@2089
|
603 |
void push(const Item &i, const Prio &p) {
|
deba@2089
|
604 |
int idx;
|
deba@2089
|
605 |
if (free == -1) {
|
deba@2089
|
606 |
idx = data.size();
|
deba@2110
|
607 |
data.push_back(BucketItem(i));
|
deba@2089
|
608 |
} else {
|
deba@2089
|
609 |
idx = free;
|
deba@2089
|
610 |
free = data[idx].next;
|
deba@2110
|
611 |
data[idx].item = i;
|
deba@2089
|
612 |
}
|
deba@2089
|
613 |
index[i] = idx;
|
deba@2386
|
614 |
if (p >= int(first.size())) first.resize(p + 1, -1);
|
deba@2089
|
615 |
data[idx].next = first[p];
|
deba@2089
|
616 |
first[p] = idx;
|
deba@2089
|
617 |
if (p < minimal) {
|
deba@2089
|
618 |
minimal = p;
|
deba@2089
|
619 |
}
|
deba@2089
|
620 |
++num;
|
deba@2089
|
621 |
}
|
deba@2089
|
622 |
|
deba@2089
|
623 |
/// \brief Returns the item with minimum priority.
|
deba@2089
|
624 |
///
|
deba@2089
|
625 |
/// This method returns the item with minimum priority.
|
deba@2089
|
626 |
/// \pre The heap must be nonempty.
|
deba@2089
|
627 |
Item top() const {
|
deba@2089
|
628 |
while (first[minimal] == -1) {
|
deba@2089
|
629 |
++minimal;
|
deba@2089
|
630 |
}
|
deba@2089
|
631 |
return data[first[minimal]].item;
|
deba@2089
|
632 |
}
|
deba@2089
|
633 |
|
deba@2089
|
634 |
/// \brief Returns the minimum priority.
|
deba@2089
|
635 |
///
|
deba@2089
|
636 |
/// It returns the minimum priority.
|
deba@2089
|
637 |
/// \pre The heap must be nonempty.
|
deba@2089
|
638 |
Prio prio() const {
|
deba@2089
|
639 |
while (first[minimal] == -1) {
|
deba@2089
|
640 |
++minimal;
|
deba@2089
|
641 |
}
|
deba@2089
|
642 |
return minimal;
|
deba@2089
|
643 |
}
|
deba@2089
|
644 |
|
deba@2089
|
645 |
/// \brief Deletes the item with minimum priority.
|
deba@2089
|
646 |
///
|
deba@2089
|
647 |
/// This method deletes the item with minimum priority from the heap.
|
deba@2089
|
648 |
/// \pre The heap must be non-empty.
|
deba@2089
|
649 |
void pop() {
|
deba@2089
|
650 |
while (first[minimal] == -1) {
|
deba@2089
|
651 |
++minimal;
|
deba@2089
|
652 |
}
|
deba@2089
|
653 |
int idx = first[minimal];
|
deba@2089
|
654 |
index[data[idx].item] = -2;
|
deba@2089
|
655 |
first[minimal] = data[idx].next;
|
deba@2089
|
656 |
data[idx].next = free;
|
deba@2089
|
657 |
free = idx;
|
deba@2089
|
658 |
--num;
|
deba@2089
|
659 |
}
|
deba@2089
|
660 |
|
deba@2089
|
661 |
/// \brief Returns the priority of \c i.
|
deba@2089
|
662 |
///
|
deba@2110
|
663 |
/// This function returns the priority of item \c i.
|
deba@2110
|
664 |
/// \warning This operator is not a constant time function
|
deba@2110
|
665 |
/// because it scans the whole data structure to find the proper
|
deba@2110
|
666 |
/// value.
|
deba@2089
|
667 |
/// \pre \c i must be in the heap.
|
deba@2089
|
668 |
/// \param i The item.
|
deba@2089
|
669 |
Prio operator[](const Item &i) const {
|
deba@2110
|
670 |
for (int k = 0; k < first.size(); ++k) {
|
deba@2110
|
671 |
int idx = first[k];
|
deba@2110
|
672 |
while (idx != -1) {
|
deba@2110
|
673 |
if (data[idx].item == i) {
|
deba@2110
|
674 |
return k;
|
deba@2110
|
675 |
}
|
deba@2110
|
676 |
idx = data[idx].next;
|
deba@2110
|
677 |
}
|
deba@2110
|
678 |
}
|
deba@2110
|
679 |
return -1;
|
deba@2089
|
680 |
}
|
deba@2089
|
681 |
|
deba@2089
|
682 |
/// \brief Returns if \c item is in, has already been in, or has
|
deba@2089
|
683 |
/// never been in the heap.
|
deba@2089
|
684 |
///
|
deba@2089
|
685 |
/// This method returns PRE_HEAP if \c item has never been in the
|
deba@2089
|
686 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
|
deba@2089
|
687 |
/// otherwise. In the latter case it is possible that \c item will
|
deba@2089
|
688 |
/// get back to the heap again.
|
deba@2089
|
689 |
/// \param i The item.
|
deba@2547
|
690 |
State state(const Item &i) const {
|
deba@2089
|
691 |
int idx = index[i];
|
deba@2089
|
692 |
if (idx >= 0) idx = 0;
|
deba@2547
|
693 |
return State(idx);
|
deba@2089
|
694 |
}
|
deba@2089
|
695 |
|
deba@2089
|
696 |
private:
|
deba@2089
|
697 |
|
deba@2089
|
698 |
struct BucketItem {
|
deba@2110
|
699 |
BucketItem(const Item& _item)
|
deba@2110
|
700 |
: item(_item) {}
|
deba@2089
|
701 |
|
deba@2089
|
702 |
Item item;
|
deba@2089
|
703 |
int next;
|
deba@2089
|
704 |
};
|
deba@2089
|
705 |
|
deba@2089
|
706 |
ItemIntMap& index;
|
deba@2089
|
707 |
std::vector<int> first;
|
deba@2089
|
708 |
std::vector<BucketItem> data;
|
deba@2089
|
709 |
int free, num;
|
deba@2089
|
710 |
mutable int minimal;
|
deba@2089
|
711 |
|
deba@2089
|
712 |
}; // class SimpleBucketHeap
|
deba@2089
|
713 |
|
mqrelly@2263
|
714 |
template <typename _ItemIntMap>
|
mqrelly@2263
|
715 |
class SimpleBucketHeap<_ItemIntMap, false> {
|
deba@2089
|
716 |
|
deba@2089
|
717 |
public:
|
mqrelly@2263
|
718 |
typedef typename _ItemIntMap::Key Item;
|
deba@2089
|
719 |
typedef int Prio;
|
deba@2089
|
720 |
typedef std::pair<Item, Prio> Pair;
|
deba@2089
|
721 |
typedef _ItemIntMap ItemIntMap;
|
deba@2089
|
722 |
|
deba@2547
|
723 |
enum State {
|
deba@2089
|
724 |
IN_HEAP = 0,
|
deba@2089
|
725 |
PRE_HEAP = -1,
|
deba@2089
|
726 |
POST_HEAP = -2
|
deba@2089
|
727 |
};
|
deba@2089
|
728 |
|
deba@2089
|
729 |
public:
|
deba@2089
|
730 |
|
deba@2089
|
731 |
explicit SimpleBucketHeap(ItemIntMap &_index)
|
deba@2089
|
732 |
: index(_index), free(-1), num(0), maximal(0) {}
|
deba@2089
|
733 |
|
deba@2089
|
734 |
int size() const { return num; }
|
deba@2089
|
735 |
|
deba@2089
|
736 |
bool empty() const { return num == 0; }
|
deba@2089
|
737 |
|
deba@2089
|
738 |
void clear() {
|
deba@2089
|
739 |
data.clear(); first.clear(); free = -1; num = 0; maximal = 0;
|
deba@2089
|
740 |
}
|
deba@2089
|
741 |
|
deba@2089
|
742 |
void push(const Pair& p) {
|
deba@2089
|
743 |
push(p.first, p.second);
|
deba@2089
|
744 |
}
|
deba@2089
|
745 |
|
deba@2089
|
746 |
void push(const Item &i, const Prio &p) {
|
deba@2089
|
747 |
int idx;
|
deba@2089
|
748 |
if (free == -1) {
|
deba@2089
|
749 |
idx = data.size();
|
deba@2110
|
750 |
data.push_back(BucketItem(i));
|
deba@2089
|
751 |
} else {
|
deba@2089
|
752 |
idx = free;
|
deba@2089
|
753 |
free = data[idx].next;
|
deba@2110
|
754 |
data[idx].item = i;
|
deba@2089
|
755 |
}
|
deba@2089
|
756 |
index[i] = idx;
|
deba@2386
|
757 |
if (p >= int(first.size())) first.resize(p + 1, -1);
|
deba@2089
|
758 |
data[idx].next = first[p];
|
deba@2089
|
759 |
first[p] = idx;
|
deba@2089
|
760 |
if (p > maximal) {
|
deba@2089
|
761 |
maximal = p;
|
deba@2089
|
762 |
}
|
deba@2089
|
763 |
++num;
|
deba@2089
|
764 |
}
|
deba@2089
|
765 |
|
deba@2089
|
766 |
Item top() const {
|
deba@2089
|
767 |
while (first[maximal] == -1) {
|
deba@2089
|
768 |
--maximal;
|
deba@2089
|
769 |
}
|
deba@2089
|
770 |
return data[first[maximal]].item;
|
deba@2089
|
771 |
}
|
deba@2089
|
772 |
|
deba@2089
|
773 |
Prio prio() const {
|
deba@2089
|
774 |
while (first[maximal] == -1) {
|
deba@2089
|
775 |
--maximal;
|
deba@2089
|
776 |
}
|
deba@2089
|
777 |
return maximal;
|
deba@2089
|
778 |
}
|
deba@2089
|
779 |
|
deba@2089
|
780 |
void pop() {
|
deba@2089
|
781 |
while (first[maximal] == -1) {
|
deba@2089
|
782 |
--maximal;
|
deba@2089
|
783 |
}
|
deba@2089
|
784 |
int idx = first[maximal];
|
deba@2089
|
785 |
index[data[idx].item] = -2;
|
deba@2089
|
786 |
first[maximal] = data[idx].next;
|
deba@2089
|
787 |
data[idx].next = free;
|
deba@2089
|
788 |
free = idx;
|
deba@2089
|
789 |
--num;
|
deba@2089
|
790 |
}
|
deba@2089
|
791 |
|
deba@2089
|
792 |
Prio operator[](const Item &i) const {
|
deba@2110
|
793 |
for (int k = 0; k < first.size(); ++k) {
|
deba@2110
|
794 |
int idx = first[k];
|
deba@2110
|
795 |
while (idx != -1) {
|
deba@2110
|
796 |
if (data[idx].item == i) {
|
deba@2110
|
797 |
return k;
|
deba@2110
|
798 |
}
|
deba@2110
|
799 |
idx = data[idx].next;
|
deba@2110
|
800 |
}
|
deba@2110
|
801 |
}
|
deba@2110
|
802 |
return -1;
|
deba@2089
|
803 |
}
|
deba@2089
|
804 |
|
deba@2547
|
805 |
State state(const Item &i) const {
|
deba@2089
|
806 |
int idx = index[i];
|
deba@2089
|
807 |
if (idx >= 0) idx = 0;
|
deba@2547
|
808 |
return State(idx);
|
deba@2089
|
809 |
}
|
deba@2089
|
810 |
|
deba@2089
|
811 |
private:
|
deba@2089
|
812 |
|
deba@2089
|
813 |
struct BucketItem {
|
deba@2110
|
814 |
BucketItem(const Item& _item) : item(_item) {}
|
deba@2089
|
815 |
|
deba@2089
|
816 |
Item item;
|
deba@2089
|
817 |
|
deba@2089
|
818 |
int next;
|
deba@2089
|
819 |
};
|
deba@2089
|
820 |
|
deba@2089
|
821 |
ItemIntMap& index;
|
deba@2089
|
822 |
std::vector<int> first;
|
deba@2089
|
823 |
std::vector<BucketItem> data;
|
deba@2089
|
824 |
int free, num;
|
deba@2089
|
825 |
mutable int maximal;
|
deba@2089
|
826 |
|
deba@2089
|
827 |
};
|
deba@2089
|
828 |
|
deba@2038
|
829 |
}
|
deba@2038
|
830 |
|
deba@2038
|
831 |
#endif
|