lemon/floyd_warshall.h
author deba
Tue, 12 Dec 2006 13:35:52 +0000
changeset 2329 3f4a04a9b7bf
parent 2184 05a5e48010ab
child 2335 27aa03cd3121
permissions -rw-r--r--
clone => build renaming
deba@1699
     1
/* -*- C++ -*-
deba@1699
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@1956
     5
 * Copyright (C) 2003-2006
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@1699
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@1699
     8
 *
deba@1699
     9
 * Permission to use, modify and distribute this software is granted
deba@1699
    10
 * provided that this copyright notice appears in all copies. For
deba@1699
    11
 * precise terms see the accompanying LICENSE file.
deba@1699
    12
 *
deba@1699
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@1699
    14
 * express or implied, and with no claim as to its suitability for any
deba@1699
    15
 * purpose.
deba@1699
    16
 *
deba@1699
    17
 */
deba@1699
    18
deba@1699
    19
#ifndef LEMON_FLOYD_WARSHALL_H
deba@1699
    20
#define LEMON_FLOYD_WARSHALL_H
deba@1699
    21
deba@1699
    22
///\ingroup flowalgs
deba@1699
    23
/// \file
deba@1699
    24
/// \brief FloydWarshall algorithm.
deba@1699
    25
///
deba@1699
    26
deba@1699
    27
#include <lemon/list_graph.h>
deba@1699
    28
#include <lemon/graph_utils.h>
deba@1993
    29
#include <lemon/bits/invalid.h>
deba@1699
    30
#include <lemon/error.h>
deba@1723
    31
#include <lemon/matrix_maps.h>
deba@1699
    32
#include <lemon/maps.h>
deba@1699
    33
deba@1699
    34
#include <limits>
deba@1699
    35
deba@1699
    36
namespace lemon {
deba@1699
    37
deba@1699
    38
  /// \brief Default OperationTraits for the FloydWarshall algorithm class.
deba@1699
    39
  ///  
deba@1699
    40
  /// It defines all computational operations and constants which are
deba@1699
    41
  /// used in the Floyd-Warshall algorithm. The default implementation
deba@1699
    42
  /// is based on the numeric_limits class. If the numeric type does not
deba@1699
    43
  /// have infinity value then the maximum value is used as extremal
deba@1699
    44
  /// infinity value.
deba@1699
    45
  template <
deba@1699
    46
    typename Value, 
deba@1699
    47
    bool has_infinity = std::numeric_limits<Value>::has_infinity>
deba@1699
    48
  struct FloydWarshallDefaultOperationTraits {
deba@1699
    49
    /// \brief Gives back the zero value of the type.
deba@1699
    50
    static Value zero() {
deba@1699
    51
      return static_cast<Value>(0);
deba@1699
    52
    }
deba@1699
    53
    /// \brief Gives back the positive infinity value of the type.
deba@1699
    54
    static Value infinity() {
deba@1699
    55
      return std::numeric_limits<Value>::infinity();
deba@1699
    56
    }
deba@1699
    57
    /// \brief Gives back the sum of the given two elements.
deba@1699
    58
    static Value plus(const Value& left, const Value& right) {
deba@1699
    59
      return left + right;
deba@1699
    60
    }
deba@1699
    61
    /// \brief Gives back true only if the first value less than the second.
deba@1699
    62
    static bool less(const Value& left, const Value& right) {
deba@1699
    63
      return left < right;
deba@1699
    64
    }
deba@1699
    65
  };
deba@1699
    66
deba@1699
    67
  template <typename Value>
deba@1699
    68
  struct FloydWarshallDefaultOperationTraits<Value, false> {
deba@1699
    69
    static Value zero() {
deba@1699
    70
      return static_cast<Value>(0);
deba@1699
    71
    }
deba@1699
    72
    static Value infinity() {
deba@1699
    73
      return std::numeric_limits<Value>::max();
deba@1699
    74
    }
deba@1699
    75
    static Value plus(const Value& left, const Value& right) {
deba@1699
    76
      if (left == infinity() || right == infinity()) return infinity();
deba@1699
    77
      return left + right;
deba@1699
    78
    }
deba@1699
    79
    static bool less(const Value& left, const Value& right) {
deba@1699
    80
      return left < right;
deba@1699
    81
    }
deba@1699
    82
  };
deba@1699
    83
  
deba@1699
    84
  /// \brief Default traits class of FloydWarshall class.
deba@1699
    85
  ///
deba@1699
    86
  /// Default traits class of FloydWarshall class.
deba@1699
    87
  /// \param _Graph Graph type.
deba@1699
    88
  /// \param _LegthMap Type of length map.
deba@1699
    89
  template<class _Graph, class _LengthMap>
deba@1699
    90
  struct FloydWarshallDefaultTraits {
deba@1699
    91
    /// The graph type the algorithm runs on. 
deba@1699
    92
    typedef _Graph Graph;
deba@1699
    93
deba@1699
    94
    /// \brief The type of the map that stores the edge lengths.
deba@1699
    95
    ///
deba@1699
    96
    /// The type of the map that stores the edge lengths.
alpar@2260
    97
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
deba@1699
    98
    typedef _LengthMap LengthMap;
deba@1699
    99
deba@1699
   100
    // The type of the length of the edges.
deba@1699
   101
    typedef typename _LengthMap::Value Value;
deba@1699
   102
deba@1865
   103
    /// \brief Operation traits for floyd-warshall algorithm.
deba@1699
   104
    ///
deba@1699
   105
    /// It defines the infinity type on the given Value type
deba@1699
   106
    /// and the used operation.
deba@1699
   107
    /// \see FloydWarshallDefaultOperationTraits
deba@1699
   108
    typedef FloydWarshallDefaultOperationTraits<Value> OperationTraits;
deba@1699
   109
 
deba@1723
   110
    /// \brief The type of the matrix map that stores the last edges of the 
deba@1699
   111
    /// shortest paths.
deba@1699
   112
    /// 
deba@1723
   113
    /// The type of the map that stores the last edges of the shortest paths.
deba@1699
   114
    /// It must be a matrix map with \c Graph::Edge value type.
deba@1699
   115
    ///
deba@1723
   116
    typedef DynamicMatrixMap<Graph, typename Graph::Node, 
deba@1723
   117
			     typename Graph::Edge> PredMap;
deba@1699
   118
deba@1699
   119
    /// \brief Instantiates a PredMap.
deba@1699
   120
    /// 
deba@1699
   121
    /// This function instantiates a \ref PredMap. 
alpar@1946
   122
    /// \param graph is the graph,
alpar@1946
   123
    /// to which we would like to define the PredMap.
deba@1699
   124
    /// \todo The graph alone may be insufficient for the initialization
deba@1699
   125
    static PredMap *createPredMap(const _Graph& graph) {
deba@1699
   126
      return new PredMap(graph);
deba@1699
   127
    }
deba@1699
   128
deba@1699
   129
    /// \brief The type of the map that stores the dists of the nodes.
deba@1699
   130
    ///
deba@1699
   131
    /// The type of the map that stores the dists of the nodes.
alpar@2260
   132
    /// It must meet the \ref concepts::WriteMatrixMap "WriteMatrixMap" concept.
deba@1699
   133
    ///
deba@1723
   134
    typedef DynamicMatrixMap<Graph, typename Graph::Node, Value> DistMap;
deba@1699
   135
deba@1699
   136
    /// \brief Instantiates a DistMap.
deba@1699
   137
    ///
deba@1699
   138
    /// This function instantiates a \ref DistMap. 
alpar@1946
   139
    /// \param graph is the graph, to which we would like to define the 
deba@1699
   140
    /// \ref DistMap
deba@1699
   141
    static DistMap *createDistMap(const _Graph& graph) {
deba@1699
   142
      return new DistMap(graph);
deba@1699
   143
    }
deba@1699
   144
deba@1699
   145
  };
deba@1699
   146
  
deba@1754
   147
  /// \brief %FloydWarshall algorithm class.
deba@1699
   148
  ///
deba@1699
   149
  /// \ingroup flowalgs
deba@1754
   150
  /// This class provides an efficient implementation of \c Floyd-Warshall 
deba@1699
   151
  /// algorithm. The edge lengths are passed to the algorithm using a
alpar@2260
   152
  /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any 
deba@1699
   153
  /// kind of length.
deba@1699
   154
  ///
alpar@1757
   155
  /// The algorithm solves the shortest path problem for each pair
deba@1723
   156
  /// of node when the edges can have negative length but the graph should
deba@1754
   157
  /// not contain cycles with negative sum of length. If we can assume
deba@1723
   158
  /// that all edge is non-negative in the graph then the dijkstra algorithm
deba@1723
   159
  /// should be used from each node rather and if the graph is sparse and
deba@1754
   160
  /// there are negative circles then the johnson algorithm.
deba@1723
   161
  ///
deba@2042
   162
  /// The complexity of this algorithm is \f$ O(n^3+e) \f$.
deba@1723
   163
  ///
deba@1699
   164
  /// The type of the length is determined by the
alpar@2260
   165
  /// \ref concepts::ReadMap::Value "Value" of the length map.
deba@1699
   166
  ///
deba@1699
   167
  /// \param _Graph The graph type the algorithm runs on. The default value
deba@1699
   168
  /// is \ref ListGraph. The value of _Graph is not used directly by
deba@1699
   169
  /// FloydWarshall, it is only passed to \ref FloydWarshallDefaultTraits.
deba@1699
   170
  /// \param _LengthMap This read-only EdgeMap determines the lengths of the
deba@1699
   171
  /// edges. It is read once for each edge, so the map may involve in
deba@1699
   172
  /// relatively time consuming process to compute the edge length if
deba@1699
   173
  /// it is necessary. The default map type is \ref
alpar@2260
   174
  /// concepts::Graph::EdgeMap "Graph::EdgeMap<int>".  The value
deba@1699
   175
  /// of _LengthMap is not used directly by FloydWarshall, it is only passed 
deba@1699
   176
  /// to \ref FloydWarshallDefaultTraits.  \param _Traits Traits class to set
deba@1699
   177
  /// various data types used by the algorithm.  The default traits
deba@1699
   178
  /// class is \ref FloydWarshallDefaultTraits
deba@1699
   179
  /// "FloydWarshallDefaultTraits<_Graph,_LengthMap>".  See \ref
deba@1699
   180
  /// FloydWarshallDefaultTraits for the documentation of a FloydWarshall 
deba@1699
   181
  /// traits class.
deba@1699
   182
  ///
deba@1699
   183
  /// \author Balazs Dezso
alpar@2184
   184
  /// \todo A function type interface would be nice.
alpar@2184
   185
  /// \todo Implement \c nextNode() and \c nextEdge()
deba@1710
   186
#ifdef DOXYGEN
alpar@2184
   187
  template <typename _Graph, typename _LengthMap, typename _Traits >
deba@1710
   188
#else
deba@1699
   189
  template <typename _Graph=ListGraph,
deba@1699
   190
	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
deba@1699
   191
	    typename _Traits=FloydWarshallDefaultTraits<_Graph,_LengthMap> >
deba@1710
   192
#endif
deba@1699
   193
  class FloydWarshall {
deba@1699
   194
  public:
deba@1699
   195
    
deba@1699
   196
    /// \brief \ref Exception for uninitialized parameters.
deba@1699
   197
    ///
deba@1699
   198
    /// This error represents problems in the initialization
deba@1699
   199
    /// of the parameters of the algorithms.
deba@1699
   200
deba@1699
   201
    class UninitializedParameter : public lemon::UninitializedParameter {
deba@1699
   202
    public:
alpar@2151
   203
      virtual const char* what() const throw() {
deba@1699
   204
	return "lemon::FloydWarshall::UninitializedParameter";
deba@1699
   205
      }
deba@1699
   206
    };
deba@1699
   207
deba@1699
   208
    typedef _Traits Traits;
deba@1699
   209
    ///The type of the underlying graph.
deba@1699
   210
    typedef typename _Traits::Graph Graph;
deba@1699
   211
deba@1699
   212
    typedef typename Graph::Node Node;
deba@1699
   213
    typedef typename Graph::NodeIt NodeIt;
deba@1699
   214
    typedef typename Graph::Edge Edge;
deba@1699
   215
    typedef typename Graph::EdgeIt EdgeIt;
deba@1699
   216
    
deba@1699
   217
    /// \brief The type of the length of the edges.
deba@1699
   218
    typedef typename _Traits::LengthMap::Value Value;
deba@1699
   219
    /// \brief The type of the map that stores the edge lengths.
deba@1699
   220
    typedef typename _Traits::LengthMap LengthMap;
deba@1699
   221
    /// \brief The type of the map that stores the last
deba@1699
   222
    /// edges of the shortest paths. The type of the PredMap
deba@1699
   223
    /// is a matrix map for Edges
deba@1699
   224
    typedef typename _Traits::PredMap PredMap;
deba@1699
   225
    /// \brief The type of the map that stores the dists of the nodes.
deba@1699
   226
    /// The type of the DistMap is a matrix map for Values
alpar@2184
   227
    ///
alpar@2184
   228
    /// \todo It should rather be
alpar@2184
   229
    /// called \c DistMatrix
deba@1699
   230
    typedef typename _Traits::DistMap DistMap;
deba@1699
   231
    /// \brief The operation traits.
deba@1699
   232
    typedef typename _Traits::OperationTraits OperationTraits;
deba@1699
   233
  private:
deba@1699
   234
    /// Pointer to the underlying graph.
deba@1699
   235
    const Graph *graph;
deba@1699
   236
    /// Pointer to the length map
deba@1699
   237
    const LengthMap *length;
deba@1699
   238
    ///Pointer to the map of predecessors edges.
deba@1699
   239
    PredMap *_pred;
deba@1699
   240
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
deba@1699
   241
    bool local_pred;
deba@1699
   242
    ///Pointer to the map of distances.
deba@1699
   243
    DistMap *_dist;
deba@1699
   244
    ///Indicates if \ref _dist is locally allocated (\c true) or not.
deba@1699
   245
    bool local_dist;
deba@1699
   246
deba@1699
   247
    /// Creates the maps if necessary.
deba@1699
   248
    void create_maps() {
deba@1699
   249
      if(!_pred) {
deba@1699
   250
	local_pred = true;
deba@1699
   251
	_pred = Traits::createPredMap(*graph);
deba@1699
   252
      }
deba@1699
   253
      if(!_dist) {
deba@1699
   254
	local_dist = true;
deba@1699
   255
	_dist = Traits::createDistMap(*graph);
deba@1699
   256
      }
deba@1699
   257
    }
deba@1699
   258
    
deba@1699
   259
  public :
deba@1699
   260
 
deba@1699
   261
    /// \name Named template parameters
deba@1699
   262
deba@1699
   263
    ///@{
deba@1699
   264
deba@1699
   265
    template <class T>
deba@1699
   266
    struct DefPredMapTraits : public Traits {
deba@1699
   267
      typedef T PredMap;
deba@1699
   268
      static PredMap *createPredMap(const Graph& graph) {
deba@1699
   269
	throw UninitializedParameter();
deba@1699
   270
      }
deba@1699
   271
    };
deba@1699
   272
deba@1699
   273
    /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
deba@1699
   274
    /// type
deba@1699
   275
    /// \ref named-templ-param "Named parameter" for setting PredMap type
deba@1699
   276
    ///
deba@1699
   277
    template <class T>
deba@1710
   278
    struct DefPredMap 
deba@1710
   279
      : public FloydWarshall< Graph, LengthMap, DefPredMapTraits<T> > {
deba@1710
   280
      typedef FloydWarshall< Graph, LengthMap, DefPredMapTraits<T> > Create;
deba@1710
   281
    };
deba@1699
   282
    
deba@1699
   283
    template <class T>
deba@1699
   284
    struct DefDistMapTraits : public Traits {
deba@1699
   285
      typedef T DistMap;
deba@1699
   286
      static DistMap *createDistMap(const Graph& graph) {
deba@1699
   287
	throw UninitializedParameter();
deba@1699
   288
      }
deba@1699
   289
    };
deba@1699
   290
    /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
deba@1699
   291
    /// type
deba@1699
   292
    ///
deba@1699
   293
    /// \ref named-templ-param "Named parameter" for setting DistMap type
deba@1699
   294
    ///
deba@1699
   295
    template <class T>
deba@1710
   296
    struct DefDistMap 
deba@1710
   297
      : public FloydWarshall< Graph, LengthMap, DefDistMapTraits<T> > {
deba@1710
   298
      typedef FloydWarshall< Graph, LengthMap, DefDistMapTraits<T> > Create;
deba@1710
   299
    };
deba@1699
   300
    
deba@1699
   301
    template <class T>
deba@1699
   302
    struct DefOperationTraitsTraits : public Traits {
deba@1699
   303
      typedef T OperationTraits;
deba@1699
   304
    };
deba@1699
   305
    
deba@1699
   306
    /// \brief \ref named-templ-param "Named parameter" for setting 
deba@1699
   307
    /// OperationTraits type
deba@1699
   308
    ///
deba@1699
   309
    /// \ref named-templ-param "Named parameter" for setting PredMap type
deba@1699
   310
    template <class T>
deba@1710
   311
    struct DefOperationTraits
deba@1699
   312
      : public FloydWarshall< Graph, LengthMap, DefOperationTraitsTraits<T> > {
deba@1710
   313
      typedef FloydWarshall< Graph, LengthMap, DefOperationTraitsTraits<T> >
deba@1710
   314
      Create;
deba@1699
   315
    };
deba@1699
   316
    
deba@1699
   317
    ///@}
deba@1699
   318
deba@1710
   319
  protected:
deba@1710
   320
deba@1710
   321
    FloydWarshall() {}
deba@1710
   322
deba@1699
   323
  public:      
deba@1710
   324
deba@1710
   325
    typedef FloydWarshall Create;
deba@1699
   326
    
deba@1699
   327
    /// \brief Constructor.
deba@1699
   328
    ///
deba@1699
   329
    /// \param _graph the graph the algorithm will run on.
deba@1699
   330
    /// \param _length the length map used by the algorithm.
deba@1699
   331
    FloydWarshall(const Graph& _graph, const LengthMap& _length) :
deba@1699
   332
      graph(&_graph), length(&_length),
deba@1699
   333
      _pred(0), local_pred(false),
deba@1699
   334
      _dist(0), local_dist(false) {}
deba@1699
   335
    
deba@1699
   336
    ///Destructor.
deba@1699
   337
    ~FloydWarshall() {
deba@1699
   338
      if(local_pred) delete _pred;
deba@1699
   339
      if(local_dist) delete _dist;
deba@1699
   340
    }
deba@1699
   341
deba@1699
   342
    /// \brief Sets the length map.
deba@1699
   343
    ///
deba@1699
   344
    /// Sets the length map.
deba@1699
   345
    /// \return \c (*this)
deba@1699
   346
    FloydWarshall &lengthMap(const LengthMap &m) {
deba@1699
   347
      length = &m;
deba@1699
   348
      return *this;
deba@1699
   349
    }
deba@1699
   350
deba@1699
   351
    /// \brief Sets the map storing the predecessor edges.
deba@1699
   352
    ///
deba@1699
   353
    /// Sets the map storing the predecessor edges.
deba@1699
   354
    /// If you don't use this function before calling \ref run(),
deba@1699
   355
    /// it will allocate one. The destuctor deallocates this
deba@1699
   356
    /// automatically allocated map, of course.
deba@1699
   357
    /// \return \c (*this)
deba@1699
   358
    FloydWarshall &predMap(PredMap &m) {
deba@1699
   359
      if(local_pred) {
deba@1699
   360
	delete _pred;
deba@1699
   361
	local_pred=false;
deba@1699
   362
      }
deba@1699
   363
      _pred = &m;
deba@1699
   364
      return *this;
deba@1699
   365
    }
deba@1699
   366
deba@1699
   367
    /// \brief Sets the map storing the distances calculated by the algorithm.
deba@1699
   368
    ///
deba@1699
   369
    /// Sets the map storing the distances calculated by the algorithm.
deba@1699
   370
    /// If you don't use this function before calling \ref run(),
deba@1699
   371
    /// it will allocate one. The destuctor deallocates this
deba@1699
   372
    /// automatically allocated map, of course.
deba@1699
   373
    /// \return \c (*this)
deba@1699
   374
    FloydWarshall &distMap(DistMap &m) {
deba@1699
   375
      if(local_dist) {
deba@1699
   376
	delete _dist;
deba@1699
   377
	local_dist=false;
deba@1699
   378
      }
deba@1699
   379
      _dist = &m;
deba@1699
   380
      return *this;
deba@1699
   381
    }
deba@1699
   382
deba@1699
   383
    ///\name Execution control
deba@1699
   384
    /// The simplest way to execute the algorithm is to use
deba@1699
   385
    /// one of the member functions called \c run(...).
deba@1699
   386
    /// \n
deba@1699
   387
    /// If you need more control on the execution,
deba@1699
   388
    /// Finally \ref start() will perform the actual path
deba@1699
   389
    /// computation.
deba@1699
   390
deba@1699
   391
    ///@{
deba@1699
   392
deba@1699
   393
    /// \brief Initializes the internal data structures.
deba@1699
   394
    /// 
deba@1699
   395
    /// Initializes the internal data structures.
deba@1699
   396
    void init() {
deba@1699
   397
      create_maps();
deba@1699
   398
      for (NodeIt it(*graph); it != INVALID; ++it) {
deba@1699
   399
	for (NodeIt jt(*graph); jt != INVALID; ++jt) {
deba@1699
   400
	  _pred->set(it, jt, INVALID);
deba@1741
   401
	  _dist->set(it, jt, OperationTraits::infinity());
deba@1699
   402
	}
deba@1741
   403
	_dist->set(it, it, OperationTraits::zero());
deba@1699
   404
      }
deba@1699
   405
      for (EdgeIt it(*graph); it != INVALID; ++it) {
deba@1699
   406
	Node source = graph->source(it);
deba@1699
   407
	Node target = graph->target(it);	
deba@1699
   408
	if (OperationTraits::less((*length)[it], (*_dist)(source, target))) {
deba@1699
   409
	  _dist->set(source, target, (*length)[it]);
deba@1699
   410
	  _pred->set(source, target, it);
deba@1699
   411
	}
deba@1699
   412
      }
deba@1699
   413
    }
deba@1699
   414
    
deba@1699
   415
    /// \brief Executes the algorithm.
deba@1699
   416
    ///
deba@1699
   417
    /// This method runs the %FloydWarshall algorithm in order to compute 
deba@1699
   418
    /// the shortest path to each node pairs. The algorithm 
deba@1699
   419
    /// computes 
deba@1699
   420
    /// - The shortest path tree for each node.
deba@1699
   421
    /// - The distance between each node pairs.
deba@1699
   422
    void start() {
deba@1699
   423
      for (NodeIt kt(*graph); kt != INVALID; ++kt) {
deba@1699
   424
	for (NodeIt it(*graph); it != INVALID; ++it) {
deba@1699
   425
	  for (NodeIt jt(*graph); jt != INVALID; ++jt) {
deba@1699
   426
	    Value relaxed = OperationTraits::plus((*_dist)(it, kt),
deba@1699
   427
						  (*_dist)(kt, jt));
deba@1699
   428
	    if (OperationTraits::less(relaxed, (*_dist)(it, jt))) {
deba@1699
   429
	      _dist->set(it, jt, relaxed);
deba@1699
   430
	      _pred->set(it, jt, (*_pred)(kt, jt));
deba@1699
   431
	    }
deba@1699
   432
	  }
deba@1699
   433
	}
deba@1699
   434
      }
deba@1699
   435
    }
deba@1741
   436
deba@1754
   437
    /// \brief Executes the algorithm and checks the negative cycles.
deba@1741
   438
    ///
deba@1741
   439
    /// This method runs the %FloydWarshall algorithm in order to compute 
deba@1754
   440
    /// the shortest path to each node pairs. If there is a negative cycle 
deba@1741
   441
    /// in the graph it gives back false. 
deba@1741
   442
    /// The algorithm computes 
deba@1741
   443
    /// - The shortest path tree for each node.
deba@1741
   444
    /// - The distance between each node pairs.
deba@1741
   445
    bool checkedStart() {
deba@1741
   446
      start();
deba@1741
   447
      for (NodeIt it(*graph); it != INVALID; ++it) {
deba@1741
   448
	if (OperationTraits::less((*dist)(it, it), OperationTraits::zero())) {
deba@1741
   449
	  return false;
deba@1741
   450
	}
deba@1741
   451
      }
deba@1741
   452
      return true;
deba@1741
   453
    }
deba@1699
   454
    
deba@1699
   455
    /// \brief Runs %FloydWarshall algorithm.
deba@1699
   456
    ///    
deba@1699
   457
    /// This method runs the %FloydWarshall algorithm from a each node
deba@1699
   458
    /// in order to compute the shortest path to each node pairs. 
deba@1699
   459
    /// The algorithm computes
deba@1699
   460
    /// - The shortest path tree for each node.
deba@1699
   461
    /// - The distance between each node pairs.
deba@1699
   462
    ///
deba@1699
   463
    /// \note d.run(s) is just a shortcut of the following code.
alpar@1946
   464
    ///\code
deba@1699
   465
    ///  d.init();
deba@1699
   466
    ///  d.start();
alpar@1946
   467
    ///\endcode
deba@1699
   468
    void run() {
deba@1699
   469
      init();
deba@1699
   470
      start();
deba@1699
   471
    }
deba@1699
   472
    
deba@1699
   473
    ///@}
deba@1699
   474
deba@1699
   475
    /// \name Query Functions
deba@1699
   476
    /// The result of the %FloydWarshall algorithm can be obtained using these
deba@1699
   477
    /// functions.\n
deba@1699
   478
    /// Before the use of these functions,
deba@1699
   479
    /// either run() or start() must be called.
deba@1699
   480
    
deba@1699
   481
    ///@{
deba@1699
   482
deba@1699
   483
    /// \brief Copies the shortest path to \c t into \c p
deba@1699
   484
    ///    
deba@1699
   485
    /// This function copies the shortest path to \c t into \c p.
deba@1699
   486
    /// If it \c t is a source itself or unreachable, then it does not
deba@1699
   487
    /// alter \c p.
deba@1699
   488
    /// \return Returns \c true if a path to \c t was actually copied to \c p,
deba@1699
   489
    /// \c false otherwise.
deba@1699
   490
    /// \sa DirPath
deba@1699
   491
    template <typename Path>
deba@1699
   492
    bool getPath(Path &p, Node source, Node target) {
deba@1699
   493
      if (connected(source, target)) {
deba@1699
   494
	p.clear();
deba@1699
   495
	typename Path::Builder b(target);
deba@1763
   496
	for(b.setStartNode(target); predEdge(source, target) != INVALID;
deba@1699
   497
	    target = predNode(target)) {
deba@1763
   498
	  b.pushFront(predEdge(source, target));
deba@1699
   499
	}
deba@1699
   500
	b.commit();
deba@1699
   501
	return true;
deba@1699
   502
      }
deba@1699
   503
      return false;
deba@1699
   504
    }
deba@1699
   505
	  
deba@1699
   506
    /// \brief The distance between two nodes.
deba@1699
   507
    ///
deba@1699
   508
    /// Returns the distance between two nodes.
deba@1699
   509
    /// \pre \ref run() must be called before using this function.
deba@1699
   510
    /// \warning If node \c v in unreachable from the root the return value
deba@1699
   511
    /// of this funcion is undefined.
deba@1699
   512
    Value dist(Node source, Node target) const { 
deba@1699
   513
      return (*_dist)(source, target); 
deba@1699
   514
    }
deba@1699
   515
deba@1699
   516
    /// \brief Returns the 'previous edge' of the shortest path tree.
deba@1699
   517
    ///
deba@1699
   518
    /// For the node \c node it returns the 'previous edge' of the shortest 
deba@1699
   519
    /// path tree to direction of the node \c root 
deba@1699
   520
    /// i.e. it returns the last edge of a shortest path from the node \c root 
deba@1699
   521
    /// to \c node. It is \ref INVALID if \c node is unreachable from the root
deba@1699
   522
    /// or if \c node=root. The shortest path tree used here is equal to the 
deba@1699
   523
    /// shortest path tree used in \ref predNode(). 
deba@1699
   524
    /// \pre \ref run() must be called before using this function.
deba@1763
   525
    Edge predEdge(Node root, Node node) const { 
deba@1699
   526
      return (*_pred)(root, node); 
deba@1699
   527
    }
deba@1699
   528
deba@1699
   529
    /// \brief Returns the 'previous node' of the shortest path tree.
deba@1699
   530
    ///
deba@1699
   531
    /// For a node \c node it returns the 'previous node' of the shortest path 
deba@1699
   532
    /// tree to direction of the node \c root, i.e. it returns the last but 
deba@1699
   533
    /// one node from a shortest path from the \c root to \c node. It is 
deba@1699
   534
    /// INVALID if \c node is unreachable from the root or if \c node=root. 
deba@1699
   535
    /// The shortest path tree used here is equal to the 
deba@1763
   536
    /// shortest path tree used in \ref predEdge().  
deba@1699
   537
    /// \pre \ref run() must be called before using this function.
deba@1699
   538
    Node predNode(Node root, Node node) const { 
deba@1699
   539
      return (*_pred)(root, node) == INVALID ? 
deba@1699
   540
      INVALID : graph->source((*_pred)(root, node)); 
deba@1699
   541
    }
deba@1699
   542
    
deba@1699
   543
    /// \brief Returns a reference to the matrix node map of distances.
deba@1699
   544
    ///
deba@1699
   545
    /// Returns a reference to the matrix node map of distances. 
deba@1699
   546
    ///
deba@1699
   547
    /// \pre \ref run() must be called before using this function.
deba@1699
   548
    const DistMap &distMap() const { return *_dist;}
deba@1699
   549
 
deba@1699
   550
    /// \brief Returns a reference to the shortest path tree map.
deba@1699
   551
    ///
deba@1699
   552
    /// Returns a reference to the matrix node map of the edges of the
deba@1699
   553
    /// shortest path tree.
deba@1699
   554
    /// \pre \ref run() must be called before using this function.
deba@1699
   555
    const PredMap &predMap() const { return *_pred;}
deba@1699
   556
 
deba@1699
   557
    /// \brief Checks if a node is reachable from the root.
deba@1699
   558
    ///
deba@1699
   559
    /// Returns \c true if \c v is reachable from the root.
deba@1699
   560
    /// \pre \ref run() must be called before using this function.
deba@1699
   561
    ///
deba@1699
   562
    bool connected(Node source, Node target) { 
deba@1699
   563
      return (*_dist)(source, target) != OperationTraits::infinity(); 
deba@1699
   564
    }
deba@1699
   565
    
deba@1699
   566
    ///@}
deba@1699
   567
  };
deba@1699
   568
 
deba@1699
   569
} //END OF NAMESPACE LEMON
deba@1699
   570
deba@1699
   571
#endif
deba@1699
   572